Estimating Binomial Index N with Application to Bird and Bat Mortality at Wind and Solar Power Facilities

Lisa Madsen 1 Dan Dalthorp 2 Manuela Huso 2,1

1 Oregon State University

2 United States Geological Survey

TIES 2018
Bats and Wind Farms
Outline

Models and Estimators
 Known detection probability
 Unknown detection probability

Simulation Study

Wind Farm Example

R Package

Summary
Count Model

Notation and assumptions:

- N carcasses total (unknown)
Count Model

Notation and assumptions:

- N carcasses total (unknown)
- x carcasses found
Count Model

Notation and assumptions:

- N carcasses total (unknown)
- x carcasses found
- Each carcass found independently with detection probability p
Count Model

Notation and assumptions:

- \(N \) carcasses total (unknown)
- \(x \) carcasses found
- Each carcass found independently with detection probability \(p \)

Then \(x \) is a realization of \(X \sim \text{Binomial}(N, p) \).
Count Model

Notation and assumptions:

- N carcasses total (unknown)
- x carcasses found
- Each carcass found independently with detection probability p

Then x is a realization of $X \sim \text{Binomial}(N, p)$.
Outline

Models and Estimators

Known detection probability

Unknown detection probability

Simulation Study

Wind Farm Example

R Package

Summary
Unbiased Estimator

If p is known, then $E(X/p) = N$.
Unbiased Estimator

If p is known, then $E(X/p) = N$.

If X is large, $X/p \overset{\text{approx}}{\sim} \text{Normal}(N, N(1 - p)/p)$.
Unbiased Estimator

If p is known, then $E(X/p) = N$.

If X is large, $X/p \overset{\text{approx}}{\sim} \text{Normal}(N, N(1 - p)/p)$.

Rather than relying on asymptotic normality, we employ a **parametric bootstrap** to simulate the sampling distribution of the estimator.
Unbiased Estimator

If \(p \) is known, then \(E(X/p) = N \).

If \(X \) is large, \(X/p \overset{\text{approx}}{\sim} \text{Normal}(N, N(1 - p)/p) \).

Rather than relying on asymptotic normality, we employ a **parametric bootstrap** to simulate the sampling distribution of the estimator.

- Flexibility in inference
Known detection probability

Unbiased Estimator

If p is known, then $E(X/p) = N$.

If X is large, $X/p \approx \text{Normal}(N, N(1-p)/p)$.

Rather than relying on asymptotic normality, we employ a **parametric bootstrap** to simulate the sampling distribution of the estimator.

- Flexibility in inference
- Provides framework to augment model
Parametric bootstrap vs. non-parametric bootstrap

Non-parametric bootstrap draws samples from observed data (with replacement).
Parametric bootstrap vs. non-parametric bootstrap

Non-parametric bootstrap draws samples from observed data (with replacement).

Parametric bootstrap

- Assumes data drawn from a given distribution, e.g. binomial
Parametric bootstrap vs. non-parametric bootstrap

Non-parametric bootstrap draws samples from observed data (with replacement).

Parametric bootstrap

- Assumes data drawn from a given distribution, e.g. binomial
- Uses data to estimate parameters
Parametric bootstrap vs. non-parametric bootstrap

Non-parametric bootstrap draws samples from observed data (with replacement).

Parametric bootstrap

- Assumes data drawn from a given distribution, e.g. binomial
- Uses data to estimate parameters
- Draws samples from assumed distribution with parameters equal to estimates
Parametric Bootstrap of X

Given data $X = x$, simulate sampling distribution of X:
Parametric Bootstrap of X

Given data $X = x$, simulate sampling distribution of X:

1. Point estimate of N is x/p.
Parametric Bootstrap of X

Given data $X = x$, simulate sampling distribution of X:

1. Point estimate of N is x/p.
2. Simulate $\tilde{X} \sim \text{Binomial}(x/p, p)$.
Parametric Bootstrap of X

Given data $X = x$, simulate sampling distribution of X:

