1. Find the tension in the cord holding the pulley (which is of negligible mass) after the system is released but before one of the blocks hits the ground. $m_{1}=1.2 \mathrm{~kg}, m_{2}=3.2 \mathrm{~kg}$.
2. A small block of mass m rests on a frictionless incline of mass M, which in turn rests on a frictionless horizontal table. A horizontal force \mathbf{F} is applied to the incline, which slides across the table. Determine the value of the force so that the small block remains in a fixed position on the incline.
3. Determine the value of m_{2} that would keep the system at rest, and also determine the tension in the cord. $m_{1}=5.0 \mathrm{~kg}, \theta_{1}=30^{\circ}$, $\theta_{2}=20^{\circ}$.

4. Two masses m_{1} and m_{2} are connected to each other and to a central pivot by strings. They rotate on a frictionless horizontal table with the same period of rotation t (so that the 2 strings remain in a line) at distances r_{1} and r_{2} from the pivot. Find the tensions in the 2 strings.
5. A small bead of mass m is free to slide on a frictionless hoop of radius r that rotates about a vertical axis with rotation period t. Determine the angle at which the bead will be in equilibrium.
6. A train traveling at constant speed rounds a curve of radius 275 m . A pendulum suspended from the ceiling hangs at an angle of
 17.5° with the vertical for the entire turn. What is the speed of the train?
