
Explorations of the
Minesweeper Consistency Problem

Meredith Kadlac
Humboldt State University, Arcata, CA

Advisor: Paul Cull
Oregon State University, Corvallis, OR

15 August 2003

Abstract

Minesweeper is a well-known computer game commonly included with Windows operat-
ing systems. Minesweeper has recently been shown to be hard in the sense that determining
if there is a layout of mines and open spaces which is consistent with a grid pattern specifying
mines, number of mines adjacent to a grid position, and unknowns is an NP-complete problem.
We give a C++ program which uses breadth-first search to find all the layouts consistent with
a particular input pattern. We give some examples of the program’s input and output. We
timed the program and found, as expected, that its run time is exponential in the input size for
some patterns. We restricted minesweeper to one dimension to see if the problem was eas-
ier. We found that the one-dimensional minesweeper consistency problem is regular and we
give a finite state machine which recognizes patterns which are consistent with some unknown
layout.

1 Introduction

One of the most notorious open problems in mathematics is the P=NP? question. One of the
more recent and engaging inquiries into this issue was made by Richard Kaye, in which he showed
that the minesweeper consistency problem is NP-complete. In this paper, I present aspects of
the minesweeper consistency problem into which I have investigated while attending the research
experience for undergraduates at Oregon State University. My investigations into this problem
have resulted in two discoveries: One, I have written a program which finds all possible solutions
to a given minesweeper puzzle. Two, I have defined minesweeper consistency restricted to one
dimension and shown that it is easy by exhibiting a deterministic finite state machine that solves it.
To allow me to discuss these results, I will first give some basic definitions pertaining to complexity
theory and automata theory.

78

2 Computational Complexity Theory

Complexity theory seeks to analyze what resources are required during a computation to solve a
given problem. Two important measures of complexity are time and space complexity. The time
complexity of a problem is the number of steps required to solve it, while the space complexity
of a problem is the amount of memory needed to solve it. Here I will restrict the discussion of
complexity to time complexity.

Definition 2.1 A polynomial time algorithm is one for which the time complexity is polynomial in
the size of the input. For example, algorithms with time complexity Θ(n) or Θ(99n5) are polynomial
time algorithms.

Definition 2.2 An exponential time algorithm is one for which the time complexity is exponential
in the size of the input. An example of an exponential time complexity is Θ(2n).

A polynomial time algorithm is considered to be efficient unless the input is extremely large.
An exponential time algorithm can work for relatively small inputs, but as the input size increases
it can become very inefficient. For instance, consider an algorithm with time complexity Θ(3n).
An input size of n=60 would require 1.3 million centuries to solve! [HU79] Problems for which
only exponential time algorithms are known are often called intractable.

Definition 2.3 The complexity class P is the collection of problems which can be solved determin-
istically in polynomial time. A deterministic solution has exactly one choice at each step.

Definition 2.4 The complexity class NP is the collection of problems which can be solved nonde-
terministically in polynomial time. A nondeterministic solution may have some steps with more
than one choice.

It is not known for sure whether P=NP although it is generally thought that they are not equal.
Problems in NP that are considered the most difficult, and the most likely not to be in P, are called
NP-complete. Examples of problems which have been proven to be NP-complete are satisfiability
and the coloring problem. To show that a problem B is NP-complete, one must demonstrate the
following:

1. B∈NP
2. For every other problem A∈NP, A≤B.
Here, the less than or equal to symbol can be read ”is no harder than”, and we say that B

reduces to A. To show that A≤B, we show that there exists a polynomial time function f such that,
for every input instance I∈A, the solution in problem A to instance I is the same as the solution in
problem B to f(I). For a more in-depth discussion on NP-completeness, a good source is Garey
and Johnson’s Computers and Intractability [GJ79].

79

3 Languages and Finite State Machines

I will now give some brief definitions concerning languages and finite state machines. For more
details, see a text on automata theory such as Hopcroft and Ullman’s Introduction to Automata
Theory, Languages, and Computation [HU79].

Definition 3.1 An alphabet, denoted Σ, is a finite nonempty set of symbols.

Example 3.2 Σ={0,1} is the binary alphabet.

Definition 3.3 A string, or word, of length n over an alphabet Σ is a sequence x1x2...xn, for n∈N,
such that xi ∈ Σ for every i, 1≤i≤n.

Example 3.4 0110101010111101011 is a string over the binary alphabet.

These definitions are a sufficient basis for the definition of a finite state machine.

Definition 3.5 A finite state machine (FSM) is a quintuple <Σ, S, so, δ, F>, where Σ is the input
alphabet, S is a finite nonempty set of states, s is the initial state, δ is the state transition function (
δ:(S x Σ)→S), and F⊆S is the set of accepting states.

4 Minesweeper

Minesweeper is a popular game which is included with all Windows operating systems. I will
briefly describe how the game is played.

The player is given a two-dimensional grid of blank squares, under each of which there may or
may not be a bomb. Upon clicking his/her mouse on any square, s/he finds that either the square
has a bomb or it provides a count of how many bombs reside in any of the eight squares adjacent
to it. If there are no bombs near a particular square, then that square remains blank or in some
versions of the game it will have a zero. Otherwise, the square will contain a number between one
and eight which tells the player that there are anywhere from one to eight bombs in all adjacent
squares. The object of the game is to determine which squares have bombs by clearing, by way
of clicking on, every square that does not have a bomb. To accomplish this, the player takes the
information given in the squares found not to contain bombs and uses it to deduce the locations of
the bombs. For example, consider the configuration depicted below to the left.

0 0 0 1 1
0 0 0 2 ?
0 0 0 2 ?
1 1 0 1 1
? 1 0 0 0

=>

0 0 0 1 1
0 0 0 2 B
0 0 0 2 B
1 1 0 1 1
B 1 0 0 0

It is easy to deduce that all of the squares with question marks contain bombs. Of course,
the game is not always this easy. Often it is the case that the player cannot decide if a square in

80

question has a mine without guessing. For example, the following configuration could result in
any one of four different solutions, as depicted below.

1 1 1 0
1 B 2 1
1 2 ? ?
0 1 ? ?

=>

1 1 1 0
1 B 2 1
1 2 B 1/2
0 1 1/2 1/B

or

1 1 1 0
1 B 2 1
1 2 3/4 B
0 1 B 2/B

???

If faced with such a decision, the player can click the top left ? or one of either the top right ?
and the bottom left ?, and so long as s/he guesses correctly, s/he will have enough clues to continue
to play. Otherwise, the game will end.

5 Minesweeper Consistency Problem

The minesweeper consistency problem (MCP) is posed as following: Given a minesweeper grid,
is it consistent? A minesweeper puzzle is consistent if there exists at least one correspondence
between the information in each square and an element of the set {–, B}, where – means no
bomb and B means bomb, that solves the puzzle correctly. For example, the following grid is not
consistent for various reasons.

0 ? 1
2 ? 5
? ? ?

For one, it is impossible that five bombs actually surround the square with the 5 as one of the
squares next to it is marked with a 1, leaving only 4 possible bomb spots.

In his article, “Minesweeper is NP-Complete” in the Spring 2000 issue of The Mathematical
Intelligencer, Richard Kaye proved that MCP is NP-complete by reduction from circuit satisfiabil-
ity. I will not go into a detailled explanation of his work in this paper as I could not possibly do
any better at describing it than he has. However, I invite the interested reader to refer to his article
in the Intelligencer and his website, listed in the bibliography.

6 Minesweeper Consistency Exhaustive Search

I have written a program in C++ which finds, via an exhaustive search, all possible consistent
configurations for a given minesweeper grid. The idea to do this came from Neville Mehta’s paper
[ME03], in which he discusses a similar program he had written in LISP. Since I do not know
LISP, I could not use the program. As such, I decided to code it in C++. In this section, I discuss
the code for the program I wrote and explain how it works. The actual code can be found in
Appendix A, and I will refer to it from here on as the MS consistency code.

The minesweeper grid under consideration is inputted as a two-dimension-
al character array of size ROWS by COLS, both of which are declared as global constants. The ele-
ments mi j (0≤i≤ROWS, 0≤j≤COLS) of the array are taken from the alphabet {0,1,2,3,4,5,6,7,8,B,?}.

81

If any mi j is a number x between 0 and 8, then mi j does not contain a bomb and x corresponds to
how many bombs are in all surrounding elements. The B, of course, represents a bomb and the ?
represents an unknown square, which could be a bomb or a safe square.

The MS consistency program outputs all possible consistent bomb configurations that can be
arranged in the given grid. In this way, it can be used to decide the consistency of a grid in the
minesweeper consistency problem posed by Richard Kaye. It does so by employing a breadth-
first search, similar to that used in Mehta’s LISP code. The search algorithm, to start, creates
a set of new grids by placing exactly one bomb (B) in each possible location where there are
unknown spots (?), and a single grid by replacing all ?s with safe squares. Every new grid is then
classified according to consistency and goal-status. A grid is “consistent” if, for all squares within
it numbered as n, for 0≤n≤8, it is true that both n is less than or equal to the number of surrounding
Bs and that n is greater than the number of surrounding Bs plus the number of surrounding ?s. A
grid is “goal-state” if, for all squares within it numbered as n, for 0≤n≤8, n is exactly equal to
the number of surrounding Bs. Note that being goal-state implies that a grid is consistent, but the
converse is not true. If a new grid is goal-state, it is printed out as one of the possible consistent
configurations. At the end of the first iteration, the new grids that are both consistent and still have
unknown spots in them are retained, while the inconsistent grids and those for which the search has
been exhausted are pruned. Then, the algorithm begins again on the grids surviving the previous
expansion.