1. Point estimate of N is x/p.
2. Simulate $\tilde{X} \sim \text{Binomial}(x/p, p)$.

Since x/p is not necessarily integer-valued, simulate from the continuous binomial (CB) distribution [Ilienko, 2013, Dalthorp, 2018].
Known detection probability

Binomial Distribution

\[X \sim B(N=5, p=0.4) \]
Continuous Binomial Distribution

$X \sim B(N=5, p=0.4)$

$X \sim CB(N=5, p=0.4)$
Continuous Binomial Distribution

\[X \sim B(N=5, p=0.4) \]

\[X \sim CB(N=5, p=0.4) \]

\[X \sim CB(N=6.8, p=0.4) \]
Continuous Binomial Distribution

If \(X \sim CB(N, p) \), then
- Parameter space: \(N \geq 0 \) and \(0 \leq p \leq 1 \)
Continuous Binomial Distribution

If \(X \sim CB(N, p) \), then

- Parameter space: \(N \geq 0 \) and \(0 \leq p \leq 1 \)
- Support: \(0 \leq X \leq N + 1 \)
Continuous Binomial Distribution

If $X \sim CB(N, p)$, then

- Parameter space: $N \geq 0$ and $0 \leq p \leq 1$
- Support: $0 \leq X \leq N + 1$
- $E(X) \equiv \mu_{CB}(N, p) \approx Np + 1/2$
Parametric Bootstrap of X/p

1. Estimate N as x/p.
Parametric Bootstrap of X/p

1. Estimate N as x/p.
2. Simulate $\tilde{X} \sim CB(x/p, p)$
Parametric Bootstrap of X/p

1. Estimate N as x/p.
2. Simulate $\tilde{X} \sim \text{CB}(x/p, p) - \mu_{CB}(x/p, p) + x$.

Known detection probability
Parametric Bootstrap of X/p

1. Estimate N as x/p.
2. Simulate $\tilde{X} \sim \text{CB}(x/p, p) - \mu_{\text{CB}}(x/p, p) + x$.
3. Iterate 2 to obtain
 $$\tilde{X}^{(1)}, \ldots, \tilde{X}^{(S)},$$
 for, say, $S = 1000$.
Known detection probability

Parametric Bootstrap of X/p

1. Estimate N as x/p.
2. Simulate $\tilde{X} \sim \text{CB}(x/p, p) - \mu_{\text{CB}}(x/p, p) + x$.
3. Iterate 2 to obtain $\tilde{X}^{(1)}, \ldots, \tilde{X}^{(S)}$, for, say, $S = 1000$.
4. Form $\tilde{N}^{(s)} \equiv \tilde{X}^{(s)}/p$ to obtain $\tilde{N}^{(1)}, \ldots, \tilde{N}^{(S)}$.

Parametric Bootstrap

Histogram of X/p

Histogram of \tilde{N}
Outline

Models and Estimators

Known detection probability

Unknown detection probability

Simulation Study

Wind Farm Example

R Package

Summary
\[\hat{N} = \frac{X}{\hat{p}} \] must reflect uncertainty about \(\hat{p} \).
Assume we have an independent study to estimate detection probability:

- M carcasses (known)
Modeling Detection Probability

Assume we have an independent study to estimate detection probability:

- M carcasses (known)
- y of these found
Modeling Detection Probability

Assume we have an independent study to estimate detection probability:

- M carcasses (known)
- y of these found
- Model $\logit(p_i) = \beta_0 + \beta_1 W_{i1} + \ldots + \beta_q W_{iq}$,
Modeling Detection Probability

Assume we have an independent study to estimate detection probability:

- M carcasses (known)
- y of these found

Model $\logit(p_i) = \beta_0 + \beta_1 W_{i1} + \ldots + \beta_q W_{iq}$,

- p_i is the probability of detecting the ith carcass
Modeling Detection Probability

Assume we have an independent study to estimate detection probability:

