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ABSTRACT. We investigate Warnsdorff’s simple heuristic for findingight's tours on square chessboards and
consider various tiebreaking methods. We then analyze artieplar algorithm that is consistent with Warnsdorff’s
rule and runsin linear time. This algorithm requires lessmgy than other known algorithms and hence is a more
practical rule for humans to follow without the aid of a contgruFinally we complete one case of the proof of the
correctness of this algorithm.

1. INTRODUCTION

Chess is a two player game played on a square board. Gengra#lg is played on a board with 8 rows and
8 columns; however, we will deal with the more general casere/the board contaims rows andm columns.
For the purposes of this paper we will assume the orientatianboard is fixed so that we can label all the
squares. Let column 1 denote the leftmost column and row tdehe top row. We denote each square by the
ordered paif(i, j), wherei is the row number angl is the column number. Each player receives six different
types of pieces, each of which has a different set of ruleggong its possible moves. In this paper we are
specifically concerned with the knight. A knight's move @lls an L-shape; it can move either one row over
and two columns over, or two rows over and one column overifireedirection). We say that two squares are
adjacent if a knight can move from one square to the other (we also kealtwo squareseighbors). Formally,
(a,b) is adjacent tdc,d) if and only if 1 < a,b,c,d < mand

(c,d)e{(a—2,b+1),(a—1,b+2),(a+1,b+2),(a+2,b+1),(a+2,b—1),(a+1,b—2),
(a—l,b—Z), (a_zab_ 1)}

Notice that adjacency is a symmetric relation, but is neiteéexive nor transitive. It is clear that there are
at most eight squares adjacent to any given square; notéheratare only two squares adjacent to the corner

squares. Since the orientation of the board is fixed, we dael Each of these moves as one of eight possible
types. Thesenove-types are depicted in the following diagram, where X denotes trstjom of the knight:

8 1

5 4

A knight’s path is a sequence of squares such that all pairs of consecutieeesjare adjacent and no square
appears in the sequence more than once. We can illustratiglat’&mpath by labeling each square by the the
order of its appearance in the sequence, with dashes dgrsofirares that do not appear in the sequence. At
any point in a knight’s path we call a squaiisited if it has already appeared in the sequence amikited if
it has not appeared. In our diagrams this means that visifeares contain a number less than or equal to the
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number in the current square, while unvisited squares goetther a number higher than the number in the
current square or a dash. We call the number of unvisitedregulaat are adjacent to a given squareckgeee

of the square. Anight’stour is a knight’s path that includes every square of the boarde lisean example of
a knight's tour on an 8x8 board:

1 16 27 22 3 18 47 56
26 23 2 17 46 57 4 19
15 28 25 62 21 48 55 58
24 35 30 45 60 63 20 5
29 14 61 34 49 44 59 54
36 31 38 41 64 53 6 9
13 40 33 50 11 8 43 52
32 37 12 39 42 51 10 7

Finding a knight’s tour on a chessboard is a special caseeoHt#miltonian-Path problem: determining
whether there exists a path such that every vertex is vigkadtly once in an arbitrary undirected graph.
This is easy to see if we think of a chessboard as a graph whergguares are vertices and there is an edge
between two vertices if and only if they are adjacent. We ttedl aknight’s graph. Then a chessboard has a
knight’s tour if and only if the corresponding knight's ghapas a hamiltonian path. Determining whether an
arbitrary graph has a hamiltonian path is an NP-completeleno, and hence no known efficient (polynomial-
time) algorithm exists. On the other hand, it is well-knowegisely on which chessboards a knight’s tour is
possible, and several efficient algorithms (linear in thenbhar of squares) exist for constructing such tours
[2, 3, 4, 7]. Specifically, an mxm board has a knight’s toumiflanly if m> 5. Thus analysis of knight’s tours
might provide some insight into how to approach the morediffiHamiltonian-Path problem.

2. WARNSDORFFS RULE
In 1823, Warnsdorff [9] proposed a simple heuristic for fmglknight’s tours.

Warnsdorff’sRule: Always move to an adjacent, unvisited square with minimgree.

Intuitively this seems like a logical rule to follow, sincguares with lower degrees have fewer neighbors and
therefore we will have fewer opportunities to visit themlwe remainder of the path. It is essential to follow
this rule if a square has degree 0, since otherwise we cam wieitat. Similarly if we fail to visit a square of
degree 1, then we will have only one more opportunity to vigdand it must be the last square of the tour). It
is also true that no tour can deviate from Warnsdorff’s Ralthe last several moves, although this is less
obvious. The idea here is that if we deviate at an early movhave a greater opportunity to overcome this
“mistake,” while if we deviate near the end of the path therharee fewer chances to avoid failure. Since this
“endgame effect” is central to the intuitive appeal of thersic, we will make it more rigorous with the
following theorem, which relies on a lemma.

Lemma 2.1. Itisimpossibleto have three mutually adjacent squares on a chessboard.

Proof. Suppose three squares are mutually adjacent. Then theyathtistin different rows; otherwise two
would be in the same row and could not be adjacent to each. o8igrilarly, all three squares must lie in
different columns. Furthermore, the rows of the squared misonsecutive; otherwise two squares would be
in rows that have more than two rows between them and couldenatljacent. Similarly, the columns must be
consecutive. Consider the square which lies in the middie 8uppose this square lies in columnThen one

of the other two squares must lie in either colufnq 1 or columnj — 1. In either case this square is exactly
one row and one column away from the first square and cannaljbeemt to it. So we have a contradiction,
and no three squares can be mutually adjacent. O
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Theorem 2.2. Itisimpossible for a knight’stour to deviate from Warnsdorff’s Rulein the last four moves.

