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Abstract: There is a lack of evidence regarding how natural resource markets have responded to 
recent increases in climate-induced extreme events like wildfire. Wildfire can affect the economic 
value of forests by directly damaging the existing the existing tree stock and by altering landowner 
risk expectations of future wildfire arrival. This paper uses parcel data over a seventeen-year period 
to estimate the effects of large wildfires and drought stress on market prices for private timberland 
across the three Pacific states of the western U.S. In addition to estimating the land price impacts 
of wildfires on parcels that were directly burned, we identify changes in risk expectations by 
estimating the impacts from wildfires that burned in close proximity rather than directly on 
timberland that was sold in the land market. Results indicate that recent increases in large wildfires 
and drought stress over the past two decades have lowered the economic value of timberland by 
approximately 10%, or about $11.2 billion in damages across the three Pacific states, with 
approximately 5.5% (~$6.2 billion) due to climate change. Most of the wildfire damages arise 
from changes in risk expectations. Results provide evidence on the costs of climate-induced 
extreme events on natural capital that have already occurred.  
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1. Introduction  

A large literature in environmental and natural resource economics has examined the impacts that 

climate change can have on natural resources through its effect on the productivity of agriculture 

(e.g., the review by Mendelsohn and Massetti, 2017) and timber (e.g., the review by Sohngen, 

2020). While climate change can impact natural resources by altering growth functions for 

renewable resources, another important avenue of climate impact is through disturbance events. 

For example, climate change has triggered a significant increase in droughts and large wildfires 

across the western U.S. (Strzepek et al., 2010; Abatzoglou and Williams, 2016), spurring impacts 

on numerous public agencies and private sector activities (Bayham et al., 2022). Wildfire risk 

information has been shown to be priced in housing markets (Loomis, 2004; Donovan et al., 

2007; Stetler et al., 2010; McCoy and Walsh, 2018), but it is unclear whether such changes in 

risk are reflected in natural resource markets. For forest stocks, a number of natural science 

studies have demonstrated that increasingly frequent droughts and wildfires have negatively 

impacted forest growth, timberland productivity, and tree mortality rates (Van Mantgem et al., 

2009; Williams et al., 2010; Stevens-Rumann and Morgan, 2019), particularly for the 

commercially valuable Douglas-fir species (Weiskittel et al., 2012; Restaino et al., 2016). To 

illustrate the increasing large wildfire prevalence across the Pacific states of the western U.S., we 

calculate that privately owned parcels of timberland are about 8.25 km closer on average to the 

nearest large (>1,000 acres) wildfire event during the first two decades of the 21st century than 

they were during the last two decades of the 20th century. Thus, the problem of understanding 

how large wildfire and drought stress impact the economic value of western U.S. forests is one 

example of a broader social problem of estimating how disturbance risks from climate change 

are already impacting the economic value of important natural capital.  
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Estimating the impacts of climate change on the value of natural capital in forests has 

been identified as an important goal for the federal government (The White House, 2023), but a 

challenge with meeting this goal is the fact that forests produce some ecosystem services that are 

traded in markets (e.g., timber) and some ecosystem services that are not traded in markets (e.g., 

wildlife habitat, recreation, flood control, etc.). Among those ecosystem services, timberland 

prices emerge from broadly competitive markets and provide an avenue for estimating the 

impacts of climate change on at least one of the ecosystem services provided by forests. 

Economic theory suggests that the market price of timberland capitalizes landowner expectations 

of the present value of all factors that impact productivity, such as tree growth and stumpage 

prices. Natural resource economics also shows that the market price of timberland capitalizes 

landowner expectations of wildfire arrival rates (Reed, 1984), including risks from ignition on 

spatially proximate land (Lauer et al., 2017). Reed’s (1984) seminal study shows that higher 

expected wildfire arrival rates on a piece of forest land effectively increase the discount rate used 

to compute the present value of future timber rents, and thus land values should be bid down as 

wildfire arrival rates increase. However, empirical observations of wildfire frequency vary 

significantly across space in regions with many micro-climates and individual landowners, and 

an open empirical question is whether the recently observed increases in large wildfire events 

have shifted landowner expectations of wildfire arrival rates enough to be capitalized in the land 

market. Further, despite significant theoretical work on how the spatial aspects of wildfire spread 

are important drivers of timberland values (e.g., Konoshima et al., 2008; Busby et al., 2012), an 

open empirical question is whether spatial proximity to changes in large wildfire arrival rates 

serves as an avenue for altering landowner expectations of such climate-induced disturbance 

events.    
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 The purpose of this study is to estimate the effects of climate-induced large wildfires and 

drought stress on timberland prices in the Pacific states of the western U.S. – Washington (WA), 

