1. The square loop of wire of side $b=0.16 \mathrm{~m}$ lies on a long straight wire with $a=0.12 \mathrm{~m}$ on one side of the wire and $b-a=0.04 \mathrm{~m}$ on the other side. The current in the long wire is $I=4.50 t^{2}-10.0 t$, where I is in amperes and t is in seconds. (a) What is the total flux through the loop at any time t ? [Hint: Divide the loop into narrow strips of width $d r$ parallel to the long wire and a distance r from the wire, find the flux through each narrow strip, and integrate over the loop to get the total flux. Be sure to take the field direction into account.] (b) Find the emf in the square loop at $t=3.0 \mathrm{~s}$. (c) What is
 the direction of the induced current in the loop?
Answers: (a) $\Phi_{B}=\frac{\mu_{0} I b}{2 \pi} \ln \left(\frac{a}{b-a}\right)$ (b) $5.98 \times 10^{-7} \mathrm{~V}$
2. A rectangular loop 50.0 cm by 20.0 cm consists of 100 turns of wire. It is placed entirely in a uniform magnetic field of 3.50 T . What is the maximum emf produced when the loop is spun at $1000 \mathrm{rev} / \mathrm{min}$ about an axis that is perpendicular to the direction of the magnetic field?
Answer: 5500 V
3. In the circuit shown, $E=10.0 \mathrm{~V}, R_{1}=5.0 \Omega, R_{2}=10.0 \Omega$, and $L=5.0 \mathrm{H}$. (a) Just after the switch is closed, what are the values of the current I_{1} through R_{1}, the current I_{2} through R_{2}, the current I through the switch, the potential difference across R_{2}, the potential difference across L, and the rate of change of I_{2} ? (b) A long time after the switch is closed, what are the values of the current I_{1} through R_{1}, the current I_{2}
 through R_{2}, the current I through the switch, the potential difference across R_{2}, the potential difference across L, and the rate of change of I_{2} ?