- M carcasses (known)
- y of these found
- Model $\logit(p_i) = \beta_0 + \beta_1 W_{i1} + \ldots + \beta_q W_{iq}$,
 - p_i is the probability of detecting the ith carcass
 - $W_i = (W_{i1}, \ldots, W_{iq})$ is a vector of covariates associated with the ith carcass (e.g. species, ground cover)
Unknown detection probability

Estimating p_i

If $\beta = (\beta_0, \ldots, \beta_q)'$,

- Obtain $\hat{\beta}$ by logistic regression
Estimating p_i

If $\beta = (\beta_0, \ldots, \beta_q)'$,

- Obtain $\hat{\beta}$ by logistic regression
- $\hat{\beta}$ is asymptotically Normal($\beta, I^{-1}(\beta)$)
Unknown detection probability

Estimating p_i

If $\beta = (\beta_0, \ldots, \beta_q)'$, then:

- Obtain $\hat{\beta}$ by logistic regression
- $\hat{\beta}$ is asymptotically $\text{Normal}(\beta, I^{-1}(\beta))$
- $\hat{p}_i = \text{antilogit}(W_i\hat{\beta}) = 1/(1 + e^{-W_i\hat{\beta}})$
Estimating p_i

If $\bm{\beta} = (\beta_0, \ldots, \beta_q)'$,

- Obtain $\hat{\bm{\beta}}$ by logistic regression
- $\hat{\bm{\beta}}$ is asymptotically Normal$(\bm{\beta}, I^{-1}(\bm{\beta}))$
- $\hat{p}_i = \text{antilogit}(\bm{W}_i\hat{\bm{\beta}}) = 1/(1 + e^{-\bm{W}_i\hat{\bm{\beta}}})$

In the following, we suppress the subscript i and suppose an intercept-only model.
Parametric Bootstrap of \hat{p}

For $s = 1, \ldots, S$,

1. Simulate $\hat{\beta}(s) \sim \text{Normal}(\hat{\beta}, I^{-1}(\hat{\beta}))$.
Parametric Bootstrap of \hat{p}

For $s = 1, \ldots, S$,

1. Simulate $\hat{\beta}^{(s)} \sim \text{Normal}(\hat{\beta}, I^{-1}(\hat{\beta}))$.
2. Calculate

$$\hat{p}^{(s)} = \frac{1}{1 + e^{-\hat{\beta}^{(s)}}}.$$
Parametric Bootstrap of \hat{p}

For $s = 1, \ldots, S$,

1. Simulate $\hat{\beta}^{(s)} \sim \text{Normal}(\hat{\beta}, I^{-1}(\hat{\beta}))$.
2. Calculate

$$\hat{p}^{(s)} = \frac{1}{1 + e^{-\hat{\beta}^{(s)}}}.$$

Simulated sampling distribution: $\hat{p}^{(1)}, \ldots, \hat{p}^{(S)}$
Parametric Bootstrap of $\hat{N} = X/\hat{p}$

For $s = 1, \ldots, S$,

1. Simulate $\hat{\beta}^{(s)} \sim \text{Normal}(\hat{\beta}, I^{-1}(\hat{\beta}))$.
2. Calculate

$$\hat{p}^{(s)} = \frac{1}{1 + e^{-\hat{\beta}^{(s)}}}.$$
Parametric Bootstrap of $\hat{N} = X/\hat{p}$

For $s = 1, \ldots, S$,

1. Simulate $\hat{\beta}^{(s)} \sim \text{Normal}(\hat{\beta}, I^{-1}(\hat{\beta}))$.
2. Calculate $\hat{p}^{(s)} = \frac{1}{1 + e^{-\hat{\beta}^{(s)}}}$.
3. Simulate $\tilde{X}^{(s)} \sim \text{CB}(x/\hat{p}^{(s)}, \hat{p}^{(s)}) - \mu_{\text{CB}}(x/\hat{p}^{(s)}, \hat{p}^{(s)}) + x$.
Unknown detection probability

Parametric Bootstrap of \(\hat{N} = X/\hat{p} \)

For \(s = 1, \ldots, S \),

1. Simulate \(\hat{\beta}^{(s)} \sim \text{Normal}(\hat{\beta}, I^{-1}(\hat{\beta})) \).
2. Calculate

\[
\hat{p}^{(s)} = \frac{1}{1 + e^{-\hat{\beta}^{(s)}}}.
\]

3. Simulate

\[
\tilde{X}^{(s)} \sim \text{CB}(x/\hat{p}^{(s)}, \hat{p}^{(s)}) - \mu_{CB}(x/\hat{p}^{(s)}, \hat{p}^{(s)}) + x.
\]
Parametric Bootstrap of $\hat{N} = X/\hat{p}$

For $s = 1, \ldots, S$,

1. Simulate $\hat{\beta}^{(s)} \sim \text{Normal}(\hat{\beta}, I^{-1}(\hat{\beta}))$.

2. Calculate

 $$\hat{p}^{(s)} = \frac{1}{1 + e^{-\hat{\beta}^{(s)}}}.$$

3. Simulate

 $$\tilde{X}^{(s)} \sim \text{CB}(x/\hat{p}^{(s)}, \hat{p}^{(s)}) - \mu_{CB}(x/\hat{p}^{(s)}, \hat{p}^{(s)}) + x.$$

4. Calculate $\tilde{N}^{(s)} \equiv \tilde{X}^{(s)}/\hat{p}^{(s)}$.

Bootstrapped sampling distribution of \hat{N} : $\tilde{N}^{(1)}, \ldots, \tilde{N}^{(S)}$.

Unknown detection probability
Unknown detection probability

Parametric Bootstrap of $\hat{N} = X/\hat{p}$

For $s = 1, \ldots, S$,

1. Simulate $\hat{\beta}^{(s)} \sim \text{Normal}(\hat{\beta}, I^{-1}(\hat{\beta}))$.
2. Calculate

 $$\hat{p}^{(s)} = \frac{1}{1 + e^{-\hat{\beta}^{(s)}}}.$$

3. Simulate

 $$\tilde{X}^{(s)} \sim \text{CB}(x/\hat{p}^{(s)}, \hat{p}^{(s)}) - \mu_{\text{CB}}(x/\hat{p}^{(s)}, \hat{p}^{(s)}) + x.$$

4. Calculate $\tilde{N}^{(s)} \equiv \tilde{X}^{(s)}/\hat{p}^{(s)}$.

Bootstrapped sampling distribution of \hat{N}: $\tilde{N}^{(1)}, \ldots, \tilde{N}^{(S)}$.
Confidence Intervals

- \(y = 49 \) of \(M = 100 \) test carcasses found
- \(x = 56 \) search carcasses found
- \(S = 1000 \) realizations of \(\tilde{N} \)
Unknown detection probability

Confidence Intervals

- $y = 49$ of $M = 100$ test carcasses found
- $x = 56$ search carcasses found
- $S = 1000$ realizations of \tilde{N}
Confidence Intervals

- \(y = 49 \) of \(M = 100 \) test carcasses found
- \(x = 56 \) search carcasses found
- \(S = 1000 \) realizations of \(\tilde{N} \)

90% confidence interval for \(N \):

\((90.4, 142.7) \)
Simulation Scenarios

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>True binomial index</td>
<td>$N = 10, 100, 1000$</td>
</tr>
<tr>
<td>Detection probability</td>
<td>$p = 0.2, 0.5, 0.85$</td>
</tr>
<tr>
<td>Field trial index</td>
<td>$M = 30, 100, 1000$</td>
</tr>
</tbody>
</table>
Simulation Scenarios

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>True binomial index</td>
<td>$N = 10, 100, 1000$</td>
</tr>
<tr>
<td>Detection probability</td>
<td>$p = 0.2, 0.5, 0.85$</td>
</tr>
<tr>
<td>Field trial index</td>
<td>$M = 30, 100, 1000$</td>
</tr>
<tr>
<td>Confidence levels</td>
<td>0.99, 0.95, 0.90, 0.80, 0.50</td>
</tr>
</tbody>
</table>
Boxplots of Medians

$p = 0.2$

$p = 0.5$

$p = 0.85$
Confidence Coverage

N = 10 N = 100 N = 1000

α = 0.01 α = 0.05 α = 0.1 α = 0.2 α = 0.5

CI coverage Target
Confidence Coverage

![Confidence Coverage graph](image)

Problems when $P(X = 0)$ is large
Data

- Western EcoSystems Technology, Inc. study [Good et al., 2012]
Data

- Western EcoSystems Technology, Inc. study [Good et al., 2012]

- $x = 321$ carcasses found on roads and pads of 168 wind turbines at Fowler Ridge Wind Farm, Indiana, USA, fall, 2011
Data

- Western EcoSystems Technology, Inc. study [Good et al., 2012]
- \(x = 321 \) carcasses found on roads and pads of 168 wind turbines at Fowler Ridge Wind Farm, Indiana, USA, fall, 2011
Data

- Western EcoSystems Technology, Inc. study [Good et al., 2012]
- \(x = 321 \) carcasses found on roads and pads of 168 wind turbines at Fowler Ridge Wind Farm, Indiana, USA, fall, 2011

- We limit inferential scope to the 168 observed turbines (out of 355).
Field Trials

- $y = 84$ of $M = 104$ carcasses found.
Field Trials

- \(y = 84 \) of \(M = 104 \) carcasses found.
- Intercept-only logistic model: \(\hat{\beta} = 1.44 \) and \(\text{var}(\hat{\beta}) = 0.249 \).
Field Trials

- $y = 84$ of $M = 104$ carcasses found.
- Intercept-only logistic model: $\hat{\beta} = 1.44$ and $\text{var}(\hat{\beta}) = 0.249$.
- Simulate $\hat{\beta}(s) \sim \text{Normal}(1.44, 0.249), s = 1, \ldots, 50,000.$
Field Trials

- \(y = 84 \) of \(M = 104 \) carcasses found.
- Intercept-only logistic model: \(\hat{\beta} = 1.44 \) and \(\text{var}(\hat{\beta}) = 0.249 \).
- Simulate \(\hat{\beta}(s) \sim \text{Normal}(1.44, 0.249) \), \(s = 1, \ldots, 50,000 \).
- Calculate

\[
\hat{p}(s) = \frac{1}{1 + e^{-\hat{\beta}(s)}}.
\]
Field Trials

- $y = 84$ of $M = 104$ carcasses found.
- Intercept-only logistic model: $\hat{\beta} = 1.44$ and $\text{var}(\hat{\beta}) = 0.249$.
- Simulate $\hat{\beta}(s) \sim \text{Normal}(1.44, 0.249)$, $s = 1, \ldots, 50,000$.
- Calculate

$$\hat{p}(s) = \frac{1}{1 + e^{-\hat{\beta}(s)}}.$$

Simulated sampling distribution: $\hat{p}^{(1)}, \ldots, \hat{p}^{(50,000)}$
Varying Density and Incomplete Sampling
Varying Density and Incomplete Sampling
Varying Density and Incomplete Sampling

Distance from turbine (m)	Fatalities (%)	Area (%)
d_k | f_k | a_k
---|---|---
0 - 10 | 0.0473 | 0.9999
10 - 20 | 0.225 | 0.3963
20 - 30 | 0.105 | 0.1405
30 - 40 | 0.129 | 0.0965
40 - 50 | 0.033 | 0.0484
50 - 60 | 0.03 | 0.0205
60 - 70 | 0 | 0.0171
70 - 80 | 0.006 | 0.0147

Proportion of carcasses on roads and pads is approximately $\frac{1}{\sum_{k=1}^{8} f_k/a_k} = 0.1904$. Therefore, $\approx 0.1904 \times p$ carcasses found.
Varying Density and Incomplete Sampling