Oregon (OR), and California (CA), a topographically and climatically diverse region with 

valuable natural capital embedded in forest resources. We begin with a simple depiction of 

Reed’s (1984) theoretical model of wildfire impacts on timberland parameterized with local data 

to develop testable hypotheses about the magnitude of price impacts from observable recent 

increases in wildfires. The testable hypotheses are then brought to an empirical analysis of a 

pooled cross-sectional dataset of just over 9,000 transaction prices of timberland across the entire 

privately-owned forested region of the Pacific states over the period 2004-2020. We link each 

parcel transaction to empirical measurements of vapor pressure deficit (a drought stress measure) 

and large wildfire arrival rates (a wildfire exposure measure) using parcel locations combined 

with a climate raster and wildfire polygons. Our wildfire arrival rate measure captures the 

number of distinct fires that occurred both on and nearby each parcel over the 20 years prior to 

each parcel transaction. Our wildfire arrival rate variable takes advantage of the timing and 

spatial boundary of each wildfire to capture fine-scale temporal and spatial variation in wildfire 

activity. Using a range of spatial and temporal fixed effects in a linear econometric model, the 

identification of drought and large wildfire impacts on timberland values is based on within-

county variation in prices, drought stress, and large wildfires. A key feature of the estimation 

strategy is separately estimating the effects of fires that occur directly on private timberland 

parcels from fires that occur nearby, thereby allowing us to test if spatially proximate fire serves 

as an avenue for updating timberland owners’ expectations of large wildfire arrival.  

Given the estimated econometric model parameters, we then estimate the extent of 

timberland value losses that have already occurred based on changes in drought stress and large 
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wildfire arrival rates during the past two decades. Our results show that observed increases in 

drought stress have already reduced the economic value of timberland by approximately 1.04%. 

Recent increases in large wildfire arrival rates have reduced timberland values by an additional 

8.74%. Importantly, most of the large wildfire-induced losses in timberland value occur from 

higher wildfire arrival rates on neighboring land that alter wildfire arrival expectations in the 

land market (leading to a decrease of 7.38%), rather than from direct burning on private 

timberland (leading to a decrease of 1.36%). Taken together, the increases in climate-induced 

drought stress and large wildfire events over the past two decades have led to a roughly 10% loss 

in timberland value per acre on average, about $11.2 billion losses in total across the three 

Pacific states. Building on prior climate change attribution studies that link recent changes in 

VPD and wildfires in the western U.S. to anthropogenic climate change (Abatzoglou and 

Williams, 2016; Zhuang et al., 2021), our results suggest that recent climate change is 

responsible for lowering timberland values by 5.5% (~$6.2 billion). 

This paper makes several contributions to literature. The first contribution is providing 

empirical estimates of how increasingly frequent large wildfire arrival has affected the economic 

value of forests through two avenues: i) direct fire damage to the existing forest stock, and ii) 

neighboring fires that alter landowners’ expectations of fire arrival. Most of the recent empirical 

work estimating wildfire impacts on land values has focused on residential housing markets near 

the wildland-urban interface (WUI) areas (see Hansen et al. (2014) for a comprehensive review). 

A key finding of these studies is that wildfires tend to have a short-lived negative effect on 

housing prices in WUI areas in the western U.S. (Loomis, 2004; Donovan et al., 2007; Mueller et 

al., 2009; Stetler et al., 2010; McCoy and Walsh, 2018). Given the distinct dynamics of 

rotational forestry (Conrad, 2010), along with evidence that government fire suppression efforts 
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prioritize lowering risks in high-valued residential areas (Plantinga et al., 2022), wildfire impacts 

on timberland markets are likely to differ significantly from impacts on residential markets. 

