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Rigid
particle confined to a sphere
Spherical Harmonics

Reading: Mcintyre 7.6

Spherical Harmonic Vg




Legendre’s equation (m = 0)
The series must be finite!

If the series is not finite, the polynomial blows up (check ratio for large n)
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* These special values of A give Legendre polynomials.
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The energy for the rigid rotor problem

* Go back to the original statement of the rigid
rotor problem to see how A is related to E.

((e1)n’
21
e elis aninteger (energy is quantized)

A=((L+1)= E, =



@ Legendre polynomials
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@ Legendre polynomials

* Orthogonal means we can express any function
defined on that interval as a superposition of
Legendre polynomials: HW

. 1 . P, (z)
(f + 5) JPk (z)P(z)dz=0,, /=0 ”
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* This means we can 05 1
project and find
probabilities justas ’ ' 1’
with sines, cosines =0 /=3 =
and exp(ima) r=1




@ssociated Legendre polynomials
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ssociated Legendre polynomials

* m#%0, !/ integer O
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@ssociated Legendre polynomials

* P7(z)=01f ‘m‘ > [ restrictsmto el >
determines # of orbitals

* P"(z)= P"(z) opposite projections have
same spatial form

* P"(£1)=0form=0 yzplaneisanode

* P'(=z)=(=1)""P"(z) parity (selection rules)

* Orthogonal (for given m) Q
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Finally .....

* The normalized polynomial that solves the theta
equation is (typo in book Eq. 7.156) :

07(0)=(-1)" \/ - Eﬁ;
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Summary

The fact that the series must be finite
polynomial of degree el is what
(mathematically) leads to a maximum (and
integer) value of el!

The fact that the series is finite means that we
can differentiate it only a finite number of
times (el) and that number turns out to be m!!
Thus m is limited to —el ... el.

Legendre functions are orthogonal on [-1,1]
Legendre and associated Legendre functions.



Spherical harmonics:

* Original problem was separated into angular
and radial parts. We further separated
angular parts into theta and phi.

r"(6,0)=07(6)®,(¢)

* These functions are the angular part of the
solution to the hydrogen atom problem, and
indeed ANY central force problem!!



Do you know what this is?
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The cosmic microwave background is

analyzed with spherical harmonics!




E\g} Spherical Harmonics
- _ (m+|ml)/2 2l+1) (= |m|)! _, imo
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§:% Spherical Harmonics
204+1) (/—|m))! .
Ym 9, — _1 (m+|ml)/2 ( Pm COSQ ezm¢
, (0,0)=(=1) py (“m)!g( )

 What is the action of these operators on the spherical
harmonics?

L2Y"(6,0) =2
LY"(0,0)="7

Do the two operators commute?



Spherical Harmonics

[tm)

 What is the action of these operators on the spherical
harmonics?

L €m> =7
L |tmy="

Do the two operators commute?
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%g} Spherical Harmonics
20+1) (0= | m|)! .
Ym 9, — _1 (m+|ml)/2 ( Pm COSQ elm¢
, (0,0)=(-1) - (Hm)!g( )

 Orthonormal on the sphere
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* Now we’ll spend some time
visualizing probability distributions
of eigenstates and superpositions.



Spherical Harmonics




Spherical Harmonics
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Spherical Harmonics




Spherical Harmonic Expansion
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About the spherical harmonics

* Y"(0,9)= ( ) Y"(r-06,0+m) parity (“even” or
“odd”. This will be helpful when study selection
rules for transitions between states.

e opposite projections have same spatial form
. yz plane is a node

e Orthonormal



Spherical harmonics as a basis set

The orthonormality of the spherical harmonics
means that any function define on a sphere can
be expressed as a superposition of spherical
harmonics.

Electromagnetism — multipoles of a charge
distribution

Gravitation — multipoles of a mass distribution

The CMB example — multipoles of the
temperature fluctuations of the early universe



Spherical harmonics as a basis set

 Find the coefficients of the function

1
1(6,0)= iR sin 20 sin ¢
lé6rm

expanded as a Laplace series (series of sph. har.)

F0.0=YY ¢, v"(6.0)

0=0 m=—1¢



The real (as opposed to complex)

spherical harmonics

* |n gravitation problems, the complex numbers in
the spherical harmonics are rarely useful, so
other linear combinations are used.

d_(6.9)~ Y, (6.0)+¢°Y;"(6,0)

* You'll recognize these as the p, d, f orbital forms
from chemistry




Summary

The fact that the series must be finite
polynomial of degree el is what
(mathematically) leads to a maximum (and
integer) value of el!

The fact that the series is finite means that we
can differentiate it only a finite number of
times (el) and that number turns out to be m!!
Thus m is limited to —el ... el.

Legendre functions are orthonormal on [-1,1]
Legendre and associated Legendre functions.



