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ABSTRACT. We investigate Warnsdorff’s simple heuristic for finding knight’s tours on square chessboards and
consider various tiebreaking methods. We then analyze one particular algorithm that is consistent with Warnsdorff’s
rule and runs in linear time. This algorithm requires less memory than other known algorithms and hence is a more
practical rule for humans to follow without the aid of a computer. Finally we complete one case of the proof of the
correctness of this algorithm.

1. INTRODUCTION

Chess is a two player game played on a square board. Generallychess is played on a board with 8 rows and
8 columns; however, we will deal with the more general case where the board containsm rows andm columns.
For the purposes of this paper we will assume the orientationof a board is fixed so that we can label all the
squares. Let column 1 denote the leftmost column and row 1 denote the top row. We denote each square by the
ordered pair(i, j), wherei is the row number andj is the column number. Each player receives six different
types of pieces, each of which has a different set of rules governing its possible moves. In this paper we are
specifically concerned with the knight. A knight’s move follows an L-shape; it can move either one row over
and two columns over, or two rows over and one column over (in either direction). We say that two squares are
adjacent if a knight can move from one square to the other (we also call the two squaresneighbors). Formally,
(a,b) is adjacent to(c,d) if and only if 1≤ a,b,c,d ≤ m and

(c,d) ∈ {(a−2,b+1),(a−1,b+2),(a+1,b+2),(a+2,b+1),(a+2,b−1),(a+1,b−2),
(a−1,b−2),(a−2,b−1)}

Notice that adjacency is a symmetric relation, but is neither reflexive nor transitive. It is clear that there are
at most eight squares adjacent to any given square; note thatthere are only two squares adjacent to the corner
squares. Since the orientation of the board is fixed, we can label each of these moves as one of eight possible
types. Thesemove-types are depicted in the following diagram, where X denotes the position of the knight:

X

1

2

3

45

6

7

8

A knight’s path is a sequence of squares such that all pairs of consecutive squares are adjacent and no square
appears in the sequence more than once. We can illustrate a knight’s path by labeling each square by the the
order of its appearance in the sequence, with dashes denoting squares that do not appear in the sequence. At
any point in a knight’s path we call a squarevisited if it has already appeared in the sequence andunvisited if
it has not appeared. In our diagrams this means that visited squares contain a number less than or equal to the
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2 Sam Ganzfried

number in the current square, while unvisited squares contain either a number higher than the number in the
current square or a dash. We call the number of unvisited squares that are adjacent to a given square thedegree
of the square. Aknight’s tour is a knight’s path that includes every square of the board. Here is an example of
a knight’s tour on an 8x8 board:

1 16 27 22 3 18 47 56
26 23 2 17 46 57 4 19
15 28 25 62 21 48 55 58
24 35 30 45 60 63 20 5
29 14 61 34 49 44 59 54
36 31 38 41 64 53 6 9
13 40 33 50 11 8 43 52
32 37 12 39 42 51 10 7

Finding a knight’s tour on a chessboard is a special case of the Hamiltonian-Path problem: determining
whether there exists a path such that every vertex is visitedexactly once in an arbitrary undirected graph.
This is easy to see if we think of a chessboard as a graph where the squares are vertices and there is an edge
between two vertices if and only if they are adjacent. We callthis aknight’s graph. Then a chessboard has a
knight’s tour if and only if the corresponding knight’s graph has a hamiltonian path. Determining whether an
arbitrary graph has a hamiltonian path is an NP-complete problem, and hence no known efficient (polynomial-
time) algorithm exists. On the other hand, it is well-known precisely on which chessboards a knight’s tour is
possible, and several efficient algorithms (linear in the number of squares) exist for constructing such tours
[2, 3, 4, 7]. Specifically, an mxm board has a knight’s tour if and only if m ≥ 5. Thus analysis of knight’s tours
might provide some insight into how to approach the more difficult Hamiltonian-Path problem.

2. WARNSDORFF’ S RULE

In 1823, Warnsdorff [9] proposed a simple heuristic for finding knight’s tours.

Warnsdorff’s Rule: Always move to an adjacent, unvisited square with minimal degree.

Intuitively this seems like a logical rule to follow, since squares with lower degrees have fewer neighbors and
therefore we will have fewer opportunities to visit them in the remainder of the path. It is essential to follow
this rule if a square has degree 0, since otherwise we can never visit it. Similarly if we fail to visit a square of
degree 1, then we will have only one more opportunity to visitit (and it must be the last square of the tour). It
is also true that no tour can deviate from Warnsdorff’s Rule in the last several moves, although this is less
obvious. The idea here is that if we deviate at an early move wehave a greater opportunity to overcome this
“mistake,” while if we deviate near the end of the path then wehave fewer chances to avoid failure. Since this
“endgame effect” is central to the intuitive appeal of the heuristic, we will make it more rigorous with the
following theorem, which relies on a lemma.

Lemma 2.1. It is impossible to have three mutually adjacent squares on a chessboard.

Proof. Suppose three squares are mutually adjacent. Then they mustall lie in different rows; otherwise two
would be in the same row and could not be adjacent to each other. Similarly, all three squares must lie in
different columns. Furthermore, the rows of the squares must be consecutive; otherwise two squares would be
in rows that have more than two rows between them and could notbe adjacent. Similarly, the columns must be
consecutive. Consider the square which lies in the middle row. Suppose this square lies in columnj. Then one
of the other two squares must lie in either columnj+1 or column j−1. In either case this square is exactly
one row and one column away from the first square and cannot be adjacent to it. So we have a contradiction,
and no three squares can be mutually adjacent. �
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Theorem 2.2. It is impossible for a knight’s tour to deviate from Warnsdorff’s Rule in the last four moves.

Proof. Suppose we can deviate from Warnsdorff’s Rule at the currentmove of a path and still produce a tour. In
particular, suppose we move to a square of degreey instead of a square of degreex, wherex < y. Let q denote
the current square,sx denote the square of degreex, andsy denote the square of degreey. If x = 0, then it is
impossible to produce a tour since we can never visitsx. Sox ≥ 1. Therefore,y ≥ 2. So at least three squares
must currently be unvisited; otherwise no square could havedegree 2. If exactly three squares are unvisited,
then we must havex = 1 andy = 2. Thensy must be adjacent tosx since only three squares remain. Therefore
q, sx, andsy are mutually adjacent. By the lemma this produces a contradiction. Suppose four squares are
unvisited. If y = 3 then we have the same contradiction sincesx andsy must be adjacent. So we must have
y = 2 andx = 1, wheresx andsy are not adjacent. Leta andb denote the other two squares (which must both
be adjacent tosy). If a andb are adjacent thensy, a, andb are mutually adjacent and we have a contradiction.
Soa andb are not adjacent. Sincesx has degree 1 andsx is not adjacent tosy, sx must be adjacent to eithera or
b. Without loss of generality supposesx is adjacent toa. Thensx can not also be adjacent tob. Sob has degree
0 (sincesy is now visited). Therefore, we must visitb now or else it will never be visited. But sinceb is not
adjacent tosx or a, the path terminates and we cannot complete a tour. So we havea contradiction and no such
deviation is possible. �

