Ph202H/212H
W09

1. The equation of a transverse wave traveling along a string is

$$
y(x, t)=(2.30 \mathrm{~mm}) \sin (1822 x-588 t)
$$

where x is measured in meters and t in seconds. Find (a) the amplitude, (b) the frequency, (c) the wavelength, (d) the wave speed, and (e) the maximum transverse speed of a particle of the string.
2. The speed of a wave on a string is $172 \mathrm{~m} / \mathrm{s}$ when the tension is 123 N . To what value must the tension be increased to raise the wave speed to $180 \mathrm{~m} / \mathrm{s}$?

Answer: 135 N
3. What are the three lowest frequencies for standing waves on a wire 9.88 m long having a mass of 0.107 kg , which is stretched under a tension of 236 N ?

Answer: ..., $14.9 \mathrm{~Hz}, \ldots$

