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Energy 

K 

0 r--------r-----------------r 
Eo 

FIGURE 14-17. Kinetic energy K, potential energy U, and to­
tal energy E = K + U of a body in circular planetary motion. A 
planet with total energy Eo < 0 will remain in an orbit with radius 
ro. The greater the distance from the Sun, the greater (that is, less 
negative) its total energy E. To escape from the center of force and 
still have kinetic energy at infinity, the planet would need positive 
total energy. 

must go to zero as the separation goes to infinity. The po­
tential energy is always negative except for its zero value at 
infinite separation. The meaning of the total negative en­
ergy then is that the system is a closed one, the planet m al­
ways being bound to the attracting solar center M and never 
escaping from it (Fig. 14-17). 

It can be shown* that Eq. 14-25 is also valid for ellipti­
cal orbits, if we replace r by the semimajor axis a. The total 
energy is still negative, and it is also constant, because 
gravitational forces are conservative. Hence both the total 
energy and the total angular momentum are constant in 
planetary motion. These quantities are often called con­
stants ofthe motion. 

Because the total energy does not depend on the eccen­
tricity of the orbit, all orbits with the same semimajor axis a 
have the same total energy. Figure 14-18 shows several dif­
ferent orbits that have the same energy. 

If we supply the proper amount of kinetic energy, we can 
arrange for the total energy to be zero or positive, in which 
case the orbits are no longer elliptical. The orbits are para­
bolic for E 0 and hyperbolic for E > O. This case often 
occurs in the scattering of particles from a nucleus, where 
the electrostatic force also varies as lIr2. The spacecraft Pi­
oneer 10 was given enough initial kinetic energy to allow it 
to escape fr9m the solar system; launched on March 3, 
1972, it passed the orbit of Pluto, the outermost planet, on 
June 14, 1983, outward bound on a hyperbolic path. 

Equation 14-25 shows that we cannot change the speed 
of an orbiting satellite without also changing the radius of 

'See reference on p. 312. 
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FIGU RE 14-18. All four orbits have the same semimajor axis 
a and thus correspond to the same total energy E. Their eccentrici­
ties are marked. 

its orbit. For example, suppose two satellites are following 
one another in the same circular orbit. If the trailing satel­
lite tries to catch the leading one by accelerating forward, 
thereby increasing the kinetic energy, the total energy be­
comes less negative and the radius increases. Docking two 
spacecraft is not just a simple exercise in edging one craft 
forward! In fact, as the following sample problem shows, 
the proper procedure to use in overtaking an orbiting space­
craft often involves slowing down rather than speeding up. 

SAMPLE PROBLEM 14-10. Two identical spacecraft, 
each with a mass of 3250 kg, are in the same circular orbit at a 
height of 270 km above the Earth's surface. Spacecraft A leads 
spacecraft B by J05 s; that is, A arrives at any fixed point 105 s 
before B. At a particular point P (Fig. 14-19), the pilot of B fires a 
short rocket burst in the forward direction, reducing the speed of B 
by 0.95%. Find the orbital parameters (energy, period, semimajor 
axis) of B before and after the "burn," and find the order of the 
two ships when they next return to point P. 

Solution For h 270 km, r = Rf, + h = 6370 km + 270 km 
6640 km. Thus, before firing the rockets, a 6640 km and, from 
Eq.14-25, 

E'" _ GmMf, 
2a 

(6.67 	x 10 1I N·m2/kg2)(3250kg)(5.98 x 1024 kg) 

2(6.64 x 106 m) 

=0 - 9.76 X 1010 J. 

The period follows from Eq. 14-23: 

T (41T2 
a 
3)112 

\ GM" 

41T'(6.64 X 106m? )112
( (6.67 X lO-11 N· m2/kg2)(5.98 X 1024 kg) 

~ 5380 s. 

Equations 14-24 and 14-25 show that (for a circular orbit only!) 
the kinetic energy is numerically equal to the negative of the total 
energy, so K = + 9.76 X 1010 J and 

v = ~_2: --'--------'- = 7.75 X 103 m/s. 

http:m2/kg2)(5.98
http:41T'(6.64
http:N�m2/kg2)(3250kg)(5.98
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FIGURE 14-19. Sample Problem 14-10. The orbits of space­
craft A and B are shown. Note that B catches A by moving to a 
noncircular orbit at lower height above the Earth. The relative size 
of the Earth and the orbital heights is not to scale. 