Proof. Suppose we can deviate from Warnsdorff's Rule at the cumene of a path and still produce a tour. In
particular, suppose we move to a square of degiastead of a square of degreewherex < y. Let g denote
the current square denote the square of degneeands, denote the square of degrgelf x =0, then it is
impossible to produce a tour since we can never gsiSox > 1. Thereforey > 2. So at least three squares
must currently be unvisited; otherwise no square could loigggee 2. If exactly three squares are unvisited,
then we must have = 1 andy = 2. Thens, must be adjacent t§ since only three squares remain. Therefore
g, S, ands, are mutually adjacent. By the lemma this produces a comtiadi Suppose four squares are
unvisited. Ify = 3 then we have the same contradiction siscands, must be adjacent. So we must have
y =2 andx = 1, wheres, ands, are not adjacent. Let andb denote the other two squares (which must both
be adjacent tgy). If a andb are adjacent thes), a, andb are mutually adjacent and we have a contradiction.
Soaandb are not adjacent. Sinag has degree 1 argj is not adjacent ts,, s, must be adjacent to eitharor

b. Without loss of generality supposgis adjacent t@. Thens, can not also be adjacentho Sob has degree

0 (sincesy is now visited). Therefore, we must vigitnow or else it will never be visited. But sinteis not
adjacent tas, or a, the path terminates and we cannot complete a tour. So weahawmetradiction and no such
deviation is possible. O

One might begin to wonder whether there are tours that deWatn Warnsdorff's Rule at all; it is not
obvious that such tours exist. Unfortunately, it appeaas ithis relatively easy to “overcome” deviations from
the rule if they occur early enough. Most knight’s tours dofelow Warnsdorff’s heuristic, and many deviate
a large number of times. Below is an example of a tour on an &eBdthat deviates from the heuristic 20
times, although no deviations occur in the last 14 movesa&gurom which the next move is a deviation are
in bold:

1 56 49 54 3 52 19 22
48 37 2 51 20 23 4 17
57 50 55 36 53 18 21 10
38 47 58 33 24 11 16 5
59 32 39 46 35 26 9 12
40 43 34 25 62 15 6 27
31 60 45 42 29 8 13 64
44 41 30 6114 63 28 7

This dramatic example deals a harsh blow to Warnsdorff'siegeiand forces us to consider the opposite
extreme. Is Warnsdorff's Rule simply an intuitively appeglheuristic that is utterly ineffective in actually
producing tours? One might begin to wonder whether thera exssts a single tour that follows Warnsdorff's
Rule on each board; the answer is certainly not obvious. iBhlthe question the remainder of this paper will
address.

To start with, Warnsdorff’s heuristic is not an algorithmstarting square is not specified, and no rule is
specified in the event that more than one unvisited, adjasgurre share the minimal degree. Warnsdorff
provided one possible solution himself. In the event thaesd adjacent squares share the minimal degree,
Warnsdorff claimed that “[moving] to any of them indiffertéyi will result in a tour [1]. While it is not clear
what square he intended the tour to start on, it seems realgoimeassume it would start at a corner square,
which initially has the smallest degree. Thus we can viewns@orff’'s proposal as an algorithm in which ties
are broken at random.

Unfortunately, this randomized algorithm does not alwayskw Here is an example of a path on an 8x8

board that follows Warnsdorff’s algorithm but fails to prax a tour:
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1 28 13 46 3 26 39 36
14 43 2 27 48 37 4 25
29 12 47 42 45 40 35 38

— 15 44 49 — — 24 5
11 30 — — 41 50 — 34
16 — 18 31 — — 6 23
19 10 - - 21 8 33 —

- 17 20 9 32 - 22 7

In a 1996 REU paper Squirrel [8] performed 100 trials of thgoathm for all board sizes from 5 to 400; the
conclusion was that the algorithm is quite successful faallenboards, but the success rate drops sharply as
board size increases. The algorithm produces a successfubter 85% of the time on most boards with

less than 50, and it succeeds over 50% of the time on most$waattum less than 100. However, fon > 200

the success rate is less than 5%, andnfias 325 there were no successes at all. These observationsssugge
that the success rate of Warnsdorff’'s random algorithndiggioes to 0 asnincreases. | confirmed Squirrel’s
findings, and made another interesting observation. Fdyaalfds withm < 25 the success rate was at least
98% with one surprising exception: far= 7 the success rate was only 75%. | will have more to say about
this later in this section.

Despite the failure of Warnsdorff’s proposed algorithmyats believed that Warnsdorff’s heuristic could still
be salvaged if appropriate improvements were made. Sextézaipts have been made to improve Warnsdorff's
algorithm; however, none of them proved successful on ardi® Parberry [4] considered an algorithm that
combined Warnsdorff’s heuristic with a random walk algamitoriginally proposed by Euler in 1759. Euler’s
approach was to start at any square, then repeatedly movamaam unvisited neighbor until no more moves
are possible. Euler then attempted to replace moves of #tfswith longer sequences of moves consisting
of squares that were not visited by the path. A more compledtyais of Euler’'s algorithm can be found in
[1]. Parberry decided to improve this algorithm by choogimgnext square according to Warnsdorff’'s random
algorithm; that is, chose a random square with minimal d=gv¢hile an interesting idea, experiments showed
that the success rate of the algorithm appears to decrepsaantially and the average running time required
to find each tour appears to increase exponentially.

Roth [6] decided that the problem lay in Warnsdorff’'s randibebreak rule. He proposed breaking ties by
choosing “the successor with largest euclidean distantgetaenter of the chessboard.” It was not comletely
clear how he would break ties if more than one square shaeeskme distance from the center of the board.
Roth claimed that his algorithm first failed on a board witl848ws, and failed less than 1% of the time on all
boards with fewer than 2000 rows.

Pohl [5] also considered an alternative to WarnsdorffBrigak rule. Instead of breaking ties arbitrarily, Pohl
decided to apply Warnsdorff's rule a second time on the sgutirat share the minimal degree. He proposed
taking the sum of the degrees of all the unvisited neighbbthese minimal-degree squares and choosing
the square whose sum was minimal. Pohl noted that in thearycould apply this process as many times as
necessary to break ties; but he decided that doing so woutdreutationally inefficient. This is actually not
entirely true; for example, if we start in the corner squdientany number of iterations of Warnsdorff’s rule
will result in a tie between the two adjacent squares. In aeng applying Warnsdorff rule a large number of
times yields a running time asymptotically equivalent tatthf an exhaustive search, as Pohl noted.