Natural resource economic theory is clear that wildfire arrival expectations should be capitalized 

into timberland values and be a key determinant of forest management practices such as rotation 

length and planting density (Amacher et al., 2005), and there is a clear theoretical structure as to 

how higher fire expectations raise the discount rate used to weigh future timber rents (Reed, 

1984). We build on past theoretical work by applying linear econometric techniques to estimate 

how natural resource market prices adjust to increasing wildfire occurrence that likely shifts 

expectations of wildfire arrival. The empirical methods allow us to test hypotheses regarding 

landowner expectations of wildfire arrival, in contrast to past natural resource economics 

literature that uses numerical methods to examine how management behavior can adapt to fires 

(e.g., Amacher et al., 2005; Konoshima et al., 2008; Busby et al., 2012; Lauer et al., 2017). 

Our study contributes to the Ricardian literature by estimating how expectations of 

climate change can be transmitted to landowners through spatially proximate climate-driven 

disasters (wildfire) using the first parcel-level forestry Ricardian analysis based on market 

transaction prices of timberland. The Ricardian approach was first proposed by Mendelsohn et 

al. (1994) to examine the long-term impacts of climate change on the net rent or value of 

farmland by accounting for climate-induced adaptations. This approach has been widely adopted 

in the agricultural sector in various locations worldwide (Mendelsohn et al., 1994; Mendelsohn 

et al., 1996; Polsky, 2004; Seo et al., 2005; Schlenker et al., 2005; Sanghi and Mendelsohn, 

2008; Massetti and Mendelsohn, 2011; Mendelsohn and Massetti, 2017). Ricardian studies of 

forestry are limited to Mihiar and Lewis (2021) and Hashida and Lewis (2022), who investigate 

the effect of climate change on measures of timberland rents that were constructed from tree 
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growth and stumpage price observations rather than land transaction prices. Many Ricardian 

studies estimate how the current climate impacts agricultural and forestry land values, though a 

recent critique argues that land values should capitalize expected future changes in climate that 

may operate through scientific forecasts of climate change (Severen et al., 2018). We contribute 

to this work on expectations in Ricardian studies by estimating how local wildfire shocks – 

driven partly by climate change – serve as an avenue for updating landowner expectations as to 

how climate change creates risk that affects the value of their land assets.   

Finally, our finding of land value losses that have already occurred because of climate-

related disturbance shocks contributes to a broader understanding of the economic impacts of 

climate change on the value of natural capital. While significant research attention has focused 

on estimating future climate change impacts on economic measures (e.g., Hsiang et al., 2017; 

Auffhammer, 2018), less is known about the economic impacts of climate change that have 

already occurred. Some recent examples that have estimated the economic impacts of past 

climate change include studies of historical crop insurance losses (Diffenbaugh et al., 2021), 

changes in agricultural productivity growth (Ortiz-Bobea et al., 2021), global economic 

inequality (Diffenbaugh and Burke, 2019), and flood damage costs (Davenport et al., 2021). 

Through our analysis of the impacts of large wildfire and drought stress on timberland values, we 

contribute to this emerging field of study by quantifying the effects of historical climate shocks 

on the economic value of natural capital, as well as providing insights into the potential net 

benefits associated with actions to mitigate extreme weather events.  

2. Large wildfire and timberland in the U.S. Pacific States Region 

This paper studies timberland prices across three Pacific states of the western U.S., Washington, 

Oregon, and California, using data from 2004-2020. These temporal and spatial scales are chosen 
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to provide significant empirical variation in timberland prices, large wildfires, and drought stress. 

Throughout our study region, about one-third of all forests are privately owned, while the 

remainder are owned by federal, state, and local governments. However, most of the timber 

harvested – and almost all timberland traded in the land market - comes from private 

timberlands. Harvest operations on federal lands have been greatly reduced since the 1990s 

under the federal Northwest Forest Plan. There are a variety of tree species in this study region, 

with Douglas-fir being the most prevalent. Some other tree species include ponderosa pine, 

lodgepole pine, coast redwoods, Engelmann spruce/subalpine fir, Sitka spruce, and selected 

hardwoods such as red alder. Douglas-fir is the most planted tree species by landowners, though 

recent natural science studies have found evidence of limited post-fire tree regeneration in low-

elevation ponderosa pine and Douglas-fir forests due to low seed availability and high fire 

severity under regional climate change (Rother and Veblen, 2016; Davis et al., 2019; Kemp et 

al., 2019). 

