Ph201H/211H
F08

1. Consider a system composed of three particles initially at rest: a mass of 4.1 kg initially located at $(x, y)=(-2,3), 8.2 \mathrm{~kg}$ at $(4,2)$, and 4.1 kg at $(1,-2)$. All distances are given in meters. (a) Find the initial location of the center of mass of the system. (b) The particles are acted upon by three different external forces: a force of 6 N in the negative x direction acts on the first particle, 12 N at $+45^{\circ}$ acts on the second particle, and 14 N in the positive x direction acts on the third particle. The system is released from rest at $t=$ 0 . Find the location of the center of mass at $t=2.5 \mathrm{~s}$ in two different ways: (i) by applying Newton's $2^{\text {nd }}$ law separately to each particle and finding its location at 2.5 s ; (ii) by applying Newton's $2^{\text {nd }}$ law to the entire system and finding the velocity of the center of mass.

Answers: (a) $x_{\mathrm{cm}}=1.8 \mathrm{~m}, y_{\mathrm{cm}}=$?? (b) $x_{\mathrm{cm}}=$??, $y_{\mathrm{cm}}=2.9 \mathrm{~m}$
2. A projectile of mass 9.6 kg is launched from the ground with an initial velocity of 12.4 m / s at an angle of 54° above the horizontal. At some time after its launch, an explosion splits the projectile into 2 pieces. One piece, of mass 6.5 kg , is observed at 1.42 s after the launch at a height of 5.9 m and a horizontal distance of 13.6 m from the launch point. (a) If the projectile had not exploded, where would it be located at $t=1.42 \mathrm{~s}$? (b) The explosion is an internal force which cannot change the motion of the center of mass. Where is the center of mass of the 2 fragments at $t=1.42 \mathrm{~s}$? (c) Find the location of the second fragment at that time.

Answers: (a) (10.35, 4.36) m (c) $x=3.5 \mathrm{~m}, y=$??