| experimented with this second-level Warnsdorff-rulenaies broken at random and made some interesting
observations. While Warnsdorff’s standard rule succe®&dé6 of the time whem= 50 and only about 35% of
the time form= 100, the second-level rule succeeded over 95% of the timeariynall boards withm < 100.
| did not have access to the technology to test it on largeresabfm, but | suspect the second-level algorithm
would eventually converge to a success rate of 0 as well,dsunfich larger values ah than the first-level

algorithm. Also, as in the standard algorithm | noticed oag &xception in the data. Every valueraffrom
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5 to 50 had a success rate greater than 97% excep8, which succeeded on only 67% of the trials. This is
very surprising considering that the single-level aldoritsucceeded on 99% of the trials fae= 8. Applying
Warnsdorff’s rule a second iteration dramatically deceedabe success rate. It would be interesting to see how
this pattern continues; for example, would a third itemnatod Warnsdorff’s rule have a poor performance on a
9x9 board, but a high success rate on 7x7 and 8x8? Unforiyriatiel not have time to test this observation in
more detail, but | suspect that there would continue to bagleiboard size with relatively poor performance
for each number of iterations. In the 7x7 and 8x8 cases | stisipat the poor performance was due to a single
bad decision that is made early on in the path, and | believmitas phenomenon would continue to occur for
somemfor a greater number of iterations.

Pohl actually decided not to use a random tiebreak rule ifcarse application of Warnsdorff's heuristic
failed to produce a unique square; he chose to break tiesiby asixed ordering of the squares, similar to our
arbitrary ordering of move-types in the introduction. | diot have time to test Pohl’s algorithm, but he claims
it successfully produces a tour on an 8x8 board. Pohl alspgsed several other possible tiebreak solutions.
Rather than look at the sum of the squares with minimal degveecould instead choose the square which
has a neighbor with minimal degree. Alternatively, we cous@ a combination of the two methods, picking
squares by minimal sum unless a neighbor of one of the sqhasedegree 2, in which case we choose that
square. Pohl also proposed applying Warndsdorff’s stahalgiorithm, using a sort of backtrack procedure if
it fails. Pohl also considered ways of applying Warnsderftile in order to find Hamiltonian paths of more
general classes of graphs. Unfortunately most of thess iege purely speculative, and he did not have any
data supporting them.

3. A SUCCESSFULWARNSDORFFCONSISTENTALGORITHM

Both Roth and Pohl introduced the idea of breaking ties altogrto a fixed ordering of moves rather than
using Warnsdorff’s random rule. Squirrel decided to iniggge this strategy in more detail. Let us define
a move-ordering as a permutation of the sé¢f,2,3,4,5,6,7,8. We will omit the brackets and punctuation;
for example, 28365174 is a move-ordering. If we think of thuenbers as corresponding to the move-types
presented in the introduction, then each move-orderingiges a deterministic tiebreak rule. For example,
if we are using the move-ordering 28365174 and we must chioeiseeen breaking a tie with a type-4 move
and a type-5 move, we will make the type-5 move because itaapprlier in the move-ordering sequence.
The tour presented in the introduction uses Warnsdorfiaddrd heuristic with the move-ordering 12345678
as a tiebreak rule. Squirrel experimented with move-orggriand concluded that each of the 8! orderings
fails on some board size; however, he noticed that certawerooderings perform better than others in certain
situations. Squirrel used Roth and Pohl’s approach of limgatkes with move-orderings to develop his own
algorithm, which proved to be more effective.

Squirrel’'s algorithm involves using different move-oragys to break ties depending on the board size and
whether we have reached certain squares yet in the pathpioblsmbly easiest to demonstrate the algorithm
with an example. In all cases we start in the top left cornel r@peatedly apply Warnsdorff’s rule; all that
changes is the tiebreak rule.rnf= 6 mod 8, then we use the move-ordering 34261578 to breaknidsve
reach square (6,1). Then we switch to the move-ordering 8783 until we reach square (3,1). Next we switch
to 54132678 until (m-10,1); then 52431678 until (10,m-Bgnt 85647123 until (3,(m+8)/2). Finally we switch
to 12453678, which we use until the end of the path. The fsildf move-orderings and switching points for
all boards is given on the table on the next page. We will calja@are on which the move-ordering changes
a switching square. Notice that the algorithm consists of eight cases depgndimthe value oimmod 8
(actually there are two subcasesnt= 5), and each case contains five or fewer move-ordering clsartgre
is pseudocode for the algorithm given an integer 112:
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m=0mod 8
34261578 (m—1,m-2)
87642135 (2,2)
51867342 (m—8,1)
51342678 (7,m—3)
21435678 end

m=1mod 8
34261578 (m—1,m-—2)
87642135 (2,2)
51324678 (m—6,(m+9)/2)
32481765 end

m=2mod 8
34261578 (6,1)
87642135 (3,1)
54132678 (m—154)
52431678 (10,m—2)
85647123 (5,(m—6)/2)
15746823 end

m=3 mod 8
34625718 (m—1,m-2)
42681357 (m—6,m)
86512347 (2,5)
51867342 (m—10,3)
61825437 ((m+1)/2,m—2)
71642538 end

m=4 mod 8
34261578 (m—1,m-2)
87642135 (2,2)
51867342 (m—8,1)
51342678 (10,m—5)
86753421 (13 (m+2)/2)
78563421 end

m=5mod 8
34261578 (Mm—1,m—2)
87642135 (2,2)
51324678 *
15234678 end

m=6 mod 8
34261578 (6,1)
87642135 (3,1)
54132678 (m—10,1)
52431678 (10,m—2)
85647123 (3,(m+8)/2)
12453678 end

m=7 mod 8
34625718 (Mm—1,m-—2)
42681357 (m—6,m)
86512347 (2,5)
51867342 (m—6,3)
61825437 ((m+1)/2,m—2)
61357284 end

*If m=5mod 16, us¢m—2,(m—5)/2), else usém—2,(m—13)/2).

TABLE 1. Summary of tiebreaking rules.
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voi d

voi d

voi d

voi d

}

mai n() {
initialize();
initializeTable();
Tour () ;

initialize() {
for (i =1, i <=m i++)
for (j =1, j <= m j+4)
AL =0
K= [('211)1('112)!(112)’(21 1)’(21'1)’(11'2)!('11'2)1('21'1)]

initializeTable() - sets the i’th entry of perms to the i'th
move-ordering and the i'th entry of switch to the i’th switching
square for the case mnod 8.