Privately owned commercial timberlands are used to produce marketable timber 2(Mei, 

2019). Fig. 1 (a) presents a private timberland map for the study area.3 Western Oregon and 

Washington have a large amount of private timberland. This region is also one of the largest 

national producers of timber products in the country, thanks to a mild and wet climate that is 

beneficial for growing the commercially valuable Douglas-fir species. In contrast, eastern 

Oregon and Washington are hotter and drier and have significantly less private timberland than 

                                                           
2 Technically, timberland refers to forestland that is capable of producing more than 20 cubic feet of wood per acre 
per year (USDA 2007). 
3 To identify privately owned timberland, we first create a private forestland map by excluding publicly protected 
areas derived from the Protected Areas Database from the forested area derived from the 2016 National Land Cover 
Database. Then following the definition of timberland, Fig.1 (a) is constructed by overlapping the private forestland 
map with a county-level average site productivity class greater than 20 cubic feet per acre per year, where county-
level weighted average forest productivity data is obtained from the Resource Planning Act 2012 Database. 
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western Oregon and Washington. Private timberland in California is concentrated in coastal 

areas and low-elevation areas near national forests.  

     
(a) Private timberland                        (b) 30-year average annual VPD, 1991-2020 

                 Figure 1. Private timberland and average annual VPD in the study area 

The study region has experienced varying degrees of drought over the past two decades 

because of rising temperatures, including the widely publicized mega-drought (Williams et al., 

2022). Western U.S. forests have been identified to be affected by a plant-relevant drought 

indicator known as the vapor pressure deficit (VPD) (Restaino et al., 2016). By definition, the 

VPD measures dryness and atmospheric aridity and integrates relative humidity and 

temperature.4 When VPD is high, the air is relatively dry, causing plants to transpire and take in 

more water from their roots, eventually causing them to dry out and die. A 30-year average 

                                                           
4 The vapor pressure deficit (VPD) is defined as the difference between the actual vapor pressure of the air and the 
saturated vapor pressure. Higher VPD indicates dry air and high transpiration rate, causing stomatal closure and hence 
limiting growth owing to reduced intake of CO2 (Restaino et al., 2016). 
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annual VPD between 1991-2020 is shown in Fig. 1 (b). Private timberland is less likely to be 

found in areas with high levels of VPD. 

In addition to drought stress, large wildfires are becoming more common and severe in 

the study area. The Monitoring Trends in Burn Severity (MTBS) data show that there have been 

more than 3,500 large wildfires of at least 1,000 acres reported between 1984 and 2020, resulting 

in the burning of over 42 million acres across the three states. Despite an overall increase in large 

wildfires over the region, there is a high level of regional variation in large wildfire occurrence 

(Fig. 2), which has been attributed to factors like climatic conditions and fuel loads (Abatzoglou 

and Kolden, 2013; Abatzoglou and Williams, 2016). Large wildfire activities also differ across 

private timberland, public forestland, and other land use types. The acreage burned in other land 

use types and public forestland is substantially higher than in private timberland (Fig. 3). 

However, there is significant spatial intermixing of private timberland with these other two uses, 

as we calculate that of all large fires that occurred within 15km of our sample of privately owned 

timberland parcels that have a transaction price between 2004-2020, 6% burned on private 

timberland, 26% burned on publicly owned forestland, and 68% burned on other land use types 

such as shrubland. This suggests an important empirical fact that although private timberland in 

the region has seen fewer recent large wildfires than other land uses and public forestland, this 

private timberland is surrounded by large fire risks that have been occurring on other land uses 

and public forestland.  
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(a) Large wildfires, 1984 - 2003                             (b)  Large wildfires, 2001-2020 

Figure 2. Spatial distribution of large wildfires that have occurred in the past and current period  

Note: Wildfire data come from MTBS. 
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Figure 3. Annual acreage burned across private timberland, public forestland and other land uses  

3. Theoretical underpinnings – Wildfire expectations and timberland prices 

3.1 Faustmann and Reed model foundation 

The foundational theory for timberland values rests on the Faustmann model, which assumes that 

landowners practice rotational forestry on land where tree volume for a stand of age a growing in 

climate conditions C is defined by vol(C, a). The Faustmann model assumes clear-cut harvest 

with constant per-unit stumpage prices P, a stable climate and therefore constant growth 

function, a constant discount rate 𝛾𝛾, and a constant regeneration cost R. While such assumptions 

can be relaxed to account for modern issues like climate change adaptation (e.g., Guo and 

Costello, 2013), we discuss the Faustmann model and its extension to wildfire to build the 

intuition needed for our empirical work. Under Faustmann assumptions, the landowner 

maximizes the value of their stand by selecting a constant rotation length T (Conrad, 2010), 

thereby resulting in a compact expression for the value of bare timberland: 
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𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = [𝑃𝑃∗𝑣𝑣𝑣𝑣𝑣𝑣(𝐶𝐶,𝑇𝑇)−𝑅𝑅]𝑒𝑒−𝛾𝛾𝛾𝛾

1−𝑒𝑒−𝛾𝛾𝛾𝛾
                                                    (1) 

Key drivers of timberland values in the Faustmann setting are the landowners’ expectation of 

stumpage prices, costs, and tree growth.  