After the burn, the speed decreases by the given amount of 0.95% 
to v' (l - O.OO95)v = 7.68 X 103 mIs, and the new kinetic en­
ergy of B is 

K' ~(3250 kg)(7.68 X 103 m/s)2 = 9.58 X 1010 1. 

The potential energy of B at point P immediately after the short 
burn is unchanged, equal to the initial value E K or 2E, accord­
ing to Eq. 14-25. The total energy E' of B after the burn must then 

be 

E' K' + U' = 9.58 X 1010 J + 2(- 9.76 X 1010 J) 

- 9.94 X 1010 J, 

and the new semimajor axis is, from Eq. 14-25, 

_ GmMEa' 
2Et 

(6.67 X 10- 11 N· m2/kg 2)(3250 kg)(5.98 X 1024 kg) 
= _._........ 2(-9.94 X lOiO J) 

6.52 X 106 m 6520 km, 

a reduction of 1.8% from the value in the original orbit. The corre­
sponding period is 

41T2at3 )112
T' ( GME 

417'2(6.52 X 106 mi )112 
(== (6.67 X 10- 11 N' m2/kg2)(5.98 X 10H kg) 

'" 5240 s. 

The difference in the periods is 140 s. That is, if A originally 
passes through point P at t = 0 and B passes through (and fires its 
rockets) at t = 105 s, then A returns to P at t 5380 s (deter­
mined by the period T), and B returns to P at 5240 s after its ini­
tial passage, or at t = 105 s + 5240 s 5345 s. Thus B is now 
35 s ahead ofA at point P. Now B can fire a second rocket burst 
identical in strength and duration to the first but in the reverse di­
rection. This returns B to the original circular orbit, now 35 s 
ahead of A. Figure 14-19 shows the relationship between A and B 
during the first orbit after the bum. Note that after the burn, B 
moves in an elliptical orbit and so can pass A without colliding be­
cause A remains in the original circular orbit. 

See Exercise 38 to help understand how B can reduce its speed 
at P and still get ahead of A. 

14-8 THE GRAVITATIONAL 
FIELD (Optional) 

A basic fact of gravitation is that two particles exert forces 
on one another. We can think of this as a direct interaction 
between the two particles, if we wish. This point of view is 
called action-at-a-distance, the particles interacting even 
though they are not in contact. Another point of view is the 
field concept, which regards a particle as modifying the 
space around it in some way and setting up a gravitational 
field. This field, the strength of which depends on the mass 
of the particle, then acts on any other particle, exerting the 
force of gravitational attraction on it. The field therefore 
plays an intermediate role in our thinking about the force 
that one particle exerts on another. 

According to this view we have two separate parts to 
our problem. First, we must determine the gravitational 
ficld established by a given distribution of particles. Sec­
ond, we must calculate the gravitational force that this field 
exerts on another particle placed in it. 

We use this same approach later in the text when we 
study electromagnetism, in which case particles with elec­
tric charge set up an electric field, and the force on another 
charged particle is determined by the strength of the electric 
field at the location of the particle. 

Let us consider the Earth as an isolated particle and ig­
nore all rotational and other nongravitational effects (so that 
g and go are equivalent). We use a small test body of mass 
mo as a probe of the gravitational field. If this body is 
placed in the vicinity of the Earth, it will experience a force 
having a definite direction and magnitude at each point in 
space. The direction is radially in toward the center of the 
Earth, and the magnitude is mog. We can associate with 
each point near the Earth a vector g, which is the accelera­
tion that a body would experienee if it were released at this 
point. We define the gravitational field strength at a point as 
the gravitational force per unit mass at that point or, in 
terms of our test mass, 

Fg= (14-26) 

By moving the test mass to various positions, we can make 
a map showing the gravitational field at any point in space. 
We can then find the force on a particle at any point in that 
field by multiplying the mass m of the particle by the value 
of the gravitational field g at that point: F mg. Figure 
14-20 shows examples of gravitational fields. 

The gravitational field is an example of a vector field, 
each point in this field having a vector associated with it. 
There are also scalar fields, such as the temperature field in 
a heat-conducting solid. The gravitational field arising from 
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