Tour () {
(x,y) =(1,1);
(u,v) = swtch[1]
T = perns[1];
t =1,
for (i =1; (x,y) '=(0,0); i++) {
AX]LY] =i
it ((x,y) == (u,v)) {
t++;
T = pernms[t]
u=swtchft]
}
(x,y) = getNextSquare(x,y,T);
}

int[] getNextSquare(x,y,T) {

mn =09;
(a,b) = (0,0);
for (count = 1; count <= 8; count++) {
(x',y") = (x,y) + Kcount];
if (isLegal (x",y") && A[X"][y"] == 0){
deg = degree(x’,y’);
if (deg < mn) {
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mn = deg;
(a,b) = (x,y");
key = count;

}
if (deg == mn) {
for (k = 1; T[k] !'= key && T[k] !'= count; k++);
if (T[k] == count) {
(a,b) = (x',y");
key = count;

}
}
return (a,b);

}

bool ean isLegal (X,y) {
return (1 <= x <=m&& 1<=y <=n;

}
int degree(x,y) {
deg = 0;
for (k = 1; k <= 8; k++) {
(x",y") =(xy) + KK];
if (isLegal (x",y") & A[X"][y'] == 0)
deg++;
}
return deg;
}

Squirrel claimed that his algorithm holds for adl> 112. Our experiments reveal that the algorithm actually
holds for allm such that < m < 112 as well, with the exception of = 74. Thus we can actually make the
stronger statement that it holds for atl>= 75. It is uncertain exactly why the algorithm fails for= 74
specifically, but it is not surprising that it does not hold &i small board sizes; on these boards the path runs
into the boundaries so early that it cannot follow the congypattern that makes it successful on larger boards.
Our proof of correctness rests on the algorithm followinedasic patterns which small enough boards falil
to satisfy. Nonetheless, it is easy to test the algorithrh @itomputer on these boards to observe its success.

Squirrel attempted to prove the correctness of his algorifir the casen = 7 mod 8. Unfortunately his
proof contained several incorrect statements and was moplete. In section 7 we provide a complete proof
of this case that holds for ath > 47. In order to make the patterns on some of the diagrams nheaig ae
have sometimes made it appear that diagrams contain maréthaws; however, this is simply to assist the
reader, and some of the rows can be ignored once the patteznagnized. This will make more sense in
section 5 when we introduce form matrix notation.

4. ALGORITHM EFFICIENCY

The running time of Squirrel’s algorithm is linear in the nioen of squares = n?; initialize() takesd(n)
time, initializeTable() takes constant time, and Tour@uieesn iterations through the while loop, each of
which requires a constant number of steps. An astute reaiggat motice that as implemented the algorithm

actually runs irB(nlogn), since the numbers that denote the order in which squaressied actually contain
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6(logn) bits. However this is a technical detail, and all of the htere | looked at ignored this issue completely.
If instead we had chosen to label the squares by the moveagpese to get to the next square, then we only
need to deal with numbers from 1 to 8, which require just 3. bfsr the purposes of running time, we can
assume that we are using this implementation and that tleeilgn runs in linear time.

Squirrel’s algorithm is not the first linear time algorithior fiinding knight's tours [2, 3, 4, 7]. All of the
other algorithms employ a divide and conquer strategy, isubdg the board into several smaller boards and
combining tours on these boards into a full tour, using sohst of several small boards as base cases. While
these algorithms maintain the same asymtptotic level afieffcy as Squirrel’s algorithm and are perhaps more
elegant, Squirrel’s algorithm is simpler than all of themnthe following sense. Technically all of the divide
and conquer algorithms as well as Squirrel’s algorithm ireg(n) space — as we need a way to access all n
squares. In the above pseudocode this takes the form ofrdneArwhich has n entries. However, in addition
to the space needed to store the squares Squirrel’s algorgfuires just constant space — a few integers and
the table of move-orderings and switching squares. Theldiand conquer algorithms, on the other hand,
require an implicit stack for the recursive calls and Bdegn) additional space. Hence if we ignored the space
needed to store the squares, Squirrel’s algorithm wouldmuseh less memory. If we consider the case of a
human tracing out the algorithm on an actual chessboard,andreat the space required by the board as a
given for all the algorithms. In this case, Squirrel’s aifon would require asymptotically less space than
the other algorithms — meaning the human would need accdsssanformation to complete the tour. Thus
Squirrel’'s algorithm is better suited for actual human iempéntation than the divide and conquer methods.

5. FORM MATRIX NOTATION

Because our proof of the algorithm’s correctness is cooste; we need a method of notation that allows us
to represent paths on an infinite family of boards of unbodrdimension in a single diagram. For this reason
we present a special kind of matrix which we will calfam matrix. A form matrix contains five different
types of symbols: numbers, lines, dashes, letters withdagipts, and letters with subscripts.

Lines play the role of ellipses and consist of two types: zmtal and vertical. A horizontal line signifies that
some number of rows are being omitted at the current posiéiod a vertical line signifies that some number
of columns are being omitted. In order to specify exactlychiiows or columns are omitted we will always
label the row or column directly before and after each linenek are what enable us to represent arbitrarily
large matrices in a compact form.

The letter ‘X’ is a special letter and denotes squares that haen already been visited prior to the current
path; we can think of the current path as the concluding spesece of a longer path with the assumption
that the first portion of the path is also a valid knight's pat¥hen we refer to ‘letters’ with reference to form
matrices, we will exclude x. Dashes denote squares thatr@ugeen visited previously and are not visited by
the current path.

All other symbols denote squares that are visited in theeowpath. The only numbers we will use are
positive integers. If we are currently in a square labeleith @inumbemn, then we use the following rules to
determine which square to move to next:

(1) If there is an unvisited, adjacent square labeled wighnilimbem + 1, move to that square.

(2) If there is at least one unvisited, adjacent square ¢éabeith a letter that either has no subscript or has
the subscript ‘1, move to the square with these propertiasdomes first alphabetically.

(3) If no square satisfies either of the previous condititersninate the path.

If we are currently in a square labeled with a letter withoguascript, then we use the following rules to
determine which square to move to next:

(1) If there is an unvisited, adjacent square labeled wighstime letter, move to that square.
(2) If there is an unvisited, adjacent square labeled wigHetter that comes next alphabetically with either

no subscript or the subscript 1, move to that square.
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(3) If there is at least one unvisited, adjacent square ¢abwith a number, move to the square with these
properties that has the smallest number.
(4) If no square satisfies either of the previous condititgrsninate the path.

