Ph202H/212H
W09

1. Consider a container holding 1.00 mole of argon gas at $35.0^{\circ} \mathrm{C}$ and 1.22 atm pressure. The radius of a single argon atom, which is assumed to be spherical, is $0.710 \times 10^{-10} \mathrm{~m}$. What fraction of the volume of the container is actually occupied by the atoms?

Ans: 4.35×10^{-5}
2. A quantity of ideal gas at $12.0^{\circ} \mathrm{C}$ and a pressure of 108 kPa occupies a volume of 2.47 m^{3}. (a) How many molecules of the gas are present? (b) If the pressure is raised to 316 kPa and the temperature is raised to $31.0^{\circ} \mathrm{C}$, how much volume will the gas occupy? Assume no gas leaks from the container.

Ans: (a) 6.78×10^{25} (b) $0.901 \mathrm{~m}^{3}$
3. Two vessels of volumes 1.22 L and 3.18 L are connected by a thin tube of negligible volume. They contain krypton gas at the same temperature, $16.0^{\circ} \mathrm{C}$, and the same pressure, 1.44 atm . The larger vessel is then heated to $108^{\circ} \mathrm{C}$ while the smaller one remains at $16.0^{\circ} \mathrm{C}$. What is the final pressure in the vessels?

Ans: 1.74 atm