This algorithm clearly in worse case has time complexity O(2n), where n=ROWS*COLS.
However, the pruning that happens with each iteration of the search makes the algorithm tractable
for most inputs. I have observed that as long as the grid contains at least one numbered square
in every block of about nine squares, the possibilities for consistent grids becomes sufficiently
limited. Once there is a block of nine squares that has no constraints imposed on it by a nearby
numbered square, for example, then of course there are 29=512 possible configurations for that
block, and for blocks of more than nine ?s, matters soon become intractable. Please see the code
in Appendix A along with outputs for sample boards. These boards were taken from Richard
Kaye’s articles and website concerning the minesweeper consistency problem [K00][Internet ref-
erence 1]. Neville Mehta also has run his LISP program using the same sample boards [ME03],
achieving the same consistent configurations.

I would like to mention that I attempted to code this program using dynamic arrays, where the
number of rows in the arrays would be determined with each iteration based on the number of new
grids in the search frontier. However, I was not able to get such a program running so in the end I
employed an array with a large, constant number of rows that I could adjust if I saw the need. I am
sure that there are more space efficient ways of coding this search, but at this time anything more
sophisticated is beyond my knowledge.

7 One-dimensional Minesweeper

I will now define the minesweeper consistency problem (MCP) in one dimension rather than two.
As previously discussed, the two-dimensional MCP is NP-complete. I will show that the one-
dimensional MCP is easy, unlike the two-dimensional case, by exhibiting a deterministic finite

82

state machine (FSM) which determines the consistency of any one-dimensional minesweeper puz-
zle in polynomial time. I will prove that this machine solves all possible inputs by arguing that
inconsistencies are local to four adjacent symbols (length four substrings), categorizing all incon-
sistencies into types and subtypes, and showing how the machine detects inconsistencies from
each inconsistency subtype. Then I will show by induction that the one-dimensional MCP FSM
given determines the consistency of any minesweeper string of length n, for n∈N. Finally, I will
demonstrate how the machine gives outputs a consistent bomb configuration for each consistent
string.

One-dimensional minesweeper is a simplification of regular minesweeper in that the puzzle to
be solved is restricted to one row of blanks and numbers of adjacent bombs. As such, in any
square the possibilities are limited to 0, 1, or 2 bombs adjacent (instead of up to 8 bombs adjacent),
an unknown spot, ?, or a bomb, B.

The one-dimensional minesweeper consistency problem (MCP) is posed the same way as
the regular MCP, but restricted to one-dimensional puzzles. That is, given a one-dimensional
minesweeper puzzle, is it consistent? I give a definition of consistency for the one-dimensional
puzzle below. I will claim that the restriction of MCP to one-dimensional MCP is easy; that is,
one-dimensional MCP∈P.

Definition 7.1 A one-dimensional minesweeper puzzle is consistent if there exists at least one
correspondence between the information in each square and an element of the set {–, B}, where –
means no bomb and B means bomb, that solves the puzzle correctly. Note: A minesweeper puzzle
is solved correctly if each square numbered m is surrounded by exactly m bombs.

First, I would like to describe how the FSM I have created to solve this problem works. The
problem lends itself to being decided by a finite state machine since a one-dimensional minesweeper
puzzle nicely translates to a string of symbols over an alphabet.

Definition 7.2 A minesweeper string of length n is a word over the alphabet ∑∗={0, 1, 2, B, ?}
representing a one-dimensional minesweeper puzzle of size n. A minesweeper substring of length
n is a block of n adjacent squares within a given minesweeper string.

Definition 7.3 A bomb string of length n is a word over the alphabet ∑∗
B={-, B, X}. A consistent

bomb string of length n is a word over ∑∗
B\{X}. A bomb string is inconsistent if it contains the

symbol X.

Definition 7.4 A local inconsistency in a minesweeper string
M=X1X2...Xn is some subsequence of its symbols Xi in which a pattern occurs that results in the
impossibility of M being globally consistent.

Definition 7.5 A minesweeper string M=X1X2...Xn is locally consistent up to position i, for 1≤i≤n,
if all substrings of the string X1X2...Xi−1are locally consistent. M is consistent with respect to its
ends if the substrings eX1X2... and ...Xn−1Xne are locally consistent.

83

��

��

�

��

��

��

	

��

��

��

�

�
	��

� ���

�

	�

�

����	��

�

�

�

	�

�
�

� �
	

�

�

����	��

�

�

�

	

��

�

�

�	

���

�
�

	

�

�

�

�

�

	

�

����	�
����

Figure 1: Directed graph showing the action of delta, the state transition function.

Definition 7.6 A minesweeper string is globally consistent if all subsequences of the sequence
eX1X2...Xne are locally consistent.

The finite state machine (FSM) shown in Figure 1 takes as inputs mine-
sweeper strings of length n and outputs bomb strings of length n.

The one-dimensional minesweeper finite state machine (MCP FSM) in Figure 1 is a septuple
<∑, ∑B, S, so, ∂, beta, F>. ∑={0, 1, 2, B, ?} is the input alphabet and ∑B={-, B, X} is the output
alphabet.
S={so,0,1o,1b,1?,2,B,?o,?b,??,Er} is the set of states, so is the initial state, and F = S \ {Er} is the
set of accepting states. Delta (∂) is the state transition function mapping (S x ∑) to S and beta:
S → ∑B is an output function which maps the set of states to a bomb string. Table 1 gives the
mappings of ∂ and Table 2 gives the mappings of beta.

84

0 1 2 B ? e
so 0 1o Er B ?? Er
0 0 1o Er Er ?o 0
10 Er Er Er B ?b Er
1b 0 1o Er Er ?o 1b

1? 0 1o Er B ?? 1?

2 Er Er Er B ?b Er
B Er 1b 2 B ?? B
?0 0 1o Er B ?? ?o

?b Er 1b 2 B ?? ?b

?? 0 1? 2 B ?? ??

Er Er Er Er Er Er Er

Table 1 State transition table for the one-dimensional MCP FSM. The columns of the table
are elements of ∑ and the rows are elements of the set of all states.

S ∑B

so X
0 0
1o 0
1b 0
1? 0
2 0
B B
?o 0
?b B
?? B
Er X

Table 2 The mappings of beta: S→ ∑B .

The one-dimensional MCP FSM takes as inputs minesweeper strings of length n, arbitrarily
reading them from left to right. It is set to start at the initial state, so. As ∂ maps from state to
state, beta maps each state to the output alphabet ∑B . In doing so, a bomb string of length n is
created to correspond to the minesweeper string of length n being read. It passes over the string
one time and stops once it detects the end of the string, the null character (e). Clearly, it has time
complexity O(n). The one-dimensional MCP FSM was designed so that the only rejecting state is
an error state, denoted Er. As soon as the machine detects an inconsistency, it maps to Er under
delta, as I will prove. Then beta maps Er to X so that the bomb string outputted by the machine
is inconsistent by definition if state Er has been mapped to under delta. After the machine has
reached state Er for some input string, it continues to go to Er for every input from (S x ∑). I
will show that any local inconsistency can be detected as a sequence of at most four symbols, or in
other words all errors are local to substrings of length four.

85

Now I would like to state and prove the theorems which will lead to the conclusion that one-
dimensional MCP is easy.

Theorem 7.7 The one-dimensional MCP FSM given detects all possible local inconsistencies in
a minesweeper string of length n, including those peculiar to the beginning or end of the string.
Furthermore, any local inconsistencies occur in substrings of length 4 or less.

Proof. To show that the one-dimensional MCP FSM detects any possible local inconsistency
in a minesweeper string of length n, I will argue that all possible local inconsistencies occur in sub-
strings of at most four squares. I will arbitrarily define a classification scheme for inconsistencies
with which to categorize all inconsistent length four substrings. Then, I will associate each incon-
sistency with its appropriate inconsistency type and subtype, and show how the machine detects
each inconsistency subtype.

Let M=X1X2...Xn be any minesweeper string. First, I will show how the one-dimensional
MCP FSM detects endpoint inconsistencies. For instance, it would not be consistent to have a 2
as the first or last element of the minesweeper string. As such, if the MCP FSM is in the initial
state and the next input is a 2, it goes to Er, the error state under delta (see Table 1). Also, if the
MCP FSM is in state 2 and the next input is the null character e, meaning that there is a 2 at the
right end of the string, then ∂ maps (2,e) to Er. Furthermore, it would clearly be inconsistent to
have a sequence of two 1s at the beginning or end of a string. If at the initial state, the next input
is a 1, then ∂ maps (so,1) to 1o. If the next input after that is a 1, then ∂ maps (1o,1) to Er. Thus
the machine detects the inconsistency of two 1s at the beginning of a string. On the other hand, if
M is consistent up to the second to last symbol and the second to last symbol is a 1, then either it
is in state 1o, 1b or 1? after reading this 1. If it is in 1o, then the input of another 1 gets mapped to
Er anyway. Otherwise, if it is in 1b or 1? and reads a 1, ∂ maps to 1o. If it is in 1o and reads an e,
meaning that it has reached the right end of the string with after two 1s, then ∂ maps (1o,e) to Er
and the inconsistency is detected. The last arrangement that would be undesirable at the beginning
or end of a string is a 1 followed by a 0 or a 0 followed by a 1, respectively. It is easy to verify
how the machine detects these two errors using the state transition table, Table 1. This exhausts all
possible endpoint inconsistencies and shows that all endpoint inconsistencies occur in a sequence
of at most 3 symbols, including the null character.

Now suppose M=X1X2...Xn is a minesweeper string found to be locally consistent up to posi-
tion i and M is consistent with respect to its ends.