If we are currently in a square labeled with a letter with assuipti, then we use the following rules to
determine which square to move to next:

(1) If there is an unvisited, adjacent square labeled wighshme letter and subscript 1, move to that
square.

(2) Ifthereis an unvisited, adjacent square labeled wighstime letter and subscript 1, move to that square.

(3) Ifthere is an unvisited, adjacent square labeled wigHetter that comes next alphabetically with either
no subscript or the subscript 1, move to that square.

(4) If there is at least one unvisited, adjacent square ¢abeith a number, move to the square with these
properties that has the smallest number.

(5) If no square satisfies either of the previous condititersninate the path.

In order to make paths easier to follow, we adopt certain entens. First, we will always label paths
so that they can be followed deterministically by the rule®iy above. For example, we will never be in a
square labeled with amthat is adjacent to two unvisiteals. We will also adopt the following convention with
numbers: the first sequence of numbers in a given diagranstaitt with 1, the next with 100, then 200, 300,
etc. This means that when we get to a letter that is not adjacehe same letter or the letter that comes next
alphabetically, we need only look for the number 1 or a mldtgd 100. We also label the first and last square
of the path in boldface, and also add a star in the first squaemnerally we will label squares with letters
when they are part of a repeated pattern that will be exteadesss a line, while numbers will denote clumps
of squares that do not extend across a line. Letters withcsipibs will be used to label more complicated
sequences of letters that are part of a repeated pattemdéaxgeacross a line. For example, if there is a “cycle”
of three move types — such as 4-2-7 — that extends from oneo$ittee board to another, we will label this
sequence with a letter containing the subscripts 1, 2, and 3.

We recommend that the reader trace out the path defined byeFlgas an exercise before moving on to the
next section.

6. METHOD OFPROOF

In the next section we will provide a constructive proof af torrectness of Squirrel’s algorithm for the case
m= 7 mod 8 form > 47. Because of the messy and somewhat unusual nature ofibie \we use this section
to give a preview of the method that we will employ as well asvie a justification of its validity. Our proof
consists of a series of steps, each of which presumes thectoess of the previous steps. Each step contains
a statement of the form:

At some point in the algorithm we will arrive at square (i, j) and exactly the sguares that have

previously been visited or satisfy at |east one of the following conditions will have been visited:
Condition 1

Condition 2

Conditionn
The statement will be accompanied by a diagram that showstbaenstruct a path starting from the last
square of the previous diagram and ending at the squareanedtin the claim. An explanation of the diagram
will also be provided if necessary. Notice that the proof fwasnherently recursive structure in that each stage
refers back to the previous stages.
A rigorous proof of the above statement requires verifymgfollowing facts:

(1) The path in the diagram is deterministic: applying thiesurom the previous section determine a

unique path from the start square to the end square.
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(2) The diagram starts and ends at the correct squares.

(3) Itis obvious how the pattern continues across lines.

(4) Such repeated patterns across lines are in accordatitéheirow and column labels.

(5) Row and column labels are correct.

(6) A square is visited by the path in the diagram if and only shtisfies at least one of the conditions of
the claim.

(7) A square is marked with an x in the diagram if and only ifashbeen visited in a previous step of the
proof.

(8) A square is marked with a dash in the diagram if and onlyliiais not been visited in a previous step
and it does not satisfy any of the conditions of the claim.

(9) Every move in the path specified by the diagram is in acoed with the algorithm.

It is clear that a form matrix by itself does not constituteomplete proof of the claim; each of the above
steps must be justified in order for the proof to be made rigeréiowever, we feel that this degree of rigor is
not necessary for the proof to succeed; in most cases wialtio verify each of these facts by simple inspection
of the form matrix, and we assume the reader can do this onims Whenever there is a complication in a
diagram that makes one of these facts nontrivial, we proaidetailed explanation. However, we still want
to encourage the reader who has any doubts on a step of thietpnerify each of the nine statements given
above until he has convinced himself of its validity.

7. PROOF OFALGORITHM CORRECTNESS

Claim 7.1. At some point in the algorithmwe will be in square (2,5) and exactly the squares (i, j) that satisfy
at least one of the following conditions will have been visited:

Qi=1j=20rj=3mod4

(2)i=2,j=00orj=1mod4

B)j=1i=1lori=2mod4
4) j=2,i=0o0ri=3mod4
(5)i=m-1,j=0o0or j=3mod 4
(6)i=m,j=1lor j=2mod4

(7)iodd, j=m—1or j=m
®) (i,j) €{(2,3),(3,1),(m—2,2),(m,3),(m—5,m),(m—4,m—2),(m—3,m—1), (m—3,m)
(m—2,m-2),(m—1m-2),(m—1m-1),(mm-3)}

Proof. Follow Figure 1 from(1,1) to (2,5). O

Claim 7.2. For all k=1 mod 8suchthat 17 < k < m—6 wewill arriveat square (k, 3) and exactly the squares
that were previously visited or satisfy one of the following conditions will have been visited:

(1) i<k-2j+4

(2)i=k—-2j+6

B)i=k—2j+7andi>8

Proof. The base cade= 17 can be verified in Figure 2a by extending the path in theipus\claim to (17,3),
which contains the number ‘86." Suppose the conditions falk = p wherep < m—14. Figure 2b shows how
to extend the path so conditions are satisfiedkfer p+ 8. The new path follows the sequence 1-a-b-c-d-100-
e-f-g-h. The induction terminates whkr= m— 6 and we arrive at squafen— 6, 3), where the move-ordering
changes. We have now filled abouyt4lof the board. O

Claim 7.3. We will reach square (1,a), where a = (m+27)/2 and exactly the sguares which have been
previously visited or satisfy at least one of the following conditions will have been visited:
(1)i<m-2j+5
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2)i<m-2j+6andj<8

(3) j<a-2i

4)j=a-2+2

(5) j=a—2i+3and j > (m+9)/2

6) (i,]) € {(m4),(m—2,5),(m—1,5),(m—4,6),(m—3,6),(m—2,6),(m,7)}

Proof. Follow path in Figure 3 from(m— 6,3) to (1,a). This path follows the sequence a-b-c-1-d-100-e-
200. O

Claim 7.4. Take a asin the preceding claim. Then for all k= 1 mod 4such that a < k < m—2, wewill arrive
at square (1,k) and exactly the squares which have been previously visited or satisfy one of the following
conditions will have been visited:

1) j<k-2i

2 j=k—-21+2

(B) j=k—2i+3andj > (Mm+9)/2

Proof. The base cask= a was shown in the previous claim. Suppose the conditions foold = p, where

p < m—6. Figure 4 shows how to extend the path so the conditionk fop + 4 are satisfied; however, it is
not obvious how to label the rows and columns. Notice thaldfimost ‘a’ occurs at the smallest column j that
satisfies both of the following constrainis> m—2j+5 andj = (p+4) — 2i — 3. Solving these simultaneously
yieldsj > (2m— p+9)/3. Since columns can only take integer values, it must bettvatg > (2m— p+10)/3.
Sincep is odd, the a’s along the diagonal occur only in even numbeodaimns. This means that the leftmost

aisin column:
{meerlO—‘
3
Ca=2 [2]

Similar logic shows that the leftmost a is in row:
2p— m—4J

LS

Notice that there is a single “hump” in the path of c's in theddie of the diagram. This corresponds to the
point along the trajectory of the third condition of the imtiue hypothesis when the inequality stops holding.
The last ¢ before the hump occurs in the same column as thedsftsquare that satisfies condition 3 of
the inductive hypothesis: hence it lies in colu@n= (m+9)/2. The row of the leftmost square satisfying
condition 3 of the inductive hypothesis satisfies the follapequationsj = p—2i+3 andj = (m+9)/2. The
solution isi = (2p—m—3) /4, which is an integer singe= 1 mod 4 andn= 3 mod 4. Since the last square
before the hump is two rows below this square, it lies in Rw= (2p—m+5)/4. We can now determine all
rows and columns of the Figure in termspandm. Eventually the induction terminates whks= m— 2 and
we arrive at squargl, m— 2). We have filled another triangular region at the top centén@board, and about
1/3 of the entire board. O

Claim 7.5. We will reach square (8, m— 2) and exactly the squares which have been previously visited or
satisfy one of the following conditions will have been visited:
1) j<m-2i+6
(2) j=m—-2i+8
B)j=m-2+9,j>(mMm+9)/2
(4) (|7J) S {<97m_5)a(7am_4)7(57m_3)7(87m_3)7(87m_2)v(7vm_2)7(67m_2)7
(6,m—1),(4,m—1),(6,m),(8,m)}

Proof. Follow the path in Figure 5 fronil,m—2) to (8, m— 2). The path follows the sequence 1-a-b-100-c-

d-e-f-g-h-200. Notice the single hump in the trajectory sfand g’s that occurs in the middle of the board.
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The rows and columns can be labeled using the same logic bBs prévious claim, where the leftmost a is in
squareg(Ry,C,) and the leftmost ¢ prior to the hump is in squéRg, Ce):

C, = ZFm/g—Hﬂ—‘
Ra = "9
c =
!

O

Claim 7.6. For all even k such that 8 < k < (m+1)/2, we will arrive at square (k,m— 2) and exactly the
squares which have been previously visited or satisfy one of the following conditions will have been visited:
(1) j<m-2i+2k—10
(2) j=m-2i+2k-8
B) j=m-2i+2k—-7,j>(mMm+9)/2
(4) (|7J) € {(k—l—l,m—S),(k—1,m—4),(k—3,m—3),(k,m—3),(k,m—2),(k—l,m—2)
(k—2,m—2),(k—2,m—1),(k—4,m—l),(k—2,m),(k,m)}

Proof. The base cask = 8 was shown in the previous claim. Now suppose the conditrad for k = p,
wherep < (m—3)/2. Figure 6 shows how to extend the path so the conditionk fop+ 2 are satisfied. We
compute the row and column labels as in the preceding claintg again noting the c-hump:

m—2p+19
3

Ca = 2

_ mH4p—24
e -
S
R = -4

One last issue we must contend with is labeling the squar#eitwo rightmost columns, since some of
them were visited in the first step of the algorithm. Sinte 7 mod 8 and p is even, the quantity+ 4p — 15
is divisible by 8, and hencB; is even. Unfortunately, we cannot determine whetRgis even, and hence
cannot tell whether the squares in the last two columns atdktem of the diagram have been visited. This is
only a minor notational inconvenience, however, as thesargg are not relevant to this step of the proof, and
for any givenmit can easily be computed whetHyis even or odd. The induction ends at sqt(é¥§l, m—2),
where the move-ordering changes for the last time. All théft is a region in the bottom right corner of the
board. We have now filled abouy 8 of the board. O

Claim 7.7. We will reach square (3, m), where f = (m+9) /2 and exactly the squares which have been previ-
ously visited or satisfy at least one of the following conditions will have been visited:
1) j<2m-2i—-2
(2) j=2m-2i+1
3) j <12
(4) j=13andi #m-3
(®) j=14andi #m-5
(6) j=15andi #m—-5m—4,or m—2
(7) j=16andi #m—7,m—6,or m—4
@) (i,j) e {(m—-7,17),(m—2,17),(m—1,17),(m—9,18),(m—4,18),(m—2,18),
(m—1,18),(m—3,19),(m—2,19),(m,19), (m—3,20), (m, 20), (m—2,21),
(m—1,21),(m—2,22),(m,23)
(9) (Ivj) < {(B-4,m—1),(B—2,m—3),(B—Z,m),(B—l,m—Z), (Bam_4>7([37m)}

(0]
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Proof. Follow the path in Figure 7 fror(lmTl,m— 2) to (B, m) using the sequence a-1-b-c-100-d-e-f-g-h. As
usual, we compute row and column labels:

C. = 3m-9

Ro= m3
There are several differences between this path and theopeepaths. First, the c-hump takes the form of a
type-1 move instead of a type-7 move. Also, the d-trajectbrgnges direction in the middle of the diagram
as we change to e’s. More interestingly, note the formatadrtte f's and g’s. The cycld, — f, — f3— 4
repeats itself for a while until we switch to g's in the middiéthe diagram. Then we have a new cycle
01— 02 — U3 — 04 — g5 — Os that repeats itself until we approach the rightmost boundathe board. In these
cases eachi and g; next move tofi.1 mod 4 @nd i1 mod 6 respectively if a square with such a labelling is
adjacent to the current position. This formation ends whermove fromgs to an h at the top right of the
diagram. It can also be noted that we can label the far righiaos since we know the behavior at the bottom
rows of the board anB; is odd. O

Claim 7.8. We will reach square (y, m), wherey = (m+ 13) /2 and exactly the sguares which have been previ-
oudly visited or satisfy at least one of the following conditions will have been visited:
Q) j<2m-2i+2
(2) j=2m-2i+5
(3) j<20
(4) j=21landi#m-7
(5) j=22andi#m—-5m—-8,0orm—9
(6) j=23andi #m—6,m—7,m—8, or m— 10
(7) (i,j) € {(m,24),(m—2,24),(m—3,24),(m—5,24),(m—1,25),(m—2,25), (m— 3,25),
(m—4,25),(m—1,26),(m—2,26),(m—4,26),(m,27),(m—2,27),(m—3,27),
(m,28),(m—3,28),(m—1,29),(m—2,29),(m—2,30),(m,31)}
(8) (|7 J) = {<ya m)’ (y_4am_ 1)7(y_47m_2)7(y_27m_2)7 (y_ 17m_2)a (y_ Zam_3)7
(y,m—3),(y—3,m—4),(y,m—4),(y— 17m_5)}

Proof. Follow the path in Figure 8 using the sequence a-1-b-100.fdimeation of the b’s is identical to that
of the g's in the previous diagram. O

Claim 7.9. We will reach sguare (6, m), where 8 = (m+ 29)/2, and exactly the squares which have been
previously visited or satisfy at least one of the following conditions will have been visited:

1) j<2m-2i+18

(2) j=2m—-2i+21

(3)j<28

(4) j=29andi #m—3

(5) j=30andiZm—1m—4,orm—5

(6) <|7 J) € {<e7m_4)7 (eam_3)7(97 m)v(e_ 17m_5>7 (e_ 17m_2)7(e_27m_3)7

(e_zam_2)7(e_2am)7(e_svm_4)7(e_47m_2>7<6_47m_1)}

Proof. Follow the path in Figure 9 using the sequence:
a—1—b—100—c—200—d—-300—e—400- f —500—g—600—h— 700

While the diagram seems quite complicated, it is really daly repetitions of the pattern we saw in the last
two diagrams. The trajectories of a,c,e, and g consistspa-6/moves (with no humps), while the trajectories
of b,d,f, and h consist of the 6-cycles we saw previously. O

Claim 7.10. Take 6 asin the preceding claim. Then for all k=08 mod 6suchthat 8 <k <m-—9, wewill arrive
at square (k,m) and exactly the squares that have been previously visited or satisfy at least one of the following

conditionswill have been visited:
76



A Simple Algorithm for Knight's Tours 15

(1) j<m—2i+2k—11

(2) j=m-2i+2k—-8

(3) j <28+2(k—0)

(4) j=29+2(k—6)andi #m—-3

(5) j=30+2(k—0B)andi #m—1,m—4,orm—5

(6) j=31+2(k—6)andi=m

(7) (i,j) € {(k,m—4),(k,m—3),(k,m),(k—1,m-5),(k—1,m—2),(k—2,m—3),
(k—2,m—2),(k—2,m),(k—3,m—4),(k—4,m—2),(k—4,m—1)}

Proof. The base case= 6 was shown in previous claim (notice squéne 31) was actually visited in step 8).
Suppose the conditions hold fke= p wherep < m— 15. Figure 10 shows how to extend the path so that the
conditions hold folk = p+ 6. The path follows the following sequence:

a—1—b—100—c—200—d—300—e—400— f —500

The trajectories of the letters are identical to those iruF@g. Notice we will end at a different square (in
terms of m) depending on the valuerafmod 6. Ifm= 1 mod 6 we end atm— 13 m), if m= 3 mod 6 we
end at(m—11,m), and ifm=5 mod 6 we end atm— 9, m). In all three cases we have filled the entire board
except for a few hundred squares. O

Figure 11 shows how to complete the tour in each of the threescdrigure 11a shows the case 1 mod 6,
Figure 11b shows the case= 3 mod 6 and Figure 11c shows the case 5 mod 6. Whemm= 1 or 5 mod 6,
the tour will end at squarém— 4, m— 8) while if m= 3 mod 6, the tour ends &n—6,m—4).

8. CONCLUSION

Unfortunately it appears that the proofs of the other caskbevjust as lengthy, and | do not have enough
time in the REU program to prove these cases. While | canrestegmt a complete proof of the algorithm at
this time, | did test the algorithm on boards mg= 610 and confirmed success on all of theseigr 75. This
strongly suggests that the algorithm is successful on igelaboards as well. Additionally, it does not appear
that there is anything special about the case 7 mod 8, and | suspect that the other cases can be proved
by similar arguments. Figure 12 provides an overview of thiiag produced by applying the algorithm in the
different cases. The path first visits the region marked énth, etc. These diagrams should provide some
clues as to how the proofs should proceed in the other cases.

Assuming the proof of correctness can be completed, thigrihgn would provide an efficient way of
generating knight's tours on all boards with> 5 exceptm= 74. If m= 74, then applying Warnsdorff’s
Rule using the move-ordering 21345678 to break ties praxlacsuccessful tour. Thus, an algorithm for
finding a tour on all square boards with > 5 that is consistent with Warnsdorff’s Rule would be to use
Squirrel's algorithm ifm# 74, and use the move-ordering 213456781 74. While perhaps not as simple
and elegant as Warnsdorff might have wanted, this is the kimdyvn algorithm for finding knight's tours that
is consistent with Warnsdorff’s heuristic. As the discossin section 4 indicates, the algorithm maintains a
linear running time and requires less space than other kadgorithms, thus making it easier for humans to
apply without the aid of a computer. Probably the biggesbagadishment of the algorithm is that it provides
an example of turning a promising but unsuccessful comnemses heuristic into an effective and efficient
algorithm. Hopefully this approach can be used by compuiensists to find efficient solutions to a variety of
other problems.
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APPENDIX
FIGURE 1
1 11 m-7 m
1 a a ¢ - a e - - a e - - - a e
c - a e - - a e - - a e e - -
a c - - - - - - - - - - - e a
- C - - - - - - - - - - - -
b - E - - - a e
C - - - - - - - - - - - - -
- b T - - - e a
- C - - - - - - - - - - - -
b - T - - - a e
C - - - - - - - - - - - - -
b T - - - e a
12 - ¢ - - - - - - - - - - - - -
m-10 b - - - - - - - - - - - a e
C - - - - - - - - - - - - -
- b E - - - e a
- C - - - - - - - - - - - -
b - E - - - a e
c - S - - - - d
- b e - - d e a
- C S - - d d
b ¢ - . - - - e a a
c - d - - d b - - d b - a d d
m c b c d b - - d b - - d d a a
FIGURE 2. A
1 11 m-7 m
1 X X X 7 12 x x 45 78 X X - - - X X
X 8 X X 1* 46 39 X X - - X X X - -
X X 6 11 38 13 44 77 66 79 - - - - X X
9 x 15 2 47 40 65 42 - - - - - - - -
X 5 10 37 14 43 76 67 80 - - - - - X X
x 16 3 48 21 64 41 - - - - - - - - -
4 X 22 19 36 75 68 81 - - - - - - X X
17 x 49 26 63 20 - 74 - - - - - - oL
Xx 23 18 35 50 69 82 - - - - - - - X X
10 X 34 25 62 27 - 73 - - - - - - - - .
24 x 32 51 70 83 - - - - - - D
33 x 61 28 - 72 - - - - - - - - - .
Xx 31 52 71 84 - - - - - - - - - x X
x 60 29 - 53 - - - - - - - N
30 x 58 85 - - - - - - - - - - X X
59 x - 54 - - - - - - - - - _
x 57 8 - - - - - - - - - - X X
X - 55 - - - - - - - - - - - - -
56 X - - - - - - - - - - - - X X
20 - X - - - - - - - - - - - - - -
m-6 X - - - - - - - - - - - - - X X
- X - - - - - - - - - - X X X
- X - - - - - - - - - - - X X
x X - - - - - - - - - X X X
X - X X - - X X - X X X X X X
m X X X - X X - - X X - - X X X X
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FIGURE 2. B
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FIGURE 4
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FIGURE 6
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FIGURE 11. A
m-27 m-20 m-10 m
m-16f X X X X X X X X X X X X X X X X X X X X X X X X 3 x x X
X X X X X X X X X X X X X X X X X X X X x 8 4 x x x 2 X
X X X X X X X X X X X X X X X X X X X 8 5 x x 8 99 x x X
X X X X X X X X X X X X X X X X x 83 6 x 9 125100 x x 87 981
X X X X X X X X X X X X X X x 78 7 X 91 124 101 94 89 158 133 96 x X
X X X X X X X X X X X X x 77 8 x 82 119 102 93 126 157 134 95 88 159 132 97
X X X X X X X X X X X 44 9 x 79 118 103 92 123 152 135 128 218 160 189 130 x X
X X X X X X X X x 43 10 x 76 117 104 81 120 151 136 127 156 238 190 129 AT 188 131
X X X X X X X 42 11 x 45 116 105 80 113 150 137 122 153 242 191 219 2B 1BY 182 X X
X X X X x 4112 x 38 53 106 75 114 149 138 121 146 241 192 155 239 23222® 215 226 162 183
X X X 3213 x 39 52 71 46 115 108 139 112 147 210 193 154 240 235 243222 227 181 186 x X
X X 14 x 40 3548 37 54 107 74 111 148 141 194 145 240 211 244 222 281223 215 172 163 184 x
X X 3316312651 72 47 70 55 140 109 144 207 196 209 204 280234 223 228 180 185 x x X
X 15 x 193449 36 25 56 73 110 67 60 195 142 199 206 245 212 203 22X1Z 171 164 173 x X
X X x 30172027 50 69 24 59 64 143 66 61 208 197 200 205 178 213 130118 167 x X X
X X 18 x x 2922 x x 57 68 x x 63 198 x x 177 202 x x 175168 x Xx X X X
m X X X x 21 x x 28 23 x x 58 65 x x 62 201 x x 176 169 x x 166 x Xx X X

FIGURE1ll. B

m-23 m-10 m
m-14f X X X X X X X X X X X X X X X X X X X x 3 X X X

X X X X X X X X X X X X X X X x x 77 4 x x x 2 X

X X X X X X X X X X X X X X X 76 5 x x 78 91 x x X

X X X X X X X X X X X X X 75 6 x 82109 92 x x 79 901

X X X X X X X X X X x 42 7 x 83 108 93 86 81 174 131 88 x X

X X X X X X X X x 41 8 x 74 107 94 85 110 171 132 87 80 175 130 89

X X X X X X x 40 9 x 43 106 95 84 103 166 133 112 173 170 181 114 x X

X X X X X 3910 x 3651 96 73 104 155 134 111 172 167 182 113 176 1291180

X X x 3011 x 37 50 69 44 105 98 135 102 165 156 161 150 189 179 116 x X

X X 12 x 38 33 46 3552 97 72 101 154 137 160 149 168 183 162 145 128118 x

X X 3114 29 24 49 70 45 68 53 136 99 140 153 164 157 148 151 178 117 X XX

X 13 x 17 32 47 34 23 54 71 100 65 58 159 138 141 152 163 144 127 146 A1 X

X X X 2815 18 25 48 67 22 57 62 139 64 59 158 143 126 147 120 123 X X X

X X 16 x x 2720 x x 55 66 x x 61 142 x x 121124 x X X X X
m X X X X 19 x x 2621 x x 56 63 x X 60 125 x x 122 x X X X

3
iR
©

FIGURE 11l. C
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1 3
3 4
2 2
O mod 8 1 mod 8
1 3
2
4
2 3
2 mod 8 3 mod 8
1 5
4 2
3 2 3
4 mod 8 5 mod 8
1 3
2
4
2 3
6 mod 8 7 mod 8

FIGURE 12. Summary of tours produced by algorithm.
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