One might begin to wonder whether there are tours that deviate from Warnsdorff’s Rule at all; it is not
obvious that such tours exist. Unfortunately, it appears that it is relatively easy to “overcome” deviations from
the rule if they occur early enough. Most knight’s tours do not follow Warnsdorff’s heuristic, and many deviate
a large number of times. Below is an example of a tour on an 8x8 board that deviates from the heuristic 20
times, although no deviations occur in the last 14 moves. Squares from which the next move is a deviation are
in bold:

1 56 49 54 3 52 19 22
48 37 2 51 20 23 4 17
57 50 55 36 53 18 21 10
38 47 58 33 24 11 16 5
59 32 39 46 35 26 9 12
40 43 34 25 62 15 6 27
31 60 45 42 29 8 13 64
44 41 30 61 14 63 28 7

This dramatic example deals a harsh blow to Warnsdorff’s heuristic and forces us to consider the opposite
extreme. Is Warnsdorff’s Rule simply an intuitively appealing heuristic that is utterly ineffective in actually
producing tours? One might begin to wonder whether there even exists a single tour that follows Warnsdorff’s
Rule on each board; the answer is certainly not obvious. Thatis the question the remainder of this paper will
address.

To start with, Warnsdorff’s heuristic is not an algorithm; astarting square is not specified, and no rule is
specified in the event that more than one unvisited, adjacentsquare share the minimal degree. Warnsdorff
provided one possible solution himself. In the event that several adjacent squares share the minimal degree,
Warnsdorff claimed that “[moving] to any of them indifferently” will result in a tour [1]. While it is not clear
what square he intended the tour to start on, it seems reasonable to assume it would start at a corner square,
which initially has the smallest degree. Thus we can view Warnsdorff’s proposal as an algorithm in which ties
are broken at random.

Unfortunately, this randomized algorithm does not always work. Here is an example of a path on an 8x8
board that follows Warnsdorff’s algorithm but fails to produce a tour:
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1 28 13 46 3 26 39 36
14 43 2 27 48 37 4 25
29 12 47 42 45 40 35 38
− 15 44 49 − − 24 5
11 30 − − 41 50 − 34
16 − 18 31 − − 6 23
19 10 − − 21 8 33 −
− 17 20 9 32 − 22 7

In a 1996 REU paper Squirrel [8] performed 100 trials of this algorithm for all board sizes from 5 to 400; the
conclusion was that the algorithm is quite successful for smaller boards, but the success rate drops sharply as
board size increases. The algorithm produces a successful tour over 85% of the time on most boards withm
less than 50, and it succeeds over 50% of the time on most boards withm less than 100. However, form > 200
the success rate is less than 5%, and form > 325 there were no successes at all. These observations suggest
that the success rate of Warnsdorff’s random algorithm rapidly goes to 0 asm increases. I confirmed Squirrel’s
findings, and made another interesting observation. For allboards withm ≤ 25 the success rate was at least
98% with one surprising exception: form = 7 the success rate was only 75%. I will have more to say about
this later in this section.

Despite the failure of Warnsdorff’s proposed algorithm, itwas believed that Warnsdorff’s heuristic could still
be salvaged if appropriate improvements were made. Severalattempts have been made to improve Warnsdorff’s
algorithm; however, none of them proved successful on all boards. Parberry [4] considered an algorithm that
combined Warnsdorff’s heuristic with a random walk algorithm originally proposed by Euler in 1759. Euler’s
approach was to start at any square, then repeatedly move to arandom unvisited neighbor until no more moves
are possible. Euler then attempted to replace moves of this path with longer sequences of moves consisting
of squares that were not visited by the path. A more complete analysis of Euler’s algorithm can be found in
[1]. Parberry decided to improve this algorithm by choosingthe next square according to Warnsdorff’s random
algorithm; that is, chose a random square with minimal degree. While an interesting idea, experiments showed
that the success rate of the algorithm appears to decrease exponentially and the average running time required
to find each tour appears to increase exponentially.

Roth [6] decided that the problem lay in Warnsdorff’s randomtiebreak rule. He proposed breaking ties by
choosing “the successor with largest euclidean distance tothe center of the chessboard.” It was not comletely
clear how he would break ties if more than one square shared the same distance from the center of the board.
Roth claimed that his algorithm first failed on a board with 428 rows, and failed less than 1% of the time on all
boards with fewer than 2000 rows.

Pohl [5] also considered an alternative to Warnsdorff’s tiebreak rule. Instead of breaking ties arbitrarily, Pohl
decided to apply Warnsdorff’s rule a second time on the squares that share the minimal degree. He proposed
taking the sum of the degrees of all the unvisited neighbors of these minimal-degree squares and choosing
the square whose sum was minimal. Pohl noted that in theory one could apply this process as many times as
necessary to break ties; but he decided that doing so would becomputationally inefficient. This is actually not
entirely true; for example, if we start in the corner square then any number of iterations of Warnsdorff’s rule
will result in a tie between the two adjacent squares. In any event, applying Warnsdorff rule a large number of
times yields a running time asymptotically equivalent to that of an exhaustive search, as Pohl noted.

I experimented with this second-level Warnsdorff-rule with ties broken at random and made some interesting
observations. While Warnsdorff’s standard rule succeeded81% of the time whenm= 50 and only about 35% of
the time form = 100, the second-level rule succeeded over 95% of the time on nearly all boards withm ≤ 100.
I did not have access to the technology to test it on larger values ofm, but I suspect the second-level algorithm
would eventually converge to a success rate of 0 as well, but for much larger values ofm than the first-level
algorithm. Also, as in the standard algorithm I noticed one key exception in the data. Every value ofm from
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5 to 50 had a success rate greater than 97% exceptm = 8, which succeeded on only 67% of the trials. This is
very surprising considering that the single-level algorithm succeeded on 99% of the trials form = 8. Applying
Warnsdorff’s rule a second iteration dramatically decreased the success rate. It would be interesting to see how
this pattern continues; for example, would a third iteration of Warnsdorff’s rule have a poor performance on a
9x9 board, but a high success rate on 7x7 and 8x8? Unfortunately I did not have time to test this observation in
more detail, but I suspect that there would continue to be a single board size with relatively poor performance
for each number of iterations. In the 7x7 and 8x8 cases I suspect that the poor performance was due to a single
bad decision that is made early on in the path, and I believe a similar phenomenon would continue to occur for
somem for a greater number of iterations.