The expression in Eq. (1) assumes no fire risk, and thus the landowner’s problem is 

deterministic. Reed (1984) presented the first extension of the Faustmann problem that 

incorporated risky natural disturbance by assuming that fire arrival is governed by a random 

Poisson process that occurs independently over time. Suppose the average arrival rate of a fire in 

any time period is determined by the Poisson parameter 𝜆𝜆. A forest that burns once every 𝑇𝑇𝑓𝑓 

years would have a Poisson parameter of 𝜆𝜆 = 1/𝑇𝑇𝑓𝑓. An additional assumption in the Reed model 

is that wildfire occurrence destroys any salvage value of the standing trees, which is known as 

catastrophic loss (Amacher et al., 2009). Combining the Reed assumption that catastrophic fires 

occur in a time-independent Poisson process with the original Faustmann assumptions of 

constant prices and a stable climate and tree growth function, the value of bare timberland can be 

written in a Faustmann-like expression (Conrad and Clark, 1987): 

𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = (𝛾𝛾+𝜆𝜆)[𝑃𝑃∗𝑣𝑣𝑣𝑣𝑣𝑣(𝐶𝐶,𝑇𝑇)−𝑅𝑅]𝑒𝑒−(𝛾𝛾+𝜆𝜆)𝑇𝑇

𝛾𝛾(1−𝑒𝑒−(𝛾𝛾+𝜆𝜆)𝑇𝑇)
− 𝜆𝜆

𝛾𝛾
𝑆𝑆𝑆𝑆                                       (2) 

Where 𝑆𝑆𝑆𝑆 is a salvage cost variable incurred to clear and regenerate trees after wildfire, and thus, 

𝜆𝜆
𝛾𝛾
𝑆𝑆𝑆𝑆 is the expected present value of all future salvage costs. Reed’s key insight was that the 

Poisson fire risk parameter 𝜆𝜆 implicitly increases the landowners’ discount rate above the 

standard Faustmann case with no fire risk, thereby giving less weight to future harvest values and 

spurring the landowner to adapt to fire by shortening their rotation time T relative to the case 

without fire risk. Extensions have introduced other fire management adaptations besides harvest 

(e.g., Amacher et al., 2005). 
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Building off Reed’s original model, the natural resource economics literature has 

emphasized that fire spread is a spatial process and fuel conditions and fire occurrence on one 

portion of a landscape can affect management and the market value of timberland on neighboring 

lands (Lauer et al., 2017). Recent numerical work in resource economics examines how optimal 

fire management can be designed given the spatial aspects of fire spread across landowners 

(Konoshima et al., 2008), and that fire management effort is lower in landscapes with 

fragmented ownership patterns, especially between private and public landowners (Busby et al., 

2012). Given the importance of fire spread across landowners, an empirically relevant hypothesis 

is that landowner expectations of fire risk 𝜆𝜆 in Eq. (2) are likely influenced by wildfire activity 

and fuel loads on neighboring lands. Thus, one potential avenue for updated wildfire arrival 

expectations is through the patterns of fire activity on neighboring lands. If fire is a variable that 

represents recent fire occurrence on neighboring land, then 𝜆𝜆(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓). 

