

CM frame, relative coordinates, position and velocity in polar coordinates

Reading: Course packet

Relative coordinates useful

$$\vec{R}_{CM} \equiv \frac{m_1}{M} \vec{r}_1 + \frac{m_2}{M} \vec{r}_2$$

Decouple 2-body problem

 $\mu \ddot{\vec{r}} = \vec{f}_{21} = f(r)\hat{r}$ for central force

$$\begin{split} m_1 \ddot{\vec{r}_1} &= \vec{f}_{12} = -\vec{f}_{21} \\ m_2 \ddot{\vec{r}_2} &= \vec{f}_{21} \\ m_1 m_2 \ddot{\vec{r}_2} - m_1 m_2 \ddot{\vec{r}_1} &= m_1 \vec{f}_{21} + m_2 \vec{f}_{21} \\ \frac{m_1 m_2}{m_1 + m_2} \ddot{\vec{r}} &= \vec{f}_{21} \end{split}$$

REDUCED MASS

$$\mu \equiv \frac{m_1 m_2}{m_1 + m_2}$$

Relative motion obeys a single-particle equation. Fictitious particle, mass μ moving in a central force field. Vector r measures RELATIVE displacement; we have to "undo" to get actual motion of each of particles 1 and 2. Often m1>>m2.

Decoupled CoM motion: 2 body example

$$\vec{R}_{CM} \equiv \frac{m_1}{M} \vec{r}_1 + \frac{m_2}{M} \vec{r}_2$$

CoM moves subject to external forces as if all the mass is located there.

In the absence of ext forces, $V_{CM} = constant$ We can choose const vel = 0

 R_{CM} = const and we can choose = 0.

 m_2

CoM Frame

$$\vec{R}_{CM} \equiv \frac{m_1}{M} \vec{r}_1 + \frac{m_2}{M} \vec{r}_2 \qquad = 0$$

$$\vec{r} \equiv \vec{r}_2 - \vec{r}_1$$

$$m_1 \qquad \vec{r}_1 \qquad \vec{r}_2 \qquad \vec{r}_3 \qquad \vec{r}_4 \qquad \vec{r}_4 \qquad \vec{r}_4 \qquad \vec{r}_5 \qquad \vec{r}_6 \qquad \vec{r}_6$$

$$\vec{r}_2 = \frac{m_1}{m_1 + m_2} \vec{r}; \qquad m_2 \vec{r}_2 = \mu \vec{r}$$

$$\vec{r}_1 = -\frac{m_2}{m_1 + m_2} \vec{r}; \qquad m_1 \vec{r}_1 = -\mu \vec{r}$$

Relative motion obeys a single-particle equation. Fictitious particle, mass μ moving in a central force field. Vector r measures RELATIVE displacement; we have to "undo" to get actual motion of each of particles 1 and 2. Often m1>>m2.

Central force

Define central force

$$\vec{f}_{21} = -\vec{f}_{12} = f(r)\hat{r};$$
 gravity: $f(r) = -\frac{Gm_1m_2}{r^2}$

- f_{12} reads "the force on 1 caused by 2"
- Depends on magnitude of separation and not orientation
- Points towards origin in a 1-particle system
- Derivable from potential (conservative)

$$\vec{f}_{12} = -\nabla U(r)$$
; gravity: $U(r) = -\frac{Gm_1m_2}{r}$

Work done is path independent

2-body: L and T

$$m_1 \vec{r}_1 = \mu \vec{r}$$

$$m_1 \vec{r}_1 = -\mu \vec{r}$$
; $m_2 \vec{r}_2 = \mu \vec{r}$

$$\vec{L}_{TOT} = \vec{r}_1 \times m_1 \dot{\vec{r}}_1 + \vec{r}_2 \times m_2 \dot{\vec{r}}_2 = \vec{r}_1 \times (-\mu \dot{\vec{r}}) + \vec{r}_2 \times \mu \dot{\vec{r}}$$
$$= (\vec{r}_2 - \vec{r}_1) \times \mu \dot{\vec{r}} = \vec{r} \times \mu \dot{\vec{r}}$$

$$T_{TOT} = \frac{1}{2} m_1 \dot{\vec{r}}_1^2 + \frac{1}{2} m_1 \dot{\vec{r}}_1^2 = \frac{1}{2} m_1 \frac{\mu^2}{m_1^2} \dot{\vec{r}}^2 + \frac{1}{2} m_2 \frac{\mu^2}{m_2^2} \dot{\vec{r}}^2$$

$$= \frac{1}{2} \mu^2 \dot{\vec{r}}^2 \left(\frac{1}{m_1} + \frac{1}{m_2} \right) = \frac{1}{2} \mu \dot{\vec{r}}^2$$

Conservation of angular momentum

Define (must specify an origin!)

$$\vec{L} \equiv \vec{r} \times \vec{p}; \quad \vec{\tau} \equiv \vec{r} \times \vec{F}$$

Newton's 2nd Law

$$\vec{\tau} = \frac{d\vec{L}}{dt}$$

Central Force

$$f(r)\hat{r}$$

$$\vec{\tau} = \vec{r} \times \vec{F} = \vec{r} \times f(r)\hat{r} = 0 \implies \frac{d\vec{L}}{dt} = 0$$

Polar coordinates are good for planar orbits

Polar coordinates are good for planar orbits

$$\frac{d\vec{r}}{dt} \equiv \dot{\vec{r}} = ?$$

$$\dot{\hat{r}} = ?$$

$$\dot{\hat{\phi}} = ?$$

Velocity and acceleration in polar coordinates

$$\frac{d^2\vec{r}}{dt^2} \equiv \ddot{\vec{r}} = \vec{a} = (\ddot{r} - r\dot{\phi}^2)\hat{r} + (r\ddot{\phi} + 2\dot{r}\dot{\phi})\hat{\phi}$$

Angular momentum for the reduced mass problem

$$\vec{\ell} = \vec{r} \times \vec{p} = \vec{r} \times \mu \vec{v} = \vec{r} \times \mu \dot{\vec{r}}$$

$$= r\hat{r} \times \mu \left(\dot{r}\hat{r} + r\dot{\phi}\hat{\phi} \right)$$

$$= -\mu r^2 \dot{\phi}\hat{\theta} = \mu r^2 \dot{\phi}\hat{z} = \mu r^2 \dot{\phi}\hat{k}$$

$$\vec{\ell} = |\vec{\ell}| = \mu r^2 \dot{\phi} = const$$

Notice that if r and phi-dot (aka omega) are known at one time, then el is known at that time and thus for all times. INITIAL CONDITIONS!

Conservation of AM & Kepler's 2nd law

- Equal areas equal times (cons. angular mom.)
- Later (once we've explored polar coordinates).

Summary

- Define R_{CM}; total mass M
- Define r, relative coord; $\mu = m_1 m_2/M$
- No ext forces => CoM constant momentum
- No external torque => AM conserved
- AM conserved -> what is value? (see later)
- AM conserved -> Orbit in a plane (hwk)