Ph202H/212H
W09

1. A sample of gas expands from 1.0 to $5.0 \mathrm{~m}^{3}$ while its pressure decreases from 15 to 5 Pa . Sketch the following processes on a PV diagram and calculate the work done on the gas by each process. (a) a constant pressure process followed by a constant volume process; (b) a constant volume process followed by a constant pressure process; (c) a direct, straight-line process from the initial P, V to the final P, V.
2. Calculate the work done by an external agent in compressing 1.12 mole of oxygen from a volume of 22.4 L and 1.32 atm pressure to 15.3 L at constant temperature.

Ans: 1.14 kJ
3. Let 20.9 J of heat be added to a particular ideal gas. As a result, its volume changes from 63.0 to $113 \mathrm{~cm}^{3}$ while the pressure remains constant at 1.00 atm . (a) By how much does the internal energy of the gas change? (b) If the quantity of gas present is 2.00×10^{-3} mole, find the molar heat capacity at constant pressure. (c) Find the molar heat capacity at constant volume.

Ans: (b) $34.4 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
4. An engine carries 1.00 mole of an ideal monatomic gas around the following cycle: from A (where $T=300 \mathrm{~K}$) at constant volume to $B(T=600 \mathrm{~K})$, then adiabatically to C (T $=455 \mathrm{~K}$), then at constant pressure back to A. For each process and for the cycle as a whole, find the heat transfer, work done on the gas, and change in internal energy.

Ans: $W_{B C}=-1810 \mathrm{~J}$