 One additional feature to lay out is the expression of land value for a stand that has an age 

(and volume) greater than zero (a>0), rather than Eq. (2)’s expression for bare land value. Given 

the assumptions above, the landowner will harvest the stand in T-a years in the absence of a 

catastrophic fire, or suffer a loss of all timberland value if the stand is burned prior to harvest 

age. The time of the fire event is a random variable defined as 𝑇𝑇𝑒𝑒, and the first rotation payoff is 

defined by: 

𝑉𝑉1(𝑎𝑎) = �𝑃𝑃 ∗ 𝑣𝑣𝑜𝑜𝑙𝑙
(𝐶𝐶,𝑇𝑇) − 𝑅𝑅  𝑖𝑖𝑖𝑖 𝑇𝑇𝑒𝑒 >= 𝑇𝑇 − 𝑎𝑎 
−𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖  𝑇𝑇𝑒𝑒 < 𝑇𝑇 − 𝑎𝑎                                         (3) 

Given the Poisson process governing fire arrival in the Reed model, the probability of 𝑇𝑇𝑒𝑒 < 𝑇𝑇 −

𝑎𝑎 is higher with a higher fire arrival rate 𝜆𝜆. After either the harvest or fire event occurs, the land 

value will revert to the bare land value in Eq. (2). The land value of a stand of age a can thus be 
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written as a sum of the expected present value of future harvest from the stand of age a plus the 

expected present value of bare land after the first disturbance: 

𝑉𝑉 = 𝐸𝐸[𝑒𝑒−𝛾𝛾𝑇𝑇𝑒𝑒]𝑉𝑉1(𝑎𝑎) + 𝐸𝐸[𝑒𝑒−𝛾𝛾𝑇𝑇𝑒𝑒]𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏                                         (4) 

Where E is the expectation operator over the random variable 𝑇𝑇𝑒𝑒. The main insight from Eq. (4) 

useful for empirical work is that land that has had its timber directly burned from a recent fire 

will be more likely to consist of bare land with a timberland value described by Eq. (2), and land 

that has not had a recent fire will be more likely to have a stock of trees with age a>0 with a 

timberland value described by Eq. (4). It should be noted that 𝑉𝑉 > 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 since landowners that 

buy a stand with trees of age a>0 have to wait less time for the first harvest than owners of bare 

land. Thus, a recent fire on a parcel of land will lower that parcel’s land value even without a 

change in expected fire arrival rate. 

3.2 Testable hypotheses from the Reed model for the Pacific states: A numerical depiction 

Fire arrival periods have shortened across the Pacific states, and this section parameterizes 

Reed’s land value equation with local data. First, we determine how the wildfire arrival rate 𝜆𝜆 

has changed over time on private timberland in our study region. We define two time periods 

(1984-2003 and 2001-2020) and calculate wildfire arrival rates in the two time periods, 

separately, using MTBS wildfire data. These two time periods are consistent with our empirical 

analysis in Sec. 6. For each privately owned timberland parcel i in our sample, we first calculate 

i’s wildfire arrival in the past period (1984-2003) using the total number of distinct fires that 

occurred directly on parcel i during that period divided by 20 years. Then we obtain the past 

wildfire arrival rate 𝜆𝜆84−03 over our study region as an average across all parcels. We find 𝜆𝜆84−03 

is about 0.001 large fires per year. Similarly, we calculate the current wildfire arrival rate 𝜆𝜆01−20 
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between 2001 and 2020, which is about 0.003 large wildfires per year.5 Wildfire arrival on 

private timberland has increased threefold during the first two decades of the 21st century 

compared to the last two decades of the 20th century. 

We use the Reed equation Eq. (2) to assess how the present value of bare forest land 

changes as wildfire risk changes from 𝜆𝜆84−03 to 𝜆𝜆01−20. We parameterize Eq. (2) with timber 

prices and yield functions for tree growth6 across all major tree species in the Pacific region 

using data from Hashida and Lewis (2019). We assume that wildfire occurs independently over 

time and that wildfire impact is catastrophic with no salvage value of the standing trees (Reed, 

1984). For simplification, we also assume zero replanting costs and zero post-fire salvage costs. 

With these simplified assumptions, the land value expression in Reed’s Eq. (2) becomes: 

                                                      𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
(𝛾𝛾+𝜆𝜆)�𝑃𝑃∗𝛼𝛼∗�1−𝑒𝑒−𝛿𝛿∗𝑇𝑇�

3
�𝑒𝑒−(𝛾𝛾+𝜆𝜆)𝑇𝑇

𝛾𝛾(1−𝑒𝑒−(𝛾𝛾+𝜆𝜆)𝑇𝑇)
                                  (5) 

