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The radial wave function

Reading: Mclntyre 8.1-8.4
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The radial equation

* Original problem was separated into angular and radial
parts. We have solved the angular part and are now
ready to tackle the radial part, which is different for
every different central potential.

 Before we chose the Coulomb potential, note that the
problem reduces very nicely to a 1-d eigenvalue
equation with an effective potential, just like in the
classical case.

HR(r)Y (6.¢)=ER(r)Y (6.9)

d( ,dR) 2u 5
—|rr—|+—(E-V R—/V(/+1)R=0
dr(r dr) e ( (r)r (L+1)



The effective potential energy

2 2
AR ZAR )y D U,
dr~ rdr h 2ur

Vej;,r(r) J |

* All of the terms involving r
(not its derivatives), can
be lumped into an
effective potential energy.




Use dimensionless variables

2 2 2 |
d12’3+2dR+2_L2L oy Ze” I Z(K—Iz-l) 20
dr= rdr h°|  4ngyr 2urt

r
p=
’ drce I
2 P | _ Ane,
V= 72 ,uZez
2ua’
2 i o(0+1)
d§+gd—R+ —y2+g— ( . ) R=0
dp~ pdp | p P




Asymptotic solutions: p > o0

2 _ (¢
d 1§+>§+ —y2+>% R
dp R

0

* For bound states (E<O0),
solutions decay
exponentially. What
about growing term?



Asymptotic solutions: p 20

2 i o(e+1)

d§+gd—R+ —><+ — ( > ) R=0

dp~ pdp | p-
R(p)Npq * For small p, solutions are
g=10,—0(—1 power law. What are

powers? (sm. whiteboard)



Full solution: all p

d*R 2 dR o2 ((e+1)
t——t| =y ==
pdp p P

R(p)~p'e P H(p)

=
|

0

* What differential equation must H(p) obey?
(You are doing a similar problem for homework)



Full solution: all p Y

dH

d°H 2(€+1—yp)d—p +2(1-y=yt)H=0

dp’

o
H(p)=Ycp’
j=0

* Here is the differential equation. We're going to
try a polynomial solution for H. We won’t do
this in class. Follow your homework example to

show it.



Plug and chug (fast!) o

d ,D o
dp] =0

2 oo

d cp’ =7
dp* %’

Do the derivatives, carefully noting the limits.

Which term benefits from a change of index inj? What
should you change to?

True for all powers of p.

We'll get a (single) recurrence relation and all we need to
know is c,.



Recurrence relation [ §

2y(1+ j+0)-2
C'+1 — . . C.
! (]+1)(]+2€+2) ’
e Series must terminate to be normalizable. This

will kill our asymptotic decay at large r unless we
force the sum to terminate!

2y(1+j,, +¢)-2=0 1

n=j +/(+1 n

J




New quantization rules!

ek
s
\ M”
! o
J 3
W

4 2 4
E 1 1 Z
—’}/2 — — p— E = — cH
2(47teoh)
2ua’ \ /
n=123...

* Energy is quantized! The 1/n? dependence is the
same as in the (incorrect) Bohr model.

* Ifel>n-1,j . is negative, contradicting the
assumption that;__ is non-negative.

¢=0,1,2,3..n—1

* Energy does not depend on the el quantum
number (or m), so there is degeneracy!



More important variables

Ad1e B’
a, = —02 =0.0529 nm Bohr radius
m e
2
e 1
o= — fine structure constant
47t80hc 137

* You have met the Bohr radius =0.529 A in your Modern Physics class. Note: it
is defined with m_, not y, so we’ll use m_ = p from now on.

* The fine structure constant o may be new to you. Itis a dimensionless
constant =1/137 that appears again when we consider non-Coulomb like
interactions in the H atom (that lead to fine structure in the spectrum)



Summary of quantization rules.

] . 2,2 2
* Energyis quantized p __ l Zo'me n=12.3...
n n2 2 ? >
13.
E =- 36eV for Z=1

n 2
n

* Angular momentum magnitude (L?) is
guantized

((e+1)R* €=0,1,2,3..n—1

* The z-component of the angular momentum is

guantized.
mh,; m=—(—¢+1,..—1,0,1,..4 -1,/
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H atom spectroscopy
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* Energy is quantized
13.6

2
n

 This is the Balmer series

el for/Z=1

E =-

Hydrogen Absorption Spectrum

Hydrogen Emission Spectrum

| |
400nm 700nm




Energy

H atom spectroscopy

3P3/2, 3D3/2 3P3/2, 3D3/2

* Fine structure from

S T | = non-Coulomb terms
n=2 2Pz 2Pz F=1 . . .
2515, 2Py 2Py F=0 (Sp!n_().rblt Couplln.g’
G which is a magnetic
effect)

* Hyperfine structure
from coupling to
nuclear angular

momentum
1S, F=1

1S, F=0
Bohr Dirac Lamb hyperfine
levels fine structure shift structure
(increased) (increased) (increased)




Summary

The fact that the series must be a finite
polynomial is what (mathematically) leads to a
maximum (and integer) value of n!

We pull out the asymptotic dependencies of
the wave function (power law at small r and
exp decay at large r); what remains is an
associated Laguerre polynomial.

The radial wave functions depend on n and el,
but the energy depends only on n.

Refer to the summary slide of the quantization
rules.