Pohl actually decided not to use a random tiebreak rule if a second application of Warnsdorff’s heuristic
failed to produce a unique square; he chose to break ties by using a fixed ordering of the squares, similar to our
arbitrary ordering of move-types in the introduction. I didnot have time to test Pohl’s algorithm, but he claims
it successfully produces a tour on an 8x8 board. Pohl also proposed several other possible tiebreak solutions.
Rather than look at the sum of the squares with minimal degree, we could instead choose the square which
has a neighbor with minimal degree. Alternatively, we coulduse a combination of the two methods, picking
squares by minimal sum unless a neighbor of one of the squareshas degree 2, in which case we choose that
square. Pohl also proposed applying Warndsdorff’s standard algorithm, using a sort of backtrack procedure if
it fails. Pohl also considered ways of applying Warnsdorff’s rule in order to find Hamiltonian paths of more
general classes of graphs. Unfortunately most of these ideas were purely speculative, and he did not have any
data supporting them.

3. A SUCCESSFULWARNSDORFF-CONSISTENT ALGORITHM

Both Roth and Pohl introduced the idea of breaking ties according to a fixed ordering of moves rather than
using Warnsdorff’s random rule. Squirrel decided to investigate this strategy in more detail. Let us define
a move-ordering as a permutation of the set{1,2,3,4,5,6,7,8}. We will omit the brackets and punctuation;
for example, 28365174 is a move-ordering. If we think of the numbers as corresponding to the move-types
presented in the introduction, then each move-ordering provides a deterministic tiebreak rule. For example,
if we are using the move-ordering 28365174 and we must choosebetween breaking a tie with a type-4 move
and a type-5 move, we will make the type-5 move because it appears earlier in the move-ordering sequence.
The tour presented in the introduction uses Warnsdorff’s standard heuristic with the move-ordering 12345678
as a tiebreak rule. Squirrel experimented with move-orderings and concluded that each of the 8! orderings
fails on some board size; however, he noticed that certain move-orderings perform better than others in certain
situations. Squirrel used Roth and Pohl’s approach of breaking ties with move-orderings to develop his own
algorithm, which proved to be more effective.

Squirrel’s algorithm involves using different move-orderings to break ties depending on the board size and
whether we have reached certain squares yet in the path. It isprobably easiest to demonstrate the algorithm
with an example. In all cases we start in the top left corner and repeatedly apply Warnsdorff’s rule; all that
changes is the tiebreak rule. Ifm ≡ 6 mod 8, then we use the move-ordering 34261578 to break ties until we
reach square (6,1). Then we switch to the move-ordering 87642135 until we reach square (3,1). Next we switch
to 54132678 until (m-10,1); then 52431678 until (10,m-2); then 85647123 until (3,(m+8)/2). Finally we switch
to 12453678, which we use until the end of the path. The full list of move-orderings and switching points for
all boards is given on the table on the next page. We will call asquare on which the move-ordering changes
a switching square. Notice that the algorithm consists of eight cases depending on the value ofm mod 8
(actually there are two subcases ifm ≡ 5), and each case contains five or fewer move-ordering changes. Here
is pseudocode for the algorithm given an integerm ≥ 112:
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m ≡ 0 mod 8
34261578 (m−1,m−2)
87642135 (2,2)
51867342 (m−8,1)
51342678 (7,m−3)
21435678 end

m ≡ 1 mod 8
34261578 (m−1,m−2)
87642135 (2,2)
51324678 (m−6,(m+9)/2)
32481765 end

m ≡ 2 mod 8
34261578 (6,1)
87642135 (3,1)
54132678 (m−15,4)
52431678 (10,m−2)
85647123 (5,(m−6)/2)
15746823 end

m ≡ 3 mod 8
34625718 (m−1,m−2)
42681357 (m−6,m)
86512347 (2,5)
51867342 (m−10,3)
61825437 ((m+1)/2,m−2)
71642538 end

m ≡ 4 mod 8
34261578 (m−1,m−2)
87642135 (2,2)
51867342 (m−8,1)
51342678 (10,m−5)
86753421 (13,(m+2)/2)
78563421 end

m ≡ 5 mod 8
34261578 (m−1,m−2)
87642135 (2,2)
51324678 *
15234678 end

m ≡ 6 mod 8
34261578 (6,1)
87642135 (3,1)
54132678 (m−10,1)
52431678 (10,m−2)
85647123 (3,(m+8)/2)
12453678 end

m ≡ 7 mod 8
34625718 (m−1,m−2)
42681357 (m−6,m)
86512347 (2,5)
51867342 (m−6,3)
61825437 ((m+1)/2,m−2)
61357284 end

* If m ≡ 5 mod 16, use(m−2,(m−5)/2), else use(m−2,(m−13)/2).
TABLE 1. Summary of tiebreaking rules.
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A = int[m][m];
K = int[8][2];
int[][] perms;
int[][] switch;

void main() {
initialize();
initializeTable();
Tour();

}

void initialize() {
for (i = 1; i <= m; i++)

for (j = 1; j <= m; j++)
A[i][j] = 0;

K = [(-2,1),(-1,2),(1,2),(2,1),(2,-1),(1,-2),(-1,-2),(-2,-1)]
}

void initializeTable() - sets the i’th entry of perms to the i’th
move-ordering and the i’th entry of switch to the i’th switching
square for the case m mod 8.

void Tour() {
(x,y) = (1,1);
(u,v) = switch[1];
T = perms[1];
t = 1;
for (i = 1; (x,y) != (0,0); i++) {

A[x][y] = i;
if ((x,y) == (u,v)) {

t++;
T = perms[t];
u = switch[t];

}
(x,y) = getNextSquare(x,y,T);

}
}

int[] getNextSquare(x,y,T) {
min = 9;
(a,b) = (0,0);
for (count = 1; count <= 8; count++) {

(x’,y’) = (x,y) + K[count];
if (isLegal(x’,y’) && A[x’][y’] == 0){

deg = degree(x’,y’);
if (deg < min) {
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min = deg;
(a,b) = (x’,y’);
key = count;

}
if (deg == min) {

for (k = 1; T[k] != key && T[k] != count; k++);
if (T[k] == count) {

(a,b) = (x’,y’);
key = count;

}
}

}
}
return (a,b);

}

boolean isLegal(x,y) {
return (1 <= x <= m && 1 <= y <= m);

}

int degree(x,y) {
deg = 0;
for (k = 1; k <= 8; k++) {

(x’,y’) = (x,y) + K[k];
if (isLegal(x’,y’) && A[x’][y’] == 0)

deg++;
}
return deg;

}

Squirrel claimed that his algorithm holds for allm ≥ 112. Our experiments reveal that the algorithm actually
holds for allm such that 5≤ m < 112 as well, with the exception ofm = 74. Thus we can actually make the
stronger statement that it holds for allm >= 75. It is uncertain exactly why the algorithm fails form = 74
specifically, but it is not surprising that it does not hold for all small board sizes; on these boards the path runs
into the boundaries so early that it cannot follow the complete pattern that makes it successful on larger boards.
Our proof of correctness rests on the algorithm following some basic patterns which small enough boards fail
to satisfy. Nonetheless, it is easy to test the algorithm with a computer on these boards to observe its success.