Where 𝛼𝛼 and 𝛿𝛿 are the estimated parameter values for the timber yield function that embed the 

climate conditions C of the Pacific U.S. where they were estimated. We use three different 

discount rates 1%, 3%, and 5%, separately, to calculate the optimized bare land value 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 in 

the past and current period by solving for optimal rotation age T at the two different wildfire 

arrival rates of 𝜆𝜆84−03 and 𝜆𝜆01−20. Given estimates of land value under the two different wildfire 

arrival rates, we compute the percentage change in present value that arises from the higher 

wildfire arrival rate 𝜆𝜆01−20 compared to the lower level 𝜆𝜆84−03. Since our study area covers 

                                                           
5 Note that our numerical estimates of 𝜆𝜆84−03 and 𝜆𝜆01−20 are based only on wildfire data from the MTBS dataset and 
do not include small fires (less than 1000 acres). While small fires are more common than large wildfires, large 
wildfires are more likely to cause significant and catastrophic losses than small fires, so they better fit the assumptions 
of Reed's model. 
6 The von Bertalanffy growth function is used for tree growth, which is a conventional S-shaped function of volume 
as a function of stand age (Von Bertalanffy, 1938). 
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several forest types, we compute the percentage change in timberland value for all site classes 

and each major forest type across all eighteen price regions across the study area.7  

Fig. 4 illustrates how the observed increases in wildfire arrival on private timberland 

would affect the economic value of timberland for all forest types in each price region. This 

numerical analysis shows that the increased fire risk would lead to timberland value losses 

ranging from 3% to 17% of land value with most impacts ranging from 4% to 9% of land value. 

Variations in the impacts from Fig. 4 arise from the assumed discount rate, forest type growth 

function, and price region. Thus, our numerical depiction of the Reed model generates a testable 

hypothesis that recent fire increases should lower land values somewhere in the range of 4% to 

9%. A key point to make is that our hypothesized land value changes arise entirely from changes 

in landowner expectations of the wildfire arrival rate 𝜆𝜆, since we use bare land value in Eq. (2) to 

compute the changes in Fig. 4. Empirical estimates of fire effects may differ from Fig. 4 because 

of many reasons, including i) many stands will have standing volume and will not be bare land, 

and ii) landowner expectations of wildfire arrival and other parameters may be heterogeneous.  

 

                                                           
7 Following Hashida and Lewis (2019), we have four stumpage price regions in WA, six price regions in OR, and nine 
price regions in CA. For each price region, we have six major forest types: (1) Douglas-fir, (2) fir/spruce/mountain 
hemlock, (3) hemlock/Sitka spruce, (4) ponderosa pine, (5) other softwoods, and (6) hardwoods. For each forest type, 
we then have three sets of different site classes that represents different land quality including high site class, middle 
site class, and low site class.  
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(a) Average % losses from more fires, all site classes, discount rate 0.01 

 
                        (b) Average % losses from more fires, all site classes, discount rate 0.03 

 
                      (c)  Average % losses from more fire, all site classes, discount rate 0.05 

Figure 4. Hypothesized range of expected percentage loss in timberland value from higher 
wildfire arrival rates in 2001-2020 compared to 1984-2003, across price region and forest type 

 

-18%
-16%
-14%
-12%
-10%
-8%
-6%
-4%
-2%
0%

WA1 WA2 WA3 WA4 OR1 OR2 OR4 OR5 OR6 CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9

Doug-fir Fir hemlock Ponderosa pine Other softwoods Hard woods

-9%
-8%
-7%
-6%
-5%
-4%
-3%
-2%
-1%
0%

WA1 WA2 WA3 WA4 OR1 OR2 OR4 OR5 OR6 CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9

Doug-fir Fir hemlock Ponderosa pine Other softwoods Hard woods

-6%

-5%

-4%

-3%

-2%

-1%

0%
WA1 WA2 WA3 WA4 OR1 OR2 OR4 OR5 OR6 CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9

Doug-fir Fir hemlock Ponderosa pine Other softwoods Hard woods



18 
 

3.3 Key insights and testable hypotheses for empirical analysis 

The key insights from this theoretical section relevant to empirical work can be summarized as 

follows. First, fire arrival rates 𝜆𝜆 are expectations of landowners, which will be heterogeneous 

across space and capitalized into land values. Thus, the occurrence of a nearby individual 

wildfire event will have no impact on timberland prices if the event does not change the market’s 

expectation of fire arrival rates. Second, if exogenous events like climate change increase 

wildfire events such that the market adjusts expectations of fire arrival rates, then participants in 

the land market should respond by bidding down land values since the ability to recover a long 

stream of future harvests becomes compromised with more wildