Thevenin Equivalents

Concept
The purpose of this lab is to introduce Thevenin equivalent circuits and gain more experience with the equipment. The Thevenin equivalent source potential V_{TH} and the Thevenin equivalent source resistance R_{TH} are a way of characterizing a complicated circuit in terms of a simple circuit with one battery and one source resistor, as shown at right. When connected across a varying load R_L, the current I through the load and the potential V_{AB} across the load obey the equation

$$I = \frac{V_{TH}}{R_{TH}} - \frac{1}{R_{TH}} V_{AB}.$$

Experimental Instructions

1. **Thevenin equivalent potential and resistance**
 a. Build the circuit shown in the diagram below (with $R = 100 \ \Omega$ and $V_S = 3.3 \ V$).
 b. Determine the Thevenin equivalent source potential V_{TH} by measuring the output potential V_{AB} with a high input resistance DMM.

2. **Thevenin equivalent resistance**
 c. Determine the Thevenin equivalent source resistance R_{TH} by short-circuiting the output and measuring the current I_{sc} through this short-circuit.
 d. Determine the Thevenin equivalent potential and resistance by connecting a variable load resistor (potentiometer) and measuring the output potential V_{AB} and the load current I_L over a range of load resistances. (If you are confident that you know the resistance, then you can deduce the current from the voltage) From a plot of I vs. V_{AB}, determine V_{TH} and R_{TH}.
 e. Compare your two measurements of V_{TH} and R_{TH} with a Kirchoff loop calculation based on values of the resistors used in your circuit (*i.e.* HW 2).