Squirrel attempted to prove the correctness of his algorithm for the casem ≡ 7 mod 8. Unfortunately his
proof contained several incorrect statements and was not complete. In section 7 we provide a complete proof
of this case that holds for allm ≥ 47. In order to make the patterns on some of the diagrams more clear, we
have sometimes made it appear that diagrams contain more than 47 rows; however, this is simply to assist the
reader, and some of the rows can be ignored once the pattern isrecognized. This will make more sense in
section 5 when we introduce form matrix notation.

4. ALGORITHM EFFICIENCY

The running time of Squirrel’s algorithm is linear in the number of squaresn = m2; initialize() takesθ(n)
time, initializeTable() takes constant time, and Tour() requiresn iterations through the while loop, each of
which requires a constant number of steps. An astute reader might notice that as implemented the algorithm
actually runs inθ(nlogn), since the numbers that denote the order in which squares arevisited actually contain
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θ(logn) bits. However this is a technical detail, and all of the literature I looked at ignored this issue completely.
If instead we had chosen to label the squares by the move-typewe use to get to the next square, then we only
need to deal with numbers from 1 to 8, which require just 3 bits. For the purposes of running time, we can
assume that we are using this implementation and that the algorithm runs in linear time.

Squirrel’s algorithm is not the first linear time algorithm for finding knight’s tours [2, 3, 4, 7]. All of the
other algorithms employ a divide and conquer strategy, subdividing the board into several smaller boards and
combining tours on these boards into a full tour, using solutions of several small boards as base cases. While
these algorithms maintain the same asymtptotic level of efficiency as Squirrel’s algorithm and are perhaps more
elegant, Squirrel’s algorithm is simpler than all of them inthe following sense. Technically all of the divide
and conquer algorithms as well as Squirrel’s algorithm require θ(n) space – as we need a way to access all n
squares. In the above pseudocode this takes the form of the array A, which has n entries. However, in addition
to the space needed to store the squares Squirrel’s algorithm requires just constant space – a few integers and
the table of move-orderings and switching squares. The divide and conquer algorithms, on the other hand,
require an implicit stack for the recursive calls and useθ(logn) additional space. Hence if we ignored the space
needed to store the squares, Squirrel’s algorithm would usemuch less memory. If we consider the case of a
human tracing out the algorithm on an actual chessboard, we can treat the space required by the board as a
given for all the algorithms. In this case, Squirrel’s algorithm would require asymptotically less space than
the other algorithms – meaning the human would need access toless information to complete the tour. Thus
Squirrel’s algorithm is better suited for actual human implementation than the divide and conquer methods.

5. FORM MATRIX NOTATION

Because our proof of the algorithm’s correctness is constructive, we need a method of notation that allows us
to represent paths on an infinite family of boards of unbounded dimension in a single diagram. For this reason
we present a special kind of matrix which we will call aform matrix. A form matrix contains five different
types of symbols: numbers, lines, dashes, letters without subscripts, and letters with subscripts.

Lines play the role of ellipses and consist of two types: horizontal and vertical. A horizontal line signifies that
some number of rows are being omitted at the current position, and a vertical line signifies that some number
of columns are being omitted. In order to specify exactly which rows or columns are omitted we will always
label the row or column directly before and after each line. Lines are what enable us to represent arbitrarily
large matrices in a compact form.

The letter ‘x’ is a special letter and denotes squares that have been already been visited prior to the current
path; we can think of the current path as the concluding subsequence of a longer path with the assumption
that the first portion of the path is also a valid knight’s path. When we refer to ‘letters’ with reference to form
matrices, we will exclude x. Dashes denote squares that havenot been visited previously and are not visited by
the current path.

All other symbols denote squares that are visited in the current path. The only numbers we will use are
positive integers. If we are currently in a square labeled with a numbern, then we use the following rules to
determine which square to move to next:

(1) If there is an unvisited, adjacent square labeled with the numbern+1, move to that square.
(2) If there is at least one unvisited, adjacent square labeled with a letter that either has no subscript or has

the subscript ‘1,’ move to the square with these properties that comes first alphabetically.
(3) If no square satisfies either of the previous conditions,terminate the path.

If we are currently in a square labeled with a letter without asubscript, then we use the following rules to
determine which square to move to next:

(1) If there is an unvisited, adjacent square labeled with the same letter, move to that square.
(2) If there is an unvisited, adjacent square labeled with the letter that comes next alphabetically with either

no subscript or the subscript 1, move to that square.
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(3) If there is at least one unvisited, adjacent square labeled with a number, move to the square with these
properties that has the smallest number.

(4) If no square satisfies either of the previous conditions,terminate the path.

If we are currently in a square labeled with a letter with a subscript i, then we use the following rules to
determine which square to move to next:

(1) If there is an unvisited, adjacent square labeled with the same letter and subscripti+1, move to that
square.

(2) If there is an unvisited, adjacent square labeled with the same letter and subscript 1, move to that square.
(3) If there is an unvisited, adjacent square labeled with the letter that comes next alphabetically with either

no subscript or the subscript 1, move to that square.
(4) If there is at least one unvisited, adjacent square labeled with a number, move to the square with these

properties that has the smallest number.
(5) If no square satisfies either of the previous conditions,terminate the path.

In order to make paths easier to follow, we adopt certain conventions. First, we will always label paths
so that they can be followed deterministically by the rules given above. For example, we will never be in a
square labeled with ana that is adjacent to two unvisiteda’s. We will also adopt the following convention with
numbers: the first sequence of numbers in a given diagram willstart with 1, the next with 100, then 200, 300,
etc. This means that when we get to a letter that is not adjacent to the same letter or the letter that comes next
alphabetically, we need only look for the number 1 or a multiple of 100. We also label the first and last square
of the path in boldface, and also add a star in the first square.Generally we will label squares with letters
when they are part of a repeated pattern that will be extendedacross a line, while numbers will denote clumps
of squares that do not extend across a line. Letters with subscripts will be used to label more complicated
sequences of letters that are part of a repeated pattern extending across a line. For example, if there is a “cycle”
of three move types – such as 4-2-7 – that extends from one sideof the board to another, we will label this
sequence with a letter containing the subscripts 1, 2, and 3.

We recommend that the reader trace out the path defined by Figure 1 as an exercise before moving on to the
next section.

6. METHOD OFPROOF

In the next section we will provide a constructive proof of the correctness of Squirrel’s algorithm for the case
m ≡ 7 mod 8 form ≥ 47. Because of the messy and somewhat unusual nature of the proof, we use this section
to give a preview of the method that we will employ as well as provide a justification of its validity. Our proof
consists of a series of steps, each of which presumes the correctness of the previous steps. Each step contains
a statement of the form:

At some point in the algorithm we will arrive at square (i, j) and exactly the squares that have
previously been visited or satisfy at least one of the following conditions will have been visited:

Condition 1
Condition 2

...
Condition n

The statement will be accompanied by a diagram that shows howto construct a path starting from the last
square of the previous diagram and ending at the square mentioned in the claim. An explanation of the diagram
will also be provided if necessary. Notice that the proof hasan inherently recursive structure in that each stage
refers back to the previous stages.

A rigorous proof of the above statement requires verifying the following facts:

(1) The path in the diagram is deterministic: applying the rules from the previous section determine a
unique path from the start square to the end square.
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(2) The diagram starts and ends at the correct squares.
(3) It is obvious how the pattern continues across lines.
(4) Such repeated patterns across lines are in accordance with the row and column labels.
(5) Row and column labels are correct.
(6) A square is visited by the path in the diagram if and only ifit satisfies at least one of the conditions of

the claim.
(7) A square is marked with an x in the diagram if and only if it has been visited in a previous step of the

proof.
(8) A square is marked with a dash in the diagram if and only if it has not been visited in a previous step

and it does not satisfy any of the conditions of the claim.
(9) Every move in the path specified by the diagram is in accordance with the algorithm.

It is clear that a form matrix by itself does not constitute a complete proof of the claim; each of the above
steps must be justified in order for the proof to be made rigorous. However, we feel that this degree of rigor is
not necessary for the proof to succeed; in most cases it is trivial to verify each of these facts by simple inspection
of the form matrix, and we assume the reader can do this on his own. Whenever there is a complication in a
diagram that makes one of these facts nontrivial, we providea detailed explanation. However, we still want
to encourage the reader who has any doubts on a step of the proof to verify each of the nine statements given
above until he has convinced himself of its validity.

7. PROOF OFALGORITHM CORRECTNESS

Claim 7.1. At some point in the algorithm we will be in square (2,5) and exactly the squares (i, j) that satisfy
at least one of the following conditions will have been visited:

(1) i = 1, j ≡ 2 or j ≡ 3 mod 4
(2) i = 2, j ≡ 0 or j ≡ 1 mod 4
(3) j = 1, i ≡ 1 or i ≡ 2 mod 4
(4) j = 2, i ≡ 0 or i ≡ 3 mod 4
(5) i = m−1, j ≡ 0 or j ≡ 3 mod 4
(6) i = m, j ≡ 1 or j ≡ 2 mod 4
(7) i odd, j = m−1 or j = m
(8) (i, j) ∈ {(2,3),(3,1),(m−2,2),(m,3),(m−5,m),(m−4,m−2),(m−3,m−1),(m−3,m)

(m−2,m−2),(m−1,m−2),(m−1,m−1),(m,m−3)}
Proof. Follow Figure 1 from(1,1) to (2,5). �
Claim 7.2. For all k ≡ 1 mod 8such that 17≤ k ≤ m−6 we will arrive at square (k,3) and exactly the squares
that were previously visited or satisfy one of the following conditions will have been visited:

(1) i ≤ k−2 j+4
(2) i = k−2 j+6
(3) i = k−2 j+7 and i ≥ 8

Proof. The base casek = 17 can be verified in Figure 2a by extending the path in the previous claim to (17,3),
which contains the number ‘86.’ Suppose the conditions holdfor k = p wherep≤m−14. Figure 2b shows how
to extend the path so conditions are satisfied fork = p+8. The new path follows the sequence 1-a-b-c-d-100-
e-f-g-h. The induction terminates whenk = m−6 and we arrive at square(m−6,3), where the move-ordering
changes. We have now filled about 1/4 of the board. �
Claim 7.3. We will reach square (1,α), where α = (m + 27)/2 and exactly the squares which have been
previously visited or satisfy at least one of the following conditions will have been visited:

(1) i ≤ m−2 j+5
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(2) i ≤ m−2 j+6 and j ≤ 8
(3) j ≤ α−2i
(4) j = α−2i+2
(5) j = α−2i+3 and j ≥ (m+9)/2
(6) (i, j) ∈ {(m,4),(m−2,5),(m−1,5),(m−4,6),(m−3,6),(m−2,6),(m,7)}

Proof. Follow path in Figure 3 from(m− 6,3) to (1,α). This path follows the sequence a-b-c-1-d-100-e-
200. �
Claim 7.4. Take α as in the preceding claim. Then for all k ≡ 1 mod 4such that α ≤ k ≤ m−2, we will arrive
at square (1,k) and exactly the squares which have been previously visited or satisfy one of the following
conditions will have been visited:

(1) j ≤ k−2i
(2) j = k−2i+2
(3) j = k−2i+3 and j ≥ (m+9)/2

Proof. The base casek = α was shown in the previous claim. Suppose the conditions holdfor k = p, where
p ≤ m−6. Figure 4 shows how to extend the path so the conditions fork = p+4 are satisfied; however, it is
not obvious how to label the rows and columns. Notice that theleftmost ‘a’ occurs at the smallest column j that
satisfies both of the following constraints:i>m−2 j+5 andj = (p+4)−2i−3. Solving these simultaneously
yields j > (2m− p+9)/3. Since columns can only take integer values, it must be truethat j ≥ (2m− p+10)/3.
Sincep is odd, the a’s along the diagonal occur only in even numbered-columns. This means that the leftmost
a is in column:

Ca = 2




⌈
2m−p+10

3

⌉

2




Similar logic shows that the leftmost a is in row:

Ra =

⌊
2p−m−4

3

⌋

Notice that there is a single “hump” in the path of c’s in the middle of the diagram. This corresponds to the
point along the trajectory of the third condition of the inductive hypothesis when the inequality stops holding.
The last c before the hump occurs in the same column as the leftmost square that satisfies condition 3 of
the inductive hypothesis: hence it lies in columnCc = (m+9)/2. The row of the leftmost square satisfying
condition 3 of the inductive hypothesis satisfies the following equations:j = p−2i+3 and j = (m+9)/2. The
solution isi = (2p−m−3)/4, which is an integer sincep ≡ 1 mod 4 andm ≡ 3 mod 4. Since the last square
before the hump is two rows below this square, it lies in rowRc = (2p−m+5)/4. We can now determine all
rows and columns of the Figure in terms ofp andm. Eventually the induction terminates whenk = m−2 and
we arrive at square(1,m−2). We have filled another triangular region at the top center ofthe board, and about
1/3 of the entire board. �
Claim 7.5. We will reach square (8,m− 2) and exactly the squares which have been previously visited or
satisfy one of the following conditions will have been visited:

(1) j ≤ m−2i+6
(2) j = m−2i+8
(3) j = m−2i+9, j ≥ (m+9)/2
(4) (i, j) ∈ {(9,m−5),(7,m−4),(5,m−3),(8,m−3),(8,m−2),(7,m−2),(6,m−2),

(6,m−1),(4,m−1),(6,m),(8,m)}
Proof. Follow the path in Figure 5 from(1,m−2) to (8,m−2). The path follows the sequence 1-a-b-100-c-
d-e-f-g-h-200. Notice the single hump in the trajectory of c’s and g’s that occurs in the middle of the board.
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The rows and columns can be labeled using the same logic as in the previous claim, where the leftmost a is in
square(Ra,Ca) and the leftmost c prior to the hump is in square(Rc,Cc):

Ca = 2
⌈
⌈m/3+4⌉

2

⌉

Ra =
⌊

m−8
3

⌋

Cc = m+9
2

Rc = m+1
4

�
Claim 7.6. For all even k such that 8 ≤ k ≤ (m+1)/2, we will arrive at square (k,m−2) and exactly the
squares which have been previously visited or satisfy one of the following conditions will have been visited:

(1) j ≤ m−2i+2k−10
(2) j = m−2i+2k−8
(3) j = m−2i+2k−7, j ≥ (m+9)/2
(4) (i, j) ∈ {(k+1,m−5),(k−1,m−4),(k−3,m−3),(k,m−3),(k,m−2),(k−1,m−2)

(k−2,m−2),(k−2,m−1),(k−4,m−1),(k−2,m),(k,m)}
Proof. The base casek = 8 was shown in the previous claim. Now suppose the conditionshold for k = p,
wherep ≤ (m−3)/2. Figure 6 shows how to extend the path so the conditions fork = p+2 are satisfied. We
compute the row and column labels as in the preceding claims,once again noting the c-hump:

Ca = 2

⌈⌈
m−2p+19

3

⌉

2

⌉

Ra =
⌊

m+4p−24
3

⌋

Cc = m+9
2

Rc = m+4p−15
4

One last issue we must contend with is labeling the squares inthe two rightmost columns, since some of
them were visited in the first step of the algorithm. Sincem ≡ 7 mod 8 and p is even, the quantitym+4p−15
is divisible by 8, and henceRc is even. Unfortunately, we cannot determine whetherRa is even, and hence
cannot tell whether the squares in the last two columns at thebottom of the diagram have been visited. This is
only a minor notational inconvenience, however, as these squares are not relevant to this step of the proof, and
for any givenm it can easily be computed whetherRa is even or odd. The induction ends at square(m+1

2 ,m−2),
where the move-ordering changes for the last time. All that is left is a region in the bottom right corner of the
board. We have now filled about 3/4 of the board. �
Claim 7.7. We will reach square (β,m), where β = (m+9)/2 and exactly the squares which have been previ-
ously visited or satisfy at least one of the following conditions will have been visited:

(1) j ≤ 2m−2i−2
(2) j = 2m−2i+1
(3) j ≤ 12
(4) j = 13 and i 6= m−3
(5) j = 14 and i 6= m−5
(6) j = 15 and i 6= m−5,m−4, or m−2
(7) j = 16 and i 6= m−7,m−6, or m−4
(8) (i, j) ∈ {(m−7,17),(m−2,17),(m−1,17),(m−9,18),(m−4,18),(m−2,18),

(m−1,18),(m−3,19),(m−2,19),(m,19),(m−3,20),(m,20),(m−2,21),
(m−1,21),(m−2,22),(m,23)

(9) (i, j) ∈ {(β−4,m−1),(β−2,m−3),(β−2,m),(β−1,m−2), (β,m−4),(β,m)}
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Proof. Follow the path in Figure 7 from(m+1
2 ,m−2) to (β,m) using the sequence a-1-b-c-100-d-e-f-g-h. As

usual, we compute row and column labels:

Cc = 3m−9
4

Rc = m+3
2

There are several differences between this path and the previous paths. First, the c-hump takes the form of a
type-1 move instead of a type-7 move. Also, the d-trajectorychanges direction in the middle of the diagram
as we change to e’s. More interestingly, note the formationsof the f’s and g’s. The cyclef1− f2− f3− f4
repeats itself for a while until we switch to g’s in the middleof the diagram. Then we have a new cycle
g1−g2−g3−g4−g5−g6 that repeats itself until we approach the rightmost boundary of the board. In these
cases eachfi and gi next move tofi+1 mod 4 andgi+1 mod 6 respectively if a square with such a labelling is
adjacent to the current position. This formation ends when we move fromg5 to an h at the top right of the
diagram. It can also be noted that we can label the far right columns since we know the behavior at the bottom
rows of the board andRc is odd. �
Claim 7.8. We will reach square (γ,m), where γ = (m+13)/2 and exactly the squares which have been previ-
ously visited or satisfy at least one of the following conditions will have been visited:

(1) j ≤ 2m−2i+2
(2) j = 2m−2i+5
(3) j ≤ 20
(4) j = 21 and i 6= m−7
(5) j = 22 and i 6= m−5,m−8, or m−9
(6) j = 23 and i 6= m−6,m−7,m−8, or m−10
(7) (i, j) ∈ {(m,24),(m−2,24),(m−3,24),(m−5,24),(m−1,25),(m−2,25),(m−3,25),

(m−4,25),(m−1,26),(m−2,26),(m−4,26),(m,27),(m−2,27),(m−3,27),
(m,28),(m−3,28),(m−1,29),(m−2,29),(m−2,30),(m,31)}

(8) (i, j) ∈ {(γ,m),(γ−4,m−1),(γ−4,m−2),(γ−2,m−2), (γ−1,m−2),(γ−2,m−3),
(γ,m−3),(γ−3,m−4),(γ,m−4),(γ−1,m−5)}

Proof. Follow the path in Figure 8 using the sequence a-1-b-100. Theformation of the b’s is identical to that
of the g’s in the previous diagram. �
Claim 7.9. We will reach square (θ,m), where θ = (m+ 29)/2, and exactly the squares which have been
previously visited or satisfy at least one of the following conditions will have been visited:

(1) j ≤ 2m−2i+18
(2) j = 2m−2i+21
(3) j ≤ 28
(4) j = 29 and i 6= m−3
(5) j = 30 and i 6= m−1,m−4, or m−5
(6) (i, j) ∈ {(θ,m−4),(θ,m−3),(θ,m),(θ−1,m−5), (θ−1,m−2),(θ−2,m−3),

(θ−2,m−2),(θ−2,m),(θ−3,m−4), (θ−4,m−2),(θ−4,m−1)}
Proof. Follow the path in Figure 9 using the sequence:

a−1−b−100− c−200−d−300− e−400− f −500−g−600−h−700

While the diagram seems quite complicated, it is really onlyfour repetitions of the pattern we saw in the last
two diagrams. The trajectories of a,c,e, and g consists of type-6 moves (with no humps), while the trajectories
of b,d,f, and h consist of the 6-cycles we saw previously. �
Claim 7.10. Take θ as in the preceding claim. Then for all k ≡ θ mod 6such that θ ≤ k ≤ m−9, we will arrive
at square (k,m) and exactly the squares that have been previously visited or satisfy at least one of the following
conditions will have been visited:
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(1) j ≤ m−2i+2k−11
(2) j = m−2i+2k−8
(3) j ≤ 28+2(k−θ)
(4) j = 29+2(k−θ) and i 6= m−3
(5) j = 30+2(k−θ) and i 6= m−1,m−4, or m−5
(6) j = 31+2(k−θ) and i = m
(7) (i, j) ∈ {(k,m−4),(k,m−3),(k,m),(k−1,m−5),(k−1,m−2),(k−2,m−3),

(k−2,m−2),(k−2,m),(k−3,m−4),(k−4,m−2),(k−4,m−1)}
Proof. The base casek = θ was shown in previous claim (notice square(m,31) was actually visited in step 8).
Suppose the conditions hold fork = p wherep ≤ m−15. Figure 10 shows how to extend the path so that the
conditions hold fork = p+6. The path follows the following sequence:

a−1−b−100− c−200−d−300− e−400− f −500

The trajectories of the letters are identical to those in Figure 9. Notice we will end at a different square (in
terms of m) depending on the value ofm mod 6. If m ≡ 1 mod 6 we end at(m−13,m), if m ≡ 3 mod 6 we
end at(m−11,m), and ifm ≡ 5 mod 6 we end at(m−9,m). In all three cases we have filled the entire board
except for a few hundred squares. �

Figure 11 shows how to complete the tour in each of the three cases. Figure 11a shows the casem ≡ 1 mod 6,
Figure 11b shows the casem ≡ 3 mod 6 and Figure 11c shows the casem ≡ 5 mod 6. Whenm ≡ 1 or 5 mod 6,
the tour will end at square(m−4,m−8) while if m ≡ 3 mod 6, the tour ends at(m−6,m−4).

8. CONCLUSION

Unfortunately it appears that the proofs of the other cases will be just as lengthy, and I do not have enough
time in the REU program to prove these cases. While I cannot present a complete proof of the algorithm at
this time, I did test the algorithm on boards upm = 610 and confirmed success on all of these form ≥ 75. This
strongly suggests that the algorithm is successful on all larger boards as well. Additionally, it does not appear
that there is anything special about the casem ≡ 7 mod 8, and I suspect that the other cases can be proved
by similar arguments. Figure 12 provides an overview of the paths produced by applying the algorithm in the
different cases. The path first visits the region marked 1, then 2, etc. These diagrams should provide some
clues as to how the proofs should proceed in the other cases.

Assuming the proof of correctness can be completed, this algorithm would provide an efficient way of
generating knight’s tours on all boards withm ≥ 5 exceptm = 74. If m = 74, then applying Warnsdorff’s
Rule using the move-ordering 21345678 to break ties produces a successful tour. Thus, an algorithm for
finding a tour on all square boards withm ≥ 5 that is consistent with Warnsdorff’s Rule would be to use
Squirrel’s algorithm ifm 6= 74, and use the move-ordering 21345678 ifm = 74. While perhaps not as simple
and elegant as Warnsdorff might have wanted, this is the onlyknown algorithm for finding knight’s tours that
is consistent with Warnsdorff’s heuristic. As the discussion in section 4 indicates, the algorithm maintains a
linear running time and requires less space than other knownalgorithms, thus making it easier for humans to
apply without the aid of a computer. Probably the biggest accomplishment of the algorithm is that it provides
an example of turning a promising but unsuccessful common-sense heuristic into an effective and efficient
algorithm. Hopefully this approach can be used by computer scientists to find efficient solutions to a variety of
other problems.

77



16 Sam Ganzfried

APPENDIX

FIGURE 1
1 11 m-7 m

1 a* a c - - a e - - a e - - a e - - a e
c - a a e - - a e - - a e - - a e - -
a c - - - - - - - - - - - - - - - e a
- c - - - - - - - - - - - - - - - - -
b - - - - - - - - - - - - - - - - a e
c - - - - - - - - - - - - - - - - - -
- b - - - - - - - - - - - - - - - e a
- c - - - - - - - - - - - - - - - - -
b - - - - - - - - - - - - - - - - a e
c - - - - - - - - - - - - - - - - - -
- b - - - - - - - - - - - - - - - e a

12 - c - - - - - - - - - - - - - - - - -
m-10 b - - - - - - - - - - - - - - - - a e

c - - - - - - - - - - - - - - - - - -
- b - - - - - - - - - - - - - - - e a
- c - - - - - - - - - - - - - - - - -
b - - - - - - - - - - - - - - - - a e
c - - - - - - - - - - - - - - - - - d
- b - - - - - - - - - - - - - - d e a
- c - - - - - - - - - - - - - - - d d
b c - - - - - - - - - - - - - - e a a
c - d b - - d b - - d b - - d b a d d

m c b c - d b - - d b - - d b - e d a a

FIGURE 2. A
1 11 m-7 m

1 x x x 7 12 x x 45 78 x x - - x x - - x x
x 8 x x 1* 46 39 x x - - x x - - x x - -
x x 6 11 38 13 44 77 66 79 - - - - - - - x x
9 x 15 2 47 40 65 42 - - - - - - - - - - -
x 5 10 37 14 43 76 67 80 - - - - - - - - x x
x 16 3 48 21 64 41 - - - - - - - - - - - -
4 x 22 19 36 75 68 81 - - - - - - - - - x x
17 x 49 26 63 20 - 74 - - - - - - - - - - -
x 23 18 35 50 69 82 - - - - - - - - - - x x

10 x 34 25 62 27 - 73 - - - - - - - - - - - -
24 x 32 51 70 83 - - - - - - - - - - - x x
33 x 61 28 - 72 - - - - - - - - - - - - -
x 31 52 71 84 - - - - - - - - - - - - x x
x 60 29 - 53 - - - - - - - - - - - - - -
30 x 58 85 - - - - - - - - - - - - - x x
59 x - 54 - - - - - - - - - - - - - - -
x 57 86 - - - - - - - - - - - - - - x x
x - 55 - - - - - - - - - - - - - - - -
56 x - - - - - - - - - - - - - - - x x

20 - x - - - - - - - - - - - - - - - - -
m-6 x - - - - - - - - - - - - - - - - x x

x - - - - - - - - - - - - - - - - - x
- x - - - - - - - - - - - - - - x x x
- x - - - - - - - - - - - - - - - x x
x x - - - - - - - - - - - - - - x x x
x - x x - - x x - - x x - - x x x x x

m x x x - x x - - x x - - x x - x x x x
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FIGURE 2. B
1 9 p−11

2
p+9

2
1 x x x x x x x x x x x x x x x x a c x x

x x x x x x x x x x x x x x a c x x - -
x x x x x x x x x x x x x x x b d e g -
x x x x x x x x x x x x x a c e g - - -
x x x x x x x x x x x x x x b d f h - -
x x x x x x x x x x x x a c e g - - - -
x x x x x x x x x x x x x b d f h - - -
x x x x x x x x x x x a x e c - g - - -
x x x x x x x x x x x x b d f h - - - -
x x x x x x x x x x a x e c - g - - - -
x x x x x x x x x x x b d f h - - - - -
x x x x x x x x x a x e c - g - - - - -
x x x x x x x x x x b d f h - - - - - -

p-9 x x x x x x a x e - - - - - - - - - - -
x x x x x x x b d - - - - - - - - - - -
x x x x x a x e c - - - - - - - - - - -
x x x x x x b d f - - - - - - - - - - -
x x x x a x e c - - - - - - - - - - - -
x x x x x b d f h - - - - - - - - - - -
x x x a x e c - g - - - - - - - - - - -
x x x x b d f h - - - - - - - - - - - -
x x a x e c - g - - - - - - - - - - - -

p x x 1* b d f h - - - - - - - - - - - - -
x a x e 2 - g - - - - - - - - - - - - -
x x 7 d f h - - - - - - - - - - - - - -
8 x e 3 - g - - - - - - - - - - - - - -
x 6 d f h - - - - - - - - - - - - - - -
x e 4 - 100 - - - - - - - - - - - - - - -
5 x 105 h - - - - - - - - - - - - - - - -

106 x - 101 - - - - - - - - - - - - - - - -
x 104 h - - - - - - - - - - - - - - - - -
x - 102 - - - - - - - - - - - - - - - - -

103 x - - - - - - - - - - - - - - - - - -
p+11 - x - h - - - - - - - - - - - - - - - -
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FIGURE 11. A
m-27 m-20 m-10 m

m-16 x x x x x x x x x x x x x x x x x x x x x x x x 3 x x x
x x x x x x x x x x x x x x x x x x x x x 85 4 x x x 2 x
x x x x x x x x x x x x x x x x x x x 84 5 x x 86 99 x x x
x x x x x x x x x x x x x x x x x 83 6 x 90 125 100 x x 87 981*
x x x x x x x x x x x x x x x 78 7 x 91 124 101 94 89 158 133 96 x x
x x x x x x x x x x x x x 77 8 x 82 119 102 93 126 157 134 95 88 159 132 97
x x x x x x x x x x x 44 9 x 79 118 103 92 123 152 135 128 218 160 189 130 x x
x x x x x x x x x 43 10 x 76 117 104 81 120 151 136 127 156 238 190 129 217161 188 131
x x x x x x x 42 11 x 45 116 105 80 113 150 137 122 153 242 191 219 216 225 187 182 x x
x x x x x 41 12 x 38 53 106 75 114 149 138 121 146 241 192 155 239 232 237 220 215 226 162 183
x x x 32 13 x 39 52 71 46 115 108 139 112 147 210 193 154 240 235 243 221 224 227 181 186 x x
x x 14 x 40 35 48 37 54 107 74 111 148 141 194 145 240 211 244 222 231 236 233 215 172 163 184 x
x x 33 16 31 26 51 72 47 70 55 140 109 144 207 196 209 204 230246 234 223 228 180 185 x x x
x 15 x 19 34 49 36 25 56 73 110 67 60 195 142 199 206 245 212 203 229 179 214 171 164 173 x x
x x x 30 17 20 27 50 69 24 59 64 143 66 61 208 197 200 205 178 213 170 165 174 167 x x x
x x 18 x x 29 22 x x 57 68 x x 63 198 x x 177 202 x x 175 168 x x x x x

m x x x x 21 x x 28 23 x x 58 65 x x 62 201 x x 176 169 x x 166 x x x x

FIGURE 11. B
m-23 m-10 m

m-14 x x x x x x x x x x x x x x x x x x x x 3 x x x
x x x x x x x x x x x x x x x x x 77 4 x x x 2 x
x x x x x x x x x x x x x x x 76 5 x x 78 91 x x x
x x x x x x x x x x x x x 75 6 x 82 109 92 x x 79 90 1*
x x x x x x x x x x x 42 7 x 83 108 93 86 81 174 131 88 x x
x x x x x x x x x 41 8 x 74 107 94 85 110 171 132 87 80 175 130 89
x x x x x x x 40 9 x 43 106 95 84 103 166 133 112 173 170 181 114 x x
x x x x x 39 10 x 36 51 96 73 104 155 134 111 172 167 182 113 176 129 180115
x x x 30 11 x 37 50 69 44 105 98 135 102 165 156 161 150 169184 179 116 x x
x x 12 x 38 33 46 35 52 97 72 101 154 137 160 149 168 183 162 145 128 177 118 x
x x 31 14 29 24 49 70 45 68 53 136 99 140 153 164 157 148 151 178 117 x xx
x 13 x 17 32 47 34 23 54 71 100 65 58 159 138 141 152 163 144 127 146 119 x x
x x x 28 15 18 25 48 67 22 57 62 139 64 59 158 143 126 147 120 123 x x x
x x 16 x x 27 20 x x 55 66 x x 61 142 x x 121 124 x x x x x

m x x x x 19 x x 26 21 x x 56 63 x x 60 125 x x 122 x x x x

FIGURE 11. C
m-19 m-10 m

m-12 x x x x x x x x x x x x x x x x 3 x x x
x x x x x x x x x x x x x 47 4 x x x 2 x
x x x x x x x x x x x 46 5 x x 48 81 x x x
x x x x x x x x x 45 6 x 92 113 80 x x 49 781*
x x x x x x x 44 7 x 91 118 105 88 93 112 79 82 x x
x x x x x 43 14 x 40 117 104 89 114 119 124 87 94 77 50 83
x x x 34 15 x 41 70 103 90 115 122 131 106 111 76 125 86 x x
x x 16 x 42 37 68 39 116 101 132 107 120 123 130 95 60 51 84 x
x x 35 18 33 28 71 102 69 108 121134 129 110 75 126 85 x x x
x 17 x 21 36 67 38 27 72 133 100 109 74 127 96 59 52 61 x x
x x x 32 19 22 29 66 99 26 73 128 97 58 53 62 55 x x x
x x 20 x x 31 24 x x 65 98 x x 63 56 x x x x x

m x x x x 23 x x 30 25 x x 64 57 x x 54 x x x x
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FIGURE 12. Summary of tours produced by algorithm.
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