I argue that any local inconsistency following from Xi will occur in at most four squares,
including Xi. Note that inconsistencies arise from the nature of the puzzle and I will leave it to the
reader to verify instances of them. Furthermore, in each case in the following argument, I will at
times make the following claim about a minesweeper substring consistent up to some position j≥i:
further inconsistencies follow from X j, starting over at length 1, and do not depend on any prior
symbol in the string. I will also leave it to the reader’s reflection to verify such claims as they are
made.

I take cases on Xi. Where the word inconsistency is used, local inconsistency is implied.
Case 0

86

If Xi=0, then M will be locally consistent up to position i+1 only if the next symbol is a 0, 1
or ?. The sequences 02 and 0B are inconsistencies of length 2. So the consistent possibilities
following from 0 are 00, 01 and 0?.

Subcase 00
This subcase is a repetition of Case 0.
Subcase 01
01 can be followed consistently by a B or a ?. The sequences 010, 011 and 012 are inconsistent.

Note 010 and 011 are inconsistencies of length 3, while 012 is an inconsistency of length 2 since
the inconsistency arises from the substring 12 and not the 0. So 01 can consistently be followed
by a B or ? as 01B or 01?. The sequence 01BX will be consistent as long is X is consistent with
respect to the B since the 01 before the B has no bearing on the consistency of M after the B. Thus
any further inconsistency following from the B will arise in Case B and the inconsistency length
will be reset to 1. The sequence 01? can be followed consistently by anything but a 0. Note 01?0
is an inconsistency of length 4. Now the consistent possibilities are M=01?1, 01?2, 01?B, or 01??.
At this point, it can be seen that, due to the ?, any further inconsistencies in M will follow from the
fourth symbol in the sequence, and no previous symbols will effect the consistency. See Cases 1,
2, B, and ?.

Subcase 0?
The sequence 0? can be followed consistently by anything but a 2. The sequence 0?2 is an

inconsistency of length 3. 0?0 cycles back to Case 0. 0?1 is a repetition of subcase 01? in reverse
order if followed by a 0 or an inconsistency of length 4 if followed by a 1 as 0?11. 0?12 is an
inconsistency of length 2 while 0?1B is consistent and any further inconsistencies follow in Case
B. 0?? can be followed consistently by any symbol and the consistency of M following 0?B can
be referred to Case B starting over at length 1.

This exhausts the possibilities in Case 0. The largest inconsistent sequences found thus far are
of length 4.

Case 1
A 1 can be followed consistently by a 0, 1, B or ?. If followed by a 2, M has an inconsistency

of length 2.
Subcases 10, 1B and 1?
Any further inconsistencies in 10X, 1BX or 1?X follow from the 0, B or ?, respectively. See

Cases 0, B, ?.
Subcase 11
The sequence 11 can be followed consistently by the symbols B or ?. Inconsistencies in a

sequence 11BX follow from the B and not the 1s. The sequence 11?0 has an inconsistency of
length 4, but otherwise sequences 11?X follow from the X and not the 11?. The sequences 110,
111 and 112 are inconsistencies local to 3, 3, and 2 squares, respectively.

This exhausts the possible inconsistencies for Case 1. Still, the largest inconsistency is of
length 4.

Case 2
inconsistencies of length 2 occur whenever a 2 is followed by a 0, 1, or another 2. A 2 followed

by a B or ? is consistent.

87

Subcase 2B
Any further inconsistencies follow from the B, not the 2. See Case B.
Subcase 2?
Any symbol can consistently follow 2? except a 0. In this case, we have an inconsistency of

length 3. Otherwise, following a ? in 2?X further inconsistencies then following the X depend
only on X. See Cases 1, 2, B and ?.

Thus Case 2 is exhausted with the longest inconsistency found being of length 3.
Case B
A B followed by a 0 incurs an inconsistency of length 2. Any other symbol following a B

is consistent. A sequence BBX cycles back to the current case. For sequences B2X and B?X,
further inconsistencies are incurred following from the 2 or ?.

Subcase B1
The sequence B1 can be followed consistently by anything except a B or a 2. B1B is an

inconsistency of length 3 and B12 is an inconsistency of length 2. For the sequences B10X and
B11X, the initial B no longer can affect the subsequent consistency of the string. The consistency
will then follow from the 0 or 1, respectively. However, the sequence B1?2 is an inconsistency of
length 4.

The longest inconsistency found in Case B is of length 4.
Case ?
Any symbol Y can consistently follow a ?. The consistency of M following from ?Y depends

further on Y alone.
Through each case, the longest inconsistency found was local to a sequence of no more than

four symbols. This proves that inconsistencies in all minesweeper strings occur in substrings of
length at most four.

Now, I define an inconsistency classification scheme (arbitrarily) according to types and sub-
types of possible inconsistencies in a length four substring. Table 2 shows that there are three
general types of inconsistencies: 1e, 2e and Be. Inconsistency type 1e has subtypes 010X, 011X,
111X, 01?0 and 11?0; inconsistency type 2e has subtypes 02XX, 12XX, 22XX and 0?2X; and
inconsistency type Be has subtypes 0BXX, B1BX and B1?2. I will now display all possible
length four substrings and show to which inconsistency type and subtype each of the inconsistent
substrings belongs.

Table 3 Inconsistency classification scheme

type of inconsistency subtypes
1e 010X, 011X, 111X, 01?0, 11?0
2e 02XX, 12XX, 22XX, 0?2X
Be 0BXX, B1BX, B1?2

The tables in Appendix A contain all 625 possibilities for minesweeper substrings of length
four, with consistent substrings shown in the first column and inconsistent substrings in the second
column. In the third and fourth columns, the inconsistency type and subtype is given, respectively.
Note that many strings are inconsistent in more than one way, but the inconsistency type is as-
signed as per the first inconsistency encountered from left to right. Also, observe that there are

88

redundancies in the substrings since many strings are identical up to flips about the space between
the second and third squares. Such identical inconsistent strings are categorized under the same
inconsistency subtypes, and will hence be detected in the same manner. For example, the strings
210B and 112B are different, but they are both classified as inconsistencies of subtype 12XX. This
is because in either case the first inconsistency detected by the machine, going from left to right, is
the 2 next to the 1. It is not matieral that the 2 and 1 are in a different order, or that they are pre-
ceded or followed by different symbols. In this light, it can be said that all inconsistent substrings
of the same subtype are the same with respect to their inconsistencies.

Now I will show how the given one-dimensional MCP FSM detects each inconsistency subtype,
and thus each inconsistent substring. I will take cases on each inconsistency subtype X1X2X3X4

and show how the state transition function, ∂, leads to an inconsistency in each case. Please refer
to Table 1 to verify the mappings of ∂.

Subtype 010X
The state after X1 is 0. Then ∂(0,1)=1o, ∂(1o,0)=Er. The inconsistency has been detected.
Subtype 011X
The state after X1 is 0. Then ∂(0,1)=1o, ∂(1o,1)=Er. The inconsistency has been detected.
Subtype 111X
After X1, the state is either 1o, 1b, or 1?. If S=1o, ∂(1o,1)=Er. If S=1b, ∂(1b,1)=1o, then

∂(1o,1)=Er. If S=1?, then ∂(1?,1)=1o and ∂(1o,1)=Er. In any case, the delta function has maps the
substring to the inconsistency state.

Subtype 01?0
After X1, S=0. Then ∂(0,1)=1o, ∂(1o,?)=?b, and d(?b,0)=Er. The inconsistency has been

detected.
Subtype 0?11
After X1, S=0. Then ∂(0,?)=?o, ∂(?o,1)=1o, and ∂(1o,1)=Er. The inconsistency has been

detected.
Subtype 02XX
After X1, S=0. Then ∂(0,2)=Er. The inconsistency has been detected.
Subtype 0?2X
After X1, S=0. Then ∂(0,?)=?o and ∂(?o,2)=Er. The inconsistency has been detected.
Subtype 12XX
After X1, S=1o, 1b or 1?. For any of these three states, ∂ maps 2 to the error state, Er. As such,

it detects the inconsistency.
Subtype 22XX
After X1, S=2. Then ∂(2,2)=Er. The inconsistency has been detected.
Subtype 0BXX
After X1, S=0. Then ∂(0,B)=Er. The inconsistency has been detected.
Subtype B1BX
After X1, S=B. Then ∂(B,1)=1b and ∂(1b,B)=Er. The inconsistency has been detected.
Subtype B1?2
After X1, S=B. Then ∂(B,1)=1b, ∂(1b,?)=?o and ∂(?o,2)=Er. The inconsistency has been

detected.

89

This shows that the one-dimensional MCP FSM given detects all possible locally inconsistent
length four substrings.

Theorem 7.8 The one-dimensional MCP FSM decides the global consistency of any minesweeper
string of length n∈N.

Proof. Let M be a minesweeper string of length n. Suppose n=1. Clearly, the only consistent
length one minesweeper strings are M=0, B, or ?. See Table 1 to verify that the length one input
sequences 1e and 2e are detected as inconsistent, while the input sequences 0e, Be, and ?e are
detected as consistent. If n=2 or 3, then the MCP FSM decides the consistency of M because
it was proven in Theorem 1 that all possible local inconsistencies occur in a sequence of at most
four symbols. For a minesweeper string of length 2 or 3, any local inconsistency is a global
inconsistency. Suppose M=X1X2...Xn is a minesweeper string of length n for some n∈N, n≥4,
and the MCP FSM has decided the global consistency of M. Now consider the string M’, of length
n+1, which is the concatenation of M and one additional symbol Y∈ ∑. If M was found to have
been globally inconsistent by the MCP FSM, then M’ will clearly also be globally inconsistent.
Otherwise, if M was found to be globally consistent, the global consistency of M’ depends both on
the local consistency of the substring Xn−2Xn−1XnY and whether M’ is consistent with respect to
its right end by Theorem 1. If this substring is locally consistent and M’ is consistent with respect
to its right end, then M’ is globally consistent. If either of these two conditions fail, then M’ is
globally inconsistent. Thus by the principle of induction, the MCP FSM decides the consistency
of any minesweeper string of length n∈N.

Now I would like to give my final theorem.

Theorem 7.9 The output map beta in the one-dimensional MCP FSM maps consistent minesweeper
strings to consistent bomb strings.

Proof. Let M be a consistent minesweeper string and let B be the bomb string produced by the
MCP FSM with input M. Then the MCP FSM has not at any time been in the error state, Er, under
the mappings of the state transition function by the definition of delta (see Table 1). Hence beta,
the output function, has not produced the character X from the alphabet ∑B={-, B, X} since it only
does so when S=Er. Thus the bomb string produced is restricted to symbols from the alphabet {-,
B}, and must be consistent by definition.

Conversely, suppose B is a consistent bomb string produced by the input of M, where M is
some minesweeper string. Then B consists only of characters from the restricted alphabet {-, B}.
The states that map to {-, B} under beta are precisely the accepting states of the MCP FSM. On
the other hand, the only non-accepting state, Er, is the only state that maps to {X}. Thus if B
is consistent, then never has the MCP FSM been in the error state while processing M. This is
sufficient to conclude that M is consistent.

Theorem 3 suggests that the MCP FSM outputs a consistent bomb configuration corresponding
to each consistent minesweeper string. The bomb configuration outputted may be only one of a
number of possible bomb configurations, and a nondeterministic finite state machine could be

90

constructed that could determine all possible consistent bomb configurations. This would be a
good starting point for future inquiry.

In conclusion, since the one-dimensional MCP FSM gives a deterministic, polynomial time
method of deciding the consistency of any minesweeper string, and hence any minesweeper puz-
zle (providing a consistent configuration of bombs corresponding for every consistent puzzle) by
Theorems 1,2, and 3, one-dimensional MCP is easy.

8 Conclusion

In my research this summer, I have coded a program which finds all consistent configurations
to a given minesweeper grid. I have also defined the one-dimensional minesweeper consistency
problem and shown that it is easy, unlike its two-dimensional counter part. I would like to end this
paper with a list of topics for further inquiry into the minesweeper consistency problem and ways
in which my findings could be refined.

• My one-dimensional MCP FSM lacks precision in its definition and the proof seems to be
flawed.

• The efficiency of the MS consistency program has room for improvement.

• We wanted to find a finite state generator for two-dimensional mine-
sweeper and use it to decide consistency.

• We thought it might be interesting to investigate the conditions under which the consistency
of a grid could be predicted.

91

9 References and Appendices

9.1 References

[G85] Alan Gibbons Algorithmic Graph Theory. Cambridge University Press, Cambridge, 1985.
[GJ79] M. Garey and D. Johnson Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freedman, San Francisco, 1979.
[HU79] J. Hopcroft and J. Ullman Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, USA, 1979
[K00] Richard Kaye Minesweeper is NP-Complete. The Mathematical Intelligencer. 22:9-15,
Spring 2000
[M03] Neville Mehta Minesweeper is NP-Complete. Unpublished class project paper Depart-
ment of Computer Science, Oregon State University. Corvallis, Oregon. Spring 2003.

Richard Kaye’s minesweeper website
http://www.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.htm

Website with interesting minesweeper strategies and information
http://www.frankwester.net/winmine.html

92

9.2 Appendix A

/***/
/* */
/* MS CONSISTENCY */
/* */
/***/
#include ”stdafx.h”
#include<iostream>
using namespace std;
// Global constants to define grid size
const int ROWS=3;
const int COLS=3;
const int DIM=ROWS*COLS;
const int MAXROW=1000;
// Function declarations
void bfs(char[ROWS][COLS], int&);
//general
void grid to string(char[ROWS][COLS], char[DIM]);
void string to grid(char[DIM], char[ROWS][COLS]);
void print frontier(char[MAXROW][DIM]);
//functions used in bfs
void load string(char[DIM], char[MAXROW][DIM], int);
void unload string(char[DIM], char[MAXROW][DIM], int);
int count blanks string(char[DIM]);
int find next blank(char[DIM], int);
void count blanks per row(char[MAXROW][DIM], int[MAXROW]);
int count new grids(int[MAXROW]);
void add bomb(char[DIM], int);
void load consistent(char[MAXROW][2], char[MAXROW][DIM], char[MAXROW][DIM]);
//functions to calculate consistency/goal-status and output
//goal-state grids
void print array (char[ROWS][COLS]);
int char to int (char);
char int to char (int);
int surrounding bombs (char[ROWS][COLS], int, int);
int surrounding blanks (char[ROWS][COLS], int, int);
char consistency (char[ROWS][COLS]);
char goal state (char[ROWS][COLS]);
void goal state outputter(char[ROWS][COLS], int&);
void get info(char[MAXROW][2], char[MAXROW][DIM], int&);
//***//
// B F S //

93

//***//
void bfs (char Original[ROWS][COLS], int &gs counter)
{
//indices
int i,j,k;
char MSstring[DIM];
for (i=0; i<DIM; i++)
MSstring[i]=’0’;
//Load original grid onto MSstring
grid to string(Original, MSstring);
//New grids counts number of new grids expected in next search iteration.
int new grids=0;
//MSarray is the array which will contain the entire search frontier.
char MSarray[MAXROW][DIM];
for (i=0; i<MAXROW; i++)
for (j=0; j<DIM; j++)
MSarray[i][j]=’X’;
//Load original grid, in the form of MSstring, onto MSarray
load string(MSstring, MSarray, 0);
//array to hold number of blanks per row in MSarray.
//Upon this information will depend the size of the new search frontier
int no blanks[MAXROW];
//Initialize no blanks[]
for (i=0; i<MAXROW; i++)
no blanks[i]=-1;
//Count number of blanks per row in MSarray and store in no blanks
count blanks per row(MSarray, no blanks);
int total blanks=0;
total blanks=no blanks[0];
//Trivial case in which the Original has no ?s yet is consistent
if (total blanks==0)
{
print array(Original);
gs counter++;
}
else
{
//reconfigure size of search frontier. Initially, search frontier = #of’?’s + 1.
new grids=count new grids(no blanks);
}
//variables to keep track of position in MSarray of ?’s and B to be added
int next, last;

94

int bomb position=-1;
//variable to keep track of row in NewArray to be filled
int new row;
char NewArray[MAXROW][DIM];
char consis gs info[MAXROW][2];
while (new grids > 0 && new grids < MAXROW)
{
for (i=0; i<MAXROW; i++)
for (int j=0; j<DIM; j++)
NewArray[i][j]=’X’;
for (i=0; i<MAXROW; i++)
for (int j=0; j<2; j++)
consis gs info[i][j]=’X’;
//reinitialize new row
new row=0;
//reinitialize MSstring
for (k=0; k<DIM; k++)
MSstring[k]=’0’;
//Stop row will detect whether next row in MSarray is empty at end of one iteration in loop.
char stop row=MSarray[0][0];
//The following loop will create, by adding a bomb in the appropriate spot,
//a string for each new grid i expected, and load it into row i in
//NewArray. It will consider each row in MSarray.
for (i=0; i<MAXROW && stop row!=’X’; i++)
{
//unload row i into MSstring
unload string(MSstring, MSarray, i);
//Initializing last.
last=-1;
//find the first ? in row i.
next=find next blank(MSstring, last);
for (int j=0; j<=no blanks[i]; j++)
{
//position to place next bomb is assigned to
//bomb position. Note that, if bomb position=DIM (meaning that there
//are no more bombs in the row), add bomb will just fill the remaining spots
//in the string with ’-’s.
bomb position=next;
//add bomb to MSstring and load in new array
add bomb(MSstring, bomb position);
load string(MSstring, NewArray, new row);
//increase new row count each time

95

new row++;
//recalculate next and reset MSstring
last=next;
next=find next blank(MSstring, last);
unload string(MSstring, MSarray, i);
}
stop row=MSarray[i+1][0];
}
//Now, NewArray should be completely filled.
//Check and make note of consistency and goal-status of each string in NewArray
//Outputs and counts goal-state grids. At this point, goal-state grids will be printed.
get info(consis gs info, NewArray, gs counter);
//Reinitialize MSarray and no blanks
for (i=0; i<MAXROW; i++)
for (j=0; j<DIM; j++)
MSarray[i][j]=’X’;
for (i=0; i<MAXROW; i++)
no blanks[i]=-1;
//Reload MSarray with grids in NewArray which are consistent
//and still have spaces with ?s.
load consistent(consis gs info, NewArray, MSarray);
//Count number of blanks per row in MSarray and store in no blanks
count blanks per row(MSarray, no blanks);
//Count total blanks
total blanks=0;
int stop=no blanks[0];
for (i=0; i<MAXROW && stop!=-1; i++)
{
total blanks+=no blanks[i];
stop=no blanks[i+1];
}
if (total blanks==0)
{
new grids=0;
}
else
{
//recalculate size of search frontier
new grids=count new grids(no blanks);
if (new grids > MAXROW)
cout<<endl<<”Search frontier too large”<<endl;
}

96

}
}
//***//
//General functions//
//**//
//Loads a two-dim array of size ROWS by COLUMNS into an 1-dim array of size
// DIM=ROWS*COLUMNS, row-by-row.
void grid to string (char Grid[ROWS][COLS], char String[DIM])
{
int row, column;
for(int k=0; k<DIM; k++)
{
row=k/COLS;
column=k%COLS;
String[k]=Grid[row][column];
}
}
//Loads a one-dim array of size DIM=ROWS*COLUMNS into a 2-dim array of size
// ROWS by COLUMNS, row-by-row.
void string to grid (char String[DIM], char Grid[ROWS][COLS])
{
int row, column;
for (int k=0; k<DIM; k++)
{
row=k/COLS;
column=k%COLS;
Grid[row][column]=String[k];
}
}
void print frontier (char Array[MAXROW][DIM])
{
int i,j,stop;
stop=Array[0][0];
cout<<endl;
for (i=0; i<MAXROW && stop!=’X’; i++)
{
for (j=0; j<DIM; j++)
cout<<Array[i][j];
cout<<endl;
stop=Array[i+1][0];
}
}

97

//***//
//The following functions are involved in the bfs//
//***//
void load string(char MSstring[DIM], char MSarray[MAXROW][DIM], int i)
{
for (int k=0; k<DIM; k++)
MSarray[i][k]=MSstring[k];
}
void unload string(char MSstring[DIM], char MSarray[MAXROW][DIM], int i)
{
for (int k=0; k<DIM; k++)
MSstring[k]=MSarray[i][k];
}
int count blanks string(char MSstring[DIM])
{
int blank count=0;
for (int k=0; k<DIM; k++)
{
if (MSstring[k]==’?’)
blank count++;
}
return blank count;
}
int find next blank(char MSstring[DIM], int last)
{
int next, i;
//loop to find the next blank on the string, beginning with the one
//after the last.
for (i=(last+1); i<DIM && MSstring[i]!=’?’; i++);
//if there are no more blanks found on the string, assign
//i the value of DIM.
if (i==(DIM-1) && MSstring[i]!=’?’)
i++;
next=i;
return next;
}
void count blanks per row(char MSarray[MAXROW][DIM], int no blanks[MAXROW])
{
//variable to detect when next row is empty
char stop=’0’;
//search rows of MSarray for ?s and count
int i;

98

for (i=0; i<MAXROW && stop!=’X’; i++)
{
no blanks[i]=0;
for (int j=0; j<DIM; j++)
if (MSarray[i][j]==’?’)
no blanks[i]++;
stop=MSarray[i+1][0];
}
}
int count new grids(int no blanks[MAXROW])
{
int new grids=0;
int stop,i;
stop=no blanks[0];
for (i=0; i<MAXROW && stop!=-1; i++)
{
if (no blanks[i]>0)
new grids+=(no blanks[i]+1);
stop=no blanks[i+1];
}
return new grids;
}
void add bomb(char MSstring[DIM], int bomb position)
{
if ((bomb position < DIM) && (0 <= bomb position))
MSstring[bomb position]=’B’;
for (int k=0; k<bomb position; k++)
{
if (MSstring[k]==’?’)
MSstring[k]=’-’;
}
}
void load consistent(char consis gs info[MAXROW][2], char NewArray[MAXROW][DIM],
char MSarray[MAXROW][DIM])
{
char tempString[DIM];
int blankcount=0;
int grid no=0;
for (int i=0; i<MAXROW; i++)
{
for (int k=0; k<DIM; k++)
tempString[k]=’0’;

99

if (consis gs info[i][0]==’Y’)
{
unload string(tempString, NewArray, i);
blankcount=count blanks string(tempString);
if (blankcount>0)
{
load string(tempString, MSarray, grid no);
grid no++;
}
}
}
}
//**//
// consistency/goal-status checking //
//**//
void print array (char Array[ROWS][COLS])
{
for (int i=0; i<ROWS; i++)
{
for (int j=0; j<COLS; j++)
cout<<Array[i][j];
cout<<endl;
}
}
int char to int (char digit)
{
int integer;
switch (digit)
{
case ’0’: integer=0;
break;
case ’1’: integer=1;
break;
case ’2’: integer=2;
break;
case ’3’: integer=3;
break;
case ’4’: integer=4;
break;
case ’5’: integer=5;
break;
case ’6’: integer=6;

100

break;
case ’7’: integer=7;
break;
case ’8’: integer=8;
break;
default: integer=9;
break;
}
return integer;
}
char int to char (int integer)
{
char character;
switch (integer)
{
case 0: character=’0’;
break;
case 1: character=’1’;
break;
case 2: character=’2’;
break;
case 3: character=’3’;
break;
case 4: character=’4’;
break;
case 5: character=’5’;
break;
case 6: character=’6’;
break;
case 7: character=’7’;
break;
case 8: character=’8’;
break;
default: character=’-’;
break;
}
return character;
}
int surrounding bombs (char MSgrid[ROWS][COLS], int row, int col)
{
int bombcount=0;
if (row==0 || col==0 || row==(ROWS-1) || col==(COLS-1))

101

{
if (row==0 && col==0)
{
if (MSgrid[0][1]==’B’)
bombcount++;
if (MSgrid[1][0]==’B’)
bombcount++;
if (MSgrid[1][1]==’B’)
bombcount++;
}
if (row==0 && col==(COLS-1))
{
if (MSgrid[0][col-1]==’B’)
bombcount++;
if (MSgrid[1][col]==’B’)
bombcount++;
if (MSgrid[1][col-1]==’B’)
bombcount++;
}
if (row==(ROWS-1) && col==0)
{
if (MSgrid[row-1][0]==’B’)
bombcount++;
if (MSgrid[row-1][1]==’B’)
bombcount++;
if (MSgrid[row][1]==’B’)
bombcount++;
}
if (row==(ROWS-1) && col==(COLS-1))
{
if (MSgrid[row-1][col-1]==’B’)
bombcount++;
if (MSgrid[row-1][col]==’B’)
bombcount++;
if (MSgrid[row][col-1]==’B’)
bombcount++;
}
if ((row==0) && (col!=0) && (col!=(COLS-1)))
{
for (int i=0; i<2; i++)
for (int j=(col-1); j<=(col+1); j++)
if (MSgrid[i][j]==’B’)

102

bombcount++;
}
if ((row==(ROWS-1)) && (col!=0) && (col!=(COLS-1)))
{
for (int i=(row-1); i<=row; i++)
for (int j=(col-1); j<=(col+1); j++)
if (MSgrid[i][j]==’B’)
bombcount++;
}
if ((col==0) && (row!=0) && (row!=(ROWS-1)))
{
for (int i=(row-1); i<=(row+1); i++)
for (int j=0; j<2; j++)
if (MSgrid[i][j]==’B’)
bombcount++;
}
if ((col==(COLS-1)) && (row!=0) && (row!=(ROWS-1)))
{
for (int i=(row-1); i<=(row+1); i++)
for (int j=(col-1); j<=col; j++)
if (MSgrid[i][j]==’B’)
bombcount++;
}
}
else
{
for (int i=(row-1); i<=(row+1); i++)
{
for (int j=(col-1); j<=(col+1); j++)
{
if (MSgrid[i][j] == ’B’)
bombcount++;
}
}
}
return bombcount;
}
int surrounding blanks (char MSgrid[ROWS][COLS], int row, int col)
{
int blankcount=0;
if (row==0 || col==0 || row==(ROWS-1) || col==(COLS-1))
{

103

if (row==0 && col==0)
{
if (MSgrid[0][1]!=’B’ || MSgrid[0][1]!=’?’)
blankcount++;
if (MSgrid[1][0]!=’B’ || MSgrid[1][0]!=’?’)
blankcount++;
if (MSgrid[1][1]!=’B’ || MSgrid[1][1]!=’?’)
blankcount++;
}
if (row==0 && col==(COLS-1))
{
if (MSgrid[0][col-1]!=’B’ || MSgrid[0][col-1]!=’?’)
blankcount++;
if (MSgrid[1][col]!=’B’ || MSgrid[1][col]!=’?’)
blankcount++;
if (MSgrid[1][col-1]!=’B’ || MSgrid[1][col-1]!=’?’)
blankcount++;
}
if (row==(ROWS-1) && col==0)
{
if (MSgrid[row-1][0]!=’B’ || MSgrid[row-1][0]!=’?’)
blankcount++;
if (MSgrid[row-1][1]!=’B’ || MSgrid[row-1][1]!=’?’)
blankcount++;
if (MSgrid[row][1]!=’B’ || MSgrid[row][1]!=’?’)
blankcount++;
}
if (row==(ROWS-1) && col==(COLS-1))
{
if (MSgrid[row-1][col-1]!=’B’ || MSgrid[row-1][col-1]!=’?’)
blankcount++;
if (MSgrid[row-1][col]!=’B’ || MSgrid[row-1][col]!=’?’)
blankcount++;
if (MSgrid[row][col-1]!=’B’ || MSgrid[row][col-1]!=’?’)
blankcount++;
}
if ((row==0) && (col!=0) && (col!=(COLS-1)))
{
for (int i=0; i<2; i++)
for (int j=(col-1); j<=(col+1); j++)
if (MSgrid[i][j]!=’B’ || MSgrid[i][j]!=’?’)
blankcount++;

104

}
if ((row==(ROWS-1)) && (col!=0) && (col!=(COLS-1)))
{
for (int i=(row-1); i<=row; i++)
for (int j=(col-1); j<=(col+1); j++)
if (MSgrid[i][j]!=’B’ || MSgrid[i][j]!=’?’)
blankcount++;
}
if ((col==0) && (row!=0) && (row!=(ROWS-1)))
{
for (int i=(row-1); i<=(row+1); i++)
for (int j=0; j<2; j++)
if (MSgrid[i][j]!=’B’ || MSgrid[i][j]!=’?’)
blankcount++;
}
if ((col==(COLS-1)) && (row!=0) && (row!=(ROWS-1)))
{
for (int i=(row-1); i<=(row+1); i++)
for (int j=(col-1); j<=col; j++)
if (MSgrid[i][j]!=’B’ || MSgrid[i][j]!=’?’)
blankcount++;
}
}
else
{
for (int i=(row-1); i<=(row+1); i++)
{
for (int j=(col-1); j<=(col+1); j++)
{
if (MSgrid[i][j]!=’B’ || MSgrid[i][j]!=’?’)
blankcount++;
}
}
}
return blankcount;
}
int surrounding unknowns (char MSgrid[ROWS][COLS], int row, int col)
{
int unknowns=0;
if (row==0 || col==0 || row==(ROWS-1) || col==(COLS-1))
{
if (row==0 && col==0)

105

{
if (MSgrid[0][1]==’?’)
unknowns++;
if (MSgrid[1][0]==’?’)
unknowns++;
if (MSgrid[1][1]==’?’)
unknowns++;
}
if (row==0 && col==(COLS-1))
{
if (MSgrid[0][col-1]==’?’)
unknowns++;
if (MSgrid[1][col]==’?’)
unknowns++;
if (MSgrid[1][col-1]==’?’)
unknowns++;
}
if (row==(ROWS-1) && col==0)
{
if (MSgrid[row-1][0]==’?’)
unknowns++;
if (MSgrid[row-1][1]==’?’)
unknowns++;
if (MSgrid[row][1]==’?’)
unknowns++;
}
if (row==(ROWS-1) && col==(COLS-1))
{
if (MSgrid[row-1][col-1]==’?’)
unknowns++;
if (MSgrid[row-1][col]==’?’)
unknowns++;
if (MSgrid[row][col-1]==’?’)
unknowns++;
}
if ((row==0) && (col!=0) && (col!=(COLS-1)))
{
for (int i=0; i<2; i++)
for (int j=(col-1); j<=(col+1); j++)
if (MSgrid[i][j]==’?’)
unknowns++;
}

106

if ((row==(ROWS-1)) && (col!=0) && (col!=(COLS-1)))
{
for (int i=(row-1); i<=row; i++)
for (int j=(col-1); j<=(col+1); j++)
if (MSgrid[i][j]==’?’)
unknowns++;
}
if ((col==0) && (row!=0) && (row!=(ROWS-1)))
{
for (int i=(row-1); i<=(row+1); i++)
for (int j=0; j<2; j++)
if (MSgrid[i][j]==’?’)
unknowns++;
}
if ((col==(COLS-1)) && (row!=0) && (row!=(ROWS-1)))
{
for (int i=(row-1); i<=(row+1); i++)
for (int j=(col-1); j<=col; j++)
if (MSgrid[i][j]==’?’)
unknowns++;
}
}
else
{
for (int i=(row-1); i<=(row+1); i++)
{
for (int j=(col-1); j<=(col+1); j++)
{
if (MSgrid[i][j] == ’?’)
unknowns++;
}
}
}
return unknowns;
}
char consistency (char MSgrid[ROWS][COLS])
{
int bombs expected=0;
int bombs=0;
int qs=0;
int bombs qs=0;
char consistency=’Y’;

107

int i,j;
for (i=0; i<ROWS && consistency!=’N’; i++)
for (j=0; j<COLS && consistency!=’N’; j++)
{
bombs expected=char to int(MSgrid[i][j]);
if (bombs expected!=9)
{
bombs=surrounding bombs(MSgrid, i, j);
qs=surrounding unknowns(MSgrid, i, j);
bombs qs=bombs+qs;
if ((bombs>bombs expected) || (bombs qs<bombs expected))
consistency=’N’;
}
}
return consistency;
}
char goal state (char MSgrid[ROWS][COLS])
{
char goal state=’Y’;
int blankcount=0;
for (int i=0; i<ROWS; i++)
for (int j=0; j<COLS; j++)
if (MSgrid[i][j]==’?’)
blankcount++;
if (blankcount > 0)
goal state=’N’;
else
{
int bombs expected=0;
int bombs=0;
int i, j;
for (i=0; i<ROWS && goal state==’Y’; i++)
{
for (j=0; j<COLS && goal state==’Y’; j++)
{
bombs expected=char to int(MSgrid[i][j]);
if (bombs expected != 9)
{
bombs=surrounding bombs(MSgrid, i, j);
if (bombs expected != bombs)
goal state=’N’;
}

108

}
}
}
return goal state;
}
void gs outputter (char MSgrid[ROWS][COLS], int &gs counter)
{
gs counter++;
int i,j;
int bombcount;
for (i=0; i<ROWS; i++)
for(j=0; j<COLS; j++)
{
if (MSgrid[i][j]==’-’)
{
bombcount=0;
bombcount=surrounding bombs(MSgrid, i, j);
MSgrid[i][j]=int to char(bombcount);
}
}
cout<<gs counter<<endl;
print array(MSgrid);
cout<<endl;
}
void get info(char consis gs info[MAXROW][2], char NewArray[MAXROW][DIM], int &gs counter
)
{
char consistent, gs;
int i,j,k;
char tempString[DIM];
for (k=0; k<DIM; k++)
tempString[k]=’0’;
char tempGrid[ROWS][COLS];
for (i=0; i<ROWS; i++)
for (j=0; j<COLS; j++)
tempGrid[i][j]=’0’;
char stop=’0’;
for (i=0; i<MAXROW && stop!=’X’; i++)
{
unload string(tempString, NewArray, i);
string to grid(tempString, tempGrid);
consistent=consistency(tempGrid);

109

gs=goal state(tempGrid);
if (gs==’Y’)
gs outputter(tempGrid, gs counter);
consis gs info[i][0]=consistent;
consis gs info[i][1]=gs;
stop=NewArray[i+1][0];
}
}
//***//
// M A I N //
//***//
int tmain(int argc, TCHAR* argv[])
{
// Fill array representing MS grid
//***************ORIGINAL**GRIDS*******************//
/*
//Board 1
char Original[ROWS][COLS]= {{’?’,’?’},
{’?’,’?’}};
*/
//Board 2
char Original[ROWS][COLS]= {{’?’,’?’,’?’},
{’?’,’?’,’?’},
{’?’,’?’,’?’}};
/*
//Board 3
char Original[ROWS][COLS]= {{’?’,’?’,’?’,’?’},
{’?’,’2’,’2’,’?’},
{’?’,’2’,’2’,’?’},
{’?’,’?’,’?’,’?’}};
*/
/*
Board 4
char Original[ROWS][COLS]= {{’?’,’?’,’?’,’?’,’?’},
{’?’,’2’,’2’,’2’,’?’},
{’?’,’2’,’0’,’2’,’?’},
{’?’,’2’,’2’,’2’,’?’},
{’?’,’?’,’?’,’?’,’?’}};
*/
/*
Board 5
char Original[ROWS][COLS]= {{’?’,’?’,’?’,’?’,’?’,’?’},

110

{’?’,’2’,’2’,’2’,’2’,’?’},
{’?’,’2’,’0’,’0’,’2’,’?’},
{’?’,’2’,’0’,’0’,’2’,’?’},
{’?’,’2’,’2’,’2’,’2’,’?’},
{’?’,’?’,’?’,’?’,’?’,’?’}};
*/
/*
Board 6
char Original[ROWS][COLS]= {{’2’,’3’,’B’,’2’,’2’,’B’,’2’,’1’},
{’B’,’B’,’5’,’?’,’?’,’4’,’B’,’2’},
{’?’,’?’,’B’,’B’,’B’,’?’,’4’,’B’},
{’B’,’6’,’?’,’6’,’B’,’B’,’?’,’2’},
{’2’,’B’,’B’,’?’,’5’,’5’,’?’,’2’},
{’1’,’3’,’4’,’?’,’B’,’B’,’4’,’B’},
{’0’,’1’,’B’,’4’,’?’,’?’,’B’,’3’},
{’0’,’1’,’2’,’B’,’2’,’3’,’B’,’2’}};
*/
cout<<”Original Grid”<<endl;
print array(Original);
cout<<endl;
// Call get consistent to find all consistent configurations
int number of configs=0;
//ensure consistency of original grid
char consistent=consistency(Original);
if (consistent==’Y’)
bfs (Original, number of configs);
cout<<number of configs<<” consistent configuration(s)”<<endl<<endl;
return 0;
}
/*
Board 1 Sample Run
Original Grid
??
??
1
11
1B
2
00
00
3
B2

111

2B
4
B1
11
5
2B
2B
6
1B
11
7
22
BB
8
11
B1
9
BB
3B
10
BB
22
11
B3
BB
12
B2
B2
13
3B
BB
14
2B
B2
15
BB
BB
16
BB
B3
16 consistent configuration(s)
*/

112

/*
Board 4 Sample run
Original Grid
?????
?222?
?202?
?222?
?????
1
2B2B2
B222B
22022
B222B
2B2B2
1 consistent configuration(s)
*/

113

9.3 Appendix B

Set of tables listing the 625 possibilities for length four substrings, their error types and subtypes.
Order is 0,1,2,B,?.

9.3.1 0XXX

00XX
000X e sub-e

0000 - - -
0001 - - -

- 0002 2e 02XX
- 000B Be 12XX

000? - - -

001X e sub-e
- 0010 1e 010X
- 0011 1e 011X
- 0012 2e 12XX

001B - - -
001? - - -

002X e sub-e
- 0020 2e 02XX
- 0021 2e 12XX
- 0022 2e 22XX
- 002B 2e 02XX
- 002? 2e 02XX

00BX e sub-e
- 00B0 Be 0BXX
- 00B1 Be 0BXX
- 00B2 Be 0BXX
- 00BB Be 0BXX
- 00B? Be 0BXX

00?X e sub-e
00?0 - - -
00?1 - - -

- 00?2 2e 0?2X
00?B - - -
00?? - - -

01XX
010X e sub-e

- 0100 1e 010X
- 0101 1e 010X
- 0102 1e 010X
- 010B 1e 010X
- 010? 1e 010X

011X e sub-e
- 0110 1e 011X
- 0111 1e 011X
- 0112 1e 011X
- 011B 1e 011X
- 011? 1e 011X

012X e sub-e
- 0120 2e 12XX
- 0121 2e 12XX
- 0122 2e 12XX
- 012B 2e 12XX
- 012? 2e 12XX

01BX e sub-e
- 01B0 Be 0BXX

01B1 - - -
01B2 - - -
01BB - - -
01B? - - -

114

01?X e sub-e
- 01?0 1e 01?0

01?1 - - -
01?2 - - -
01?B - - -
01?? - - -

02XX
020X e sub-e

- 0200 2e 02XX
- 0201 2e 02XX
- 0202 2e 02XX
- 020B 2e 02XX
- 020? 2e 02XX

021X e sub-e
- 0210 2e 02XX
- 0211 2e 02XX
- 0212 2e 02XX
- 021B 2e 02XX
- 021? 2e 02XX

022X e sub-e
- 0220 2e 02XX
- 0221 2e 02XX
- 0222 2e 02XX
- 022B 2e 02XX
- 022? 2e 02XX

02BX e sub-e
- 02B0 2e 02XX
- 02B1 2e 02XX
- 02B2 2e 02XX
- 02BB 2e 02XX
- 02B? 2e 02XX

02?X e sub-e
- 02?0 2e 02XX
- 02?1 2e 02XX
- 02?2 2e 02XX
- 02?B 2e 02XX
- 02?? 2e 02XX

0BXX
0B0X e sub-e

- 0B00 Be 0BXX
- 0B01 Be 0BXX
- 0B02 Be 0BXX
- 0B0B Be 0BXX
- 0B0? Be 0BXX

0B1X e sub-e
- 0B10 Be 0BXX
- 0B11 Be 0BXX
- 0B12 Be 0BXX
- 0B1B Be 0BXX
- 0B1? Be 0BXX

0B2X e sub-e
- 0B20 Be 0BXX
- 0B21 Be 0BXX
- 0B22 Be 0BXX
- 0B2B Be 0BXX
- 0B2? Be 0BXX

0BBX e sub-e
- 0BB0 Be 0BXX
- 0BB1 Be 0BXX
- 0BB2 Be 0BXX
- 0BBB Be 0BXX
- 0BB? Be 0BXX

115

0B?X e sub-e
- 0B?0 Be 0BXX
- 0B?1 Be 0BXX
- 0B?2 Be 0BXX
- 0B?B Be 0BXX
- 0B?? Be 0BXX

0?XX
0?0X e sub-e

0?00 - - -
0?01 - - -

- 0?02 2e 02XX
- 0?0B Be 0BXX

0?0? - - -

0?1X e sub-e
- 0?10 1e 01?0
- 0?11 1e 0?11
- 0?12 2e 12XX

0?1B - - -
0?1? - - -

0?2X e sub-e
- 0?20 2e 0?2X
- 0?21 2e 0?2X
- 0?22 2e 0?2X
- 0?2B 2e 0?2X
- 0?2? 2e 0?2X

0?BX e sub-e
- 0?B0 Be 0BXX

0?B1 - - -
0?B2 - - -
0?BB - - -
0?B? - - -

0??X e sub-e
0??0 - - -
0??1 - - -
0??2 - - -
0??B - - -
0??? - - -

9.3.2 1XXX

10XX
100X e sub-e

1000 - - -
1001 - - -

- 1002 2e 02XX
- 100B Be 0BXX

100? - - -

101X e sub-e
- 1010 1e 010X
- 1011 1e 011X
- 1012 2e 12XX

101B - - -
101? - - -

102X e sub-e
- 1020 2e 02XX
- 1021 2e 02XX
- 1022 2e 02XX
- 102B - 02XX
- 102? - 02XX

10BX e sub-e
- 10B0 Be 0BXX
- 10B1 Be 0BXX
- 10B2 Be 0BXX
- 10BB Be 0BXX
- 10B? Be 0BXX

116

10?X e sub-e
10?0 - - -
10?1 - - -

- 10?2 2e 0?2x
10?B - - -
10?? - - -

11XX
110X e sub-e

- 1100 1e 011X
- 1101 1e 011X
- 1102 1e 011X
- 110B 1e 011X
- 110? 1e 011X

111X e sub-e
- 1110 1e 111X
- 1111 1e 111X
- 1112 1e 111X
- 111B 1e 111X
- 111? 1e 111X

112X e sub-e
- 1120 2e 12XX
- 1121 2e 12XX
- 1122 2e 12XX
- 112B 2e 12XX
- 112? 2e 12XX

11BX e sub-e
- 11B0 Be 0BXX

11B1 - - -
11B2 - - -
11BB - - -
11B? - - -

11?X e sub-e
- 11?0 1e 0?11

11?1 - - -
11?2 - - -
11?B - - -
11?? - - -

12XX
120X e sub-e

- 1200 2e 12XX
- 1201 2e 12XX
- 1202 2e 12XX
- 120B 2e 12XX
- 120? 2e 12XX

121X e sub-e
- 1210 2e 12XX
- 1211 2e 12XX
- 1212 2e 12XX
- 121B 2e 12XX
- 121? 2e 12XX

122X e sub-e
- 1220 2e 12XX
- 1221 2e 12XX
- 1222 2e 12XX
- 122B 2e 12XX
- 122? 2e 12XX

12BX e sub-e
- 12B0 2e 12XX
- 12B1 2e 12XX
- 12B2 2e 12XX
- 12BB 2e 12XX
- 12B? 2e 12XX

117

12?X e sub-e
- 12?0 2e 12XX
- 12?1 2e 12XX
- 12?2 2e 12XX
- 12?B 2e 12XX
- 12?? 2e 12XX

1BXX
1B0X e sub-e

- 1B00 Be 0BXX
- 1B01 Be 0BXX
- 1B02 Be 0BXX
- 1B0B Be 0BXX
- 1B0? Be 0BXX

1B1X e sub-e
1B10 - - -
1B11 - - -

- 1B12 2e 12XX
- 1B1B Be B1BX

1B1? - - -
1B2X e sub-e

- 1B20 2e 02XX
- 1B21 2e 12XX
- 1B22 2e 22XX

1B2B - - -
1B2? - - -

1BBX e sub-e
- 1BB0 Be 0BXX

1BB1 - - -
1BB2 - - -
1BBB - - -
1BB? - - -

1B?X e sub-e
1B?0 - - -
1B?1 - - -
1B?2 - - -
1B?B - - -
1B?? - - -

1?XX
1?0X e sub-e

1?00 - - -
1?01 - - -

- 1?02 2e 02XX
- 1?0B Be 0BXX

1?0? - - -

1?1X e sub-e
1?10 - - -
1?11 - - -

- 1?12 2e 12XX
1?1B - - -
1?1? - - -

1?2X e sub-e
- 1?20 2e 02XX
- 1?21 2e 12XX
- 1?22 2e 22XX

1?2B - - -
1?2? - - -

1?BX e sub-e
- 1?B0 Be 0BXX

1?B1 - - -
1?B2 - - -
1?BB - - -
1?B? - - -

118

1??X e sub-e
1??0 - - -
1??1 - - -
1??2 - - -
1??B - - -
1??? - - -

9.3.3 2XXX

20XX
200X e sub-e

- 2000 2e 02XX
- 2001 2e 02XX
- 2002 2e 02XX
- 200B 2e 02XX
- 200? 2e 02XX

201X e sub-e
- 2010 2e 02XX
- 2011 2e 02XX
- 2012 2e 02XX
- 201B 2e 02XX
- 201? 2e 02XX

202X e sub-e
- 2020 2e 02XX
- 2021 2e 02XX
- 2022 2e 02XX
- 202B 2e 02XX
- 202? 2e 02XX

20BX e sub-e
- 20B0 2e 02XX
- 20B1 2e 02XX
- 20B2 2e 02XX
- 20BB 2e 02XX
- 20B? 2e 02XX

20?X e sub-e
- 20?0 2e 02XX
- 20?1 2e 02XX
- 20?2 2e 02XX
- 20?B 2e 02XX
- 20?? 2e 02XX

21XX
210X e sub-e

- 2100 2e 12XX
- 2101 2e 12XX
- 2102 2e 12XX
- 210B 2e 12XX
- 210? 2e 12XX

211X e sub-e
- 2110 2e 12XX
- 2111 2e 12XX
- 2112 2e 12XX
- 211B 2e 12XX
- 211? 2e 12XX

212X e sub-e
- 2120 2e 12XX
- 2121 2e 12XX
- 2122 2e 12XX
- 212B 2e 12XX
- 212? 2e 12XX

21BX e sub-e
- 21B0 2e 12XX
- 21B1 2e 12XX
- 21B2 2e 12XX
- 21BB 2e 12XX
- 21B? 2e 12XX

119

21?X e sub-e
- 21?0 2e 12XX
- 21?1 2e 12XX
- 21?2 2e 12XX
- 21?B 2e 12XX
- 21?? 2e 12XX

22XX
220X e sub-e

- 2200 2e 22XX
- 2201 2e 22XX
- 2202 2e 22XX
- 220B 2e 22XX
- 220? 2e 22XX

221X e sub-e
- 2210 2e 22XX
- 2211 2e 22XX
- 2212 2e 22XX
- 221B 2e 22XX
- 221? 2e 22XX

222X e sub-e
- 2220 2e 22XX
- 2221 2e 22XX
- 2222 2e 22XX
- 222B 2e 22XX
- 222? 2e 22XX

22BX e sub-e
- 22B0 2e 22XX
- 22B1 2e 22XX
- 22B2 2e 22XX
- 22BB 2e 22XX
- 22B? 2e 22XX

22?X e sub-e
- 22?0 2e 22XX
- 22?1 2e 22XX
- 22?2 2e 22XX
- 22?B 2e 22XX
- 22?? 2e 22XX

2BXX
2B0X e sub-e

- 2B00 Be 0BXX
- 2B01 Be 0BXX
- 2B02 Be 0BXX
- 2B0B Be 0BXX
- 2B0? Be 0BXX

2B1X e sub-e
2B10 - - -
2B11 - - -

- 2B12 2e 12XX
- 2B1B Be B1BX

2B1? - - -
2B2X e sub-e

- 2B20 2e 02XX
- 2B21 2e 12XX
- 2B22 2e 22XX

2B2B - - -
2B2? - - -

2BBX e sub-e
- 2BB0 Be 0BXX

2BB1 - - -
2BB2 - - -
2BBB - - -
2BB? - - -

120

2B?X e sub-e
2B?0 - - -
2B?1 - - -
2B?2 - - -
2B?B - - -
2B?? - - -

2?XX
2?0X e sub-e

- 2?00 2e 0?2X
- 2?01 2e 0?2X
- 2?02 2e 0?2X
- 2?0B 2e 0?2X
- 2?0? 2e 0?2X

2?1X e sub-e
2?10 - - -
2?11 - - -

- 2?12 2e 12XX
- 2?1B Be B1?2

2?1? - - -
2?2X e sub-e

- 2?20 2e 02XX
- 2?21 2e 12XX
- 2?22 2e 22XX

2?2B - - -
2?2? - - -

2?BX e sub-e
- 2?B0 Be 0BXX

2?B1 - - -
2?B2 - - -
2?BB - - -
2?B? - - -

2??X e sub-e
2??0 - - -
2??1 - - -
2??2 - - -
2??B - - -
2??? - - -

9.3.4 BXXX

B0XX
B00X e sub-e

- B000 Be 0BXX
- B001 Be 0BXX
- B002 Be 0BXX
- B00B Be 0BXX
- B00? Be 0BXX

B01X e sub-e
- B010 Be 0BXX
- B011 Be 0BXX
- B012 Be 0BXX
- B01B Be 0BXX
- B01? Be 0BXX

B02X e sub-e
- B020 Be 0BXX
- B021 Be 0BXX
- B022 Be 0BXX
- B02B Be 0BXX
- B02? Be 0BXX

B0BX e sub-e
- B0B0 Be 0BXX
- B0B1 Be 0BXX
- B0B2 Be 0BXX
- B0BB Be 0BXX
- B0B? Be 0BXX

121

B0?X e sub-e
- B0?0 Be 0BXX
- B0?1 Be 0BXX
- B0?2 Be 0BXX
- B0?B Be 0BXX
- B0?? Be 0BXX

B1XX
B10X e sub-e

B100 - - -
B101 - - -

- B102 2e 02XX
- B10B Be 0BXX

B10? - - -

B11X e sub-e
- B110 1e 011X
- B111 1e 111X
- B112 2e 12XX

B11B - - -
B11? - - -

B12X e sub-e
- B120 2e 12XX
- B121 2e 12XX
- B12 2e 12XX
- B12 2e 12XX
- B12 2e 12XX

B1BX e sub-e
- B1B0 Be B1BX
- B1B1 Be B1BX
- B1B2 Be B1BX
- B1BB Be B1BX
- B1B? Be B1BX

B1?X e sub-e
B1?0 - - -
B1?1 - - -

- B1?2 Be B1?2
B1?B - - -
B1?? - - -

B2XX
B20X e sub-e

- B200 2e 02XX
- B201 2e 02XX
- B202 2e 02XX
- B20B 2e 02XX
- B20? 2e 02XX

B21X e sub-e
- B210 2e 12XX
- B211 2e 12XX
- B212 2e 12XX
- B21B 2e 12XX
- B21? 2e 12XX

B22X e sub-e
- B22 2e 22XX
- B22 2e 22XX
- B22 2e 22XX
- B22 2e 22XX
- B22 2e 22XX

B2BX e sub-e
- B2B0 Be 0BXX

B2B1 - - -
B2B2 - - -
B2BB - - -
B2B? - - -

122

B2?X e sub-e
- B2?0 2e 0?2X

B2? - - -
B2? - - -
B2? - - -
B2? - - -

BBXX
BB0X e sub-e

- BB00 Be 0BXX
- BB01 Be 0BXX
- BB02 Be 0BXX
- BB0B Be 0BXX
- BB0? Be 0BXX

BB1X e sub-e
BB10 - - -
BB11 - - -

- BB12 2e 12XX
- BB1B Be B1BX

BB1? - - -
BB2X e sub-e

- BB20 2e 02XX
- BB21 2e 12XX
- BB22 2e 22XX

BB2B - - -
BB2? - - -

BBBX e sub-e
- BBB0 Be 0BXX

BBB1 - - -
BBB2 - - -
BBBB - - -
BBB? - - -

BB?X e sub-e
BB?0 - - -
BB?1 - - -
BB?2 - - -
BB?B - - -
BB?? - - -

B?XX
B?0X e sub-e

B?00 - - -
B?01 - - -

- B?02 2e 02XX
- B?0B Be 0BXX

B?0? - - -

B?1X e sub-e
B?10 - - -
B?11 - - -

- B?12 2e 12XX
B?1B - - -
B?1? - - -

B?2X e sub-e
- B?20 2e 02XX
- B?21 2e 12XX
- B?22 2e 22XX

B?2B - - -
B?2? - - -

B?BX e sub-e
- B?B0 Be 0BXX

B?B1 - - -
B?B2 - - -
B?BB - - -
B?B? - - -

123

B??X e sub-e
B??0 - - -
B??1 - - -
B??2 - - -
B??B - - -
B??? - - -

9.3.5 ?XXX

?0XX
?00X e sub-e

?00 - - -
?00 - - -
- ?002 2e 02XX
- ?00B Be 0BXX

?00 - - -

?01X e sub-e
- ?010 1e 010X

?011 - - -
- ?012 2e 12XX

?01B - - -
?01? - - -

?02X e sub-e
- ?020 2e 02XX
- ?021 2e 02XX
- ?022 2e 02XX
- ?02B 2e 02XX
- ?02? 2e 02XX

?0BX e sub-e
- ?0B0 Be 0BXX
- ?0B1 Be 0BXX
- ?0B2 Be 0BXX
- ?0BB Be 0BXX
- ?0B? Be 0BXX

?0?X e sub-e
?0?0 - - -
?0?1 - - -

- ?0?2 2e 0?2X
?0?B - - -
?0?? - - -

?1XX
?10X e sub-e

?100 - - -
?101 - - -

- ?102 2e 02XX
- ?10B Be 0BXX

?10? - - -
?11X e sub-e

- ?110 1e 011X
- ?111 1e 111X
- ?112 2e 12XX

?11B - - -
?11? - - -

?12X e sub-e
- ?120 2e 12XX
- ?121 2e 12XX
- ?122 2e 12XX
- ?12B 2e 12XX
- ?12? 2e 12XX

124

?1BX e sub-e
- ?1B0 Be 0BXX

?1B1 - - -
?1B2 - - -
?1BB - - -
?1B? - - -

?1?X e sub-e
?1?0 - - -
?1?1 - - -
?1?2 - - -
?1?B - - -
?1?? - - -

?2XX
?20X e sub-e

- ?200 2e 02XX
- ?201 2e 02XX
- ?202 2e 02XX
- ?20B 2e 02XX
- ?20? 2e 02XX

?21X e sub-e
- ?210 2e 12XX
- ?211 2e 12XX
- ?212 2e 12XX
- ?21B 2e 12XX
- ?21? 2e 12XX

?22X e sub-e
- ?220 2e 22XX
- ?221 2e 22XX
- ?222 2e 22XX
- ?22B 2e 22XX
- ?22? 2e 22XX

?2BX e sub-e
- ?2B0 Be 0BXX

?2B1 - - -
?2B2 - - -
?2BB - - -
?2B? - - -

?2?X e sub-e
- ?2?0 2e 0?2X

?2?1 - - -
?2?2 - - -
?2?B - - -
?2?? - - -

?BXX
?B0X e sub-e

- ?B00 Be 0BXX
- ?B01 Be 0BXX
- ?B02 Be 0BXX
- ?B0B Be 0BXX
- ?B0? Be 0BXX

?B1X e sub-e
?B10 - - -
?B11 - - -

- ?B12 2e 12XX
- ?B1B Be B1BX

?B1 - - -
?B2X e sub-e

- ?B20 2e 02XX
- ?B21 2e 12XX
- ?B22 2e 22XX

?B2B - - -
?B2? - - -

?BBX e sub-e
- ?BB0 Be 0BXX

?BB1 - - -
?BB2 - - -
?BBB - - -
?BB? - - -

125

?B?X e sub-e
?B?0 - - -
?B?1 - - -
?B?2 - - -
?B?B - - -
?B?? - - -

??XX
??0X e sub-e

??00 - - -
??01 - - -

- ??02 2e 02XX
- ??0B Be 0BXX

??0? - - -

??1X e sub-e
??10 - - -
??11 - - -

- ??12 2e 12XX
??1B - - -
??1? - - -

??2X e sub-e
- ??20 2e 02XX
- ??21 2e 12XX
- ??22 2e 22XX

??2B - - -
??2? - - -

??BX e sub-e
- ??B0 Be 0BXX

??B1 - - -
??B2 - - -
??BB - - -
??B? - - -

???X e sub-e
???0 - - -
???1 - - -
???2 - - -
???B - - -
???? - - -

126