<table>
<thead>
<tr>
<th>Distance from turbine (m)</th>
<th>Fatalities (%)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 10</td>
<td>0.0473</td>
<td>0.9999</td>
</tr>
<tr>
<td>10 - 20</td>
<td>0.225</td>
<td>0.3963</td>
</tr>
<tr>
<td>20 - 30</td>
<td>0.105</td>
<td>0.1405</td>
</tr>
<tr>
<td>30 - 40</td>
<td>0.129</td>
<td>0.0965</td>
</tr>
<tr>
<td>40 - 50</td>
<td>0.033</td>
<td>0.0484</td>
</tr>
<tr>
<td>50 - 60</td>
<td>0.03</td>
<td>0.0205</td>
</tr>
<tr>
<td>60 - 70</td>
<td>0</td>
<td>0.0171</td>
</tr>
<tr>
<td>70 - 80</td>
<td>0.006</td>
<td>0.0147</td>
</tr>
</tbody>
</table>

Proportion of carcasses on roads and pads is approximately

\[
1 / \sum_{k=1}^{8} \left(f_k / a_k \right) = 0.1904
\]
Varying Density and Incomplete Sampling

<table>
<thead>
<tr>
<th>Distance from turbine (m)</th>
<th>Fatalities (%)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_k</td>
<td>f_k</td>
<td>a_k</td>
</tr>
<tr>
<td>0 - 10</td>
<td>0.0473</td>
<td>0.9999</td>
</tr>
<tr>
<td>10 - 20</td>
<td>0.225</td>
<td>0.3963</td>
</tr>
<tr>
<td>20 - 30</td>
<td>0.105</td>
<td>0.1405</td>
</tr>
<tr>
<td>30 - 40</td>
<td>0.129</td>
<td>0.0965</td>
</tr>
<tr>
<td>40 - 50</td>
<td>0.033</td>
<td>0.0484</td>
</tr>
<tr>
<td>50 - 60</td>
<td>0.03</td>
<td>0.0205</td>
</tr>
<tr>
<td>60 - 70</td>
<td>0</td>
<td>0.0171</td>
</tr>
<tr>
<td>70 - 80</td>
<td>0.006</td>
<td>0.0147</td>
</tr>
</tbody>
</table>

Proportion of carcasses on roads and pads is approximately

\[1/ \sum_{k=1}^{8} (f_k/a_k) = 0.1904 \quad \therefore \approx 0.1904 \times p \text{ carcasses found.} \]
Parametric Bootstrap of \hat{N}

For $x = 321$ and $s = 1, \ldots, 50,000$,

1. Simulate

$$\tilde{X}^{(s)} \sim \text{CB}(x/(0.1904 \cdot \hat{p}^{(s)}), 0.1904 \cdot \hat{p}^{(s)})$$

$$- \mu_{CB}(x/(0.1904 \cdot \hat{p}^{(s)}), 0.1904 \cdot \hat{p}^{(s)}) + x.$$
Parametric Bootstrap of \hat{N}

For $x = 321$ and $s = 1, \ldots, 50,000,$

1. Simulate

\[
\tilde{X}^{(s)} \sim \text{CB}(x/(0.1904 \cdot \hat{p}^{(s)}), 0.1904 \cdot \hat{p}^{(s)}) - \mu_{\text{CB}}(x/(0.1904 \cdot \hat{p}^{(s)}), 0.1904 \cdot \hat{p}^{(s)}) + x.
\]

2. Calculate $\tilde{N}^{(s)} \equiv \tilde{X}^{(s)}/(0.1904 \cdot \hat{p}^{(s)}).$
Parametric Bootstrap of \hat{N}

For $x = 321$ and $s = 1, \ldots, 50,000$,

1. Simulate

\[
\tilde{X}^{(s)} \sim \text{CB}(x/(0.1904 \cdot \hat{p}^{(s)}), 0.1904 \cdot \hat{p}^{(s)}) - \mu_{\text{CB}}(x/(0.1904 \cdot \hat{p}^{(s)}), 0.1904 \cdot \hat{p}^{(s)}) + x.
\]

2. Calculate $\tilde{N}^{(s)} \equiv \tilde{X}^{(s)}/(0.1904 \cdot \hat{p}^{(s)})$.

This analysis supposes the 0.1904 is without error.
Confidence Interval

Histogram

Frequency

N
Confidence Interval

Histogram

95% confidence interval for N: $(1831.7, 2423.6)$
Confidence Interval

Histogram

95% confidence interval for N:

$(1831.7, 2423.6)$
Limitations

- Method collapses if $x = 0$
Limitations

- Method collapses if $x = 0$
 Use Evidence of Absence [Dalthorp et al., 2017]
Limitations

- Method collapses if $x = 0$
 - Use Evidence of Absence [Dalthorp et al., 2017]
- Confidence coverage is off when $P(X = 0)$ is large.
Limitations

- Method collapses if $x = 0$
 - Use Evidence of Absence [Dalthorp et al., 2017]
- Confidence coverage is off when $P(X = 0)$ is large.
- Field trial index M must be adequate so that $y \neq 0$.
R Package for Generalized Estimator

R package GenEst [Dalthorp et al., 2018] currently in beta review.
R Package for Generalized Estimator

R package GenEst [Dalthorp et al., 2018] currently in beta review.

- Implements sophisticated model to estimate total mortality at wind or solar facilities
R Package for Generalized Estimator

R package \texttt{GenEst} [Dalthorp et al., 2018] currently in beta review.

- Implements sophisticated model to estimate total mortality at wind or solar facilities
- Applicable when goal is to estimate population total when detection is imperfect (and modeled separately)
R Package for Generalized Estimator

R package GenEst [Dalthorp et al., 2018] currently in beta review.

- Implements sophisticated model to estimate total mortality at wind or solar facilities
- Applicable when goal is to estimate population total when detection is imperfect (and modeled separately)
- Inference by parametric bootstrap
R Package for Generalized Estimator

R package \texttt{GenEst} [Dalthorp et al., 2018] currently in beta review.

- Implements sophisticated model to estimate total mortality at wind or solar facilities
- Applicable when goal is to estimate population total when detection is imperfect (and modeled separately)
- Inference by parametric bootstrap
- Optional \texttt{shiny} [Chang et al., 2018] Graphical User Interface
Modeling detection probability

- Estimate **searcher efficiency**, $P(\text{carcass found}|\text{carcass is available for discovery})$
Modeling detection probability

- Estimate **searcher efficiency**, \(P(\text{carcass found}|\text{carcass is available for discovery}) \)
- Estimate **carcass persistence**, \(P(\text{carcass persists until a given time}) \)
Modeling detection probability

- Estimate **searcher efficiency**, $P(\text{carcass found|carcass is available for discovery})$
- Estimate **carcass persistence**, $P(\text{carcass persists until a given time})$
Modeling detection probability

- Estimate **searcher efficiency**,
 \[P(\text{carcass found}|\text{carcass is available for discovery}) \]

- Estimate **carcass persistence**,
 \[P(\text{carcass persists until a given time}) \]

- Estimate **arrival probabilities**,
 \[P(\text{carcass arrives in interval } (t_{j-1}, t_j]) \]
Modeling detection probability

- Estimate **searcher efficiency**,
 \[P(\text{carcass found}|\text{carcass is available for discovery}) \]

- Estimate **carcass persistence**,
 \[P(\text{carcass persists until a given time}) \]

- Estimate **arrival probabilities**,
 \[P(\text{carcass arrives in interval } (t_{j-1}, t_j]) \]

Bootstrap each of these quantities and combine to estimate sampling distribution of \(P(\text{carcass observed}) \).
Model selection

- Choose covariates for searcher efficiency model.
Model selection

- Choose covariates for searcher efficiency model.
- Choose covariates and survival model for carcass persistence model.
Splits

Total carcasses found: x.
Splits

Total carcasses found: x.

Carcass i has a potentially unique set of attributes.
Splits

Total carcasses found: x.

Carcass i has a potentially unique set of attributes

- Covariates used in searcher efficiency and carcass persistence models
Splits

Total carcasses found: x.

Carcass i has a potentially unique set of attributes

- Covariates used in searcher efficiency and carcass persistence models
- Other information *not* used in these models (e.g. arrival time)
Splits

Total carcasses found: x.

Carcass i has a potentially unique set of attributes

- Covariates used in searcher efficiency and carcass persistence models
- Other information *not* used in these models (e.g. arrival time)

Would like to categorize mortality according to an arbitrary combination of attributes.
Splits

Earlier we simulated

$$\tilde{X}^{(s)} \sim \text{CB}(x/\hat{p}^{(s)}, \hat{p}^{(s)}) - \mu_{\text{CB}}(x/\hat{p}^{(s)}, \hat{p}^{(s)}) + x.$$

and calculated $$\tilde{N}^{(s)} \equiv \tilde{X}^{(s)}/\hat{p}^{(s)}.$$
Splits

Earlier we simulated

\[\tilde{X}^{(s)} \sim CB\left(x/\hat{p}^{(s)}, \hat{p}^{(s)}\right) - \mu_{CB}\left(x/\hat{p}^{(s)}, \hat{p}^{(s)}\right) + x. \]

and calculated \(\tilde{N}^{(s)} \equiv \tilde{X}^{(s)}/\hat{p}^{(s)}. \)

Instead, take \(i \)th carcass individually to simulate

\[\tilde{X}_i^{(s)} \sim CB\left(1/\hat{p}_i^{(s)}, \hat{p}_i^{(s)}\right) - \mu_{CB}\left(1/p_i^{(s)}, p_i^{(s)}\right) + 1, \]

and calculate \(\tilde{N}_i^{(s)} \equiv \tilde{X}_i^{(s)}/\hat{p}_i^{(s)}. \)
Splits

Earlier we simulated

$$\tilde{X}^{(s)} \sim CB(x/\hat{p}^{(s)}, \hat{p}^{(s)}) - \mu_{CB}(x/\hat{p}^{(s)}, \hat{p}^{(s)}) + x.$$

and calculated $$\tilde{N}^{(s)} \equiv \tilde{X}^{(s)}/\hat{p}^{(s)}.$$

Instead, take ith carcass individually to simulate

$$\tilde{X}_{i}^{(s)} \sim CB(1/\hat{p}_{i}^{(s)}, \hat{p}_{i}^{(s)}) - \mu_{CB}(1/p_{i}^{(s)}, p_{i}^{(s)}) + 1,$$

and calculate $$\tilde{N}_{i}^{(s)} \equiv \tilde{X}_{i}^{(s)}/\hat{p}_{i}^{(s)}.$$

$$\tilde{N}_{i}^{(1)}, \ldots, \tilde{N}_{i}^{(S)}$$ simulates the sampling distribution of the estimated total number of carcasses represented by ith carcass.
Splits

Suppose carcasses 1, \ldots, k represent category C for which we want to summarize estimated total mortality.

\[
\begin{bmatrix}
\tilde{N}_1^{(1)} & \cdots & \tilde{N}_1^{(S)} \\
\vdots & \ddots & \vdots \\
\tilde{N}_k^{(1)} & \cdots & \tilde{N}_k^{(S)}
\end{bmatrix}.
\]

Summing down the columns yields a parametric bootstrapped sampling distribution for category C,

\[
\left(\sum_{i=1}^{k} \tilde{N}_i^{(1)}, \ldots, \sum_{i=1}^{k} \tilde{N}_i^{(S)} \right).
\]
Summary

GenEst models important processes contributing to detection probability:

- Searcher efficiency
- Carcass persistence
- Arrival process

Models combined using parametric bootstrap to account for uncertainty from each model.
Summary

Parametric bootstrap for \hat{p} combined with parametric bootstrap of X to account for uncertainty in \hat{p} and binomial sampling variability.

Result is simulated sampling distribution of \hat{N}, not just point estimate and standard error.
Thanks to Dan Dalthorp and Manuela Huso.

