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Effective Potentials

Reading: Course packet section 11
Taylor section 8.4



Velocity and acceleration in polar
coordinates

A




Energy approach for fictitious reduced
mass:

f(r)r=-VU(r);E=KE+U

1 .. .
E= —purer + Ul(r) ¥ =T + 1@
Lr—J POTENTIAL ENERGY
KINETIC ENERGY
1 /. AN/ . a
KE=—u\rr+r@g@|s\rr +r
{77+ 169 {77 + réo)
1 .2 1 2 12
= —ur-+ —ur
SHIT A S g
—_—

—
RADIAL ROTATIONAL



Aside: Angular momentum for the
reduced mass problem (again!)
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(= m = ur’g = const

Notice that if r and ¢-dot (aka omega) are known at one time, then el is
known at that time and thus for all times. INITIAL CONDITIONS!




Energy approach
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Energy approach: the effective
potential

e Limits: Which part is big and which small as r changes?
* What is distance of closest approach?

e Are there energies where orbit is bound? Unbound?

e WhatifE< ?

* Effective potential Mathematica worksheet
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Energy approach to find r(t); ¢(t)

This is just as in PH421 where we treated the harmonic oscillator, we can solve for
dr/dt as a function of r, and integrate to get t(r). And in PH421, we had 1-d so no
angular momentum and used Harmonic Oscillator potential energy!
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Energy approach to find r(t); ¢(t)

This is just as in PH421 where we treated the harmonic oscillator, we can solve for dr/dt as a
function of r, and integrate to get t(r). Invert t(r) to get r(t). In PH421, we had 1-d so no
angular momentum and we used the Harmonic Oscillator potential energy! In PH 421, we
were especially interested in the period, so we integrated from one extreme of the motion

to the other. You can do that here, if you like, but below we integrate from some arbitrary
start to the point in question, r
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The orbit

If we have r(t) and ¢ (t), then we can call "t" a
parameter and plot the orbit on a polar plot, with
(r, ®) points for each value of t.

Alternatively, we can solve one equation for t and
plug into the other to get r(9), say, and have the
orbit directly.

Even better, we can alter the original de’s to get
only r and ¢, and solve that.

(Recall the motion of a projectile in the earth’s
field for a simpler example: x(t), y(t) or y(x))



Newton’s Law for fictitious reduced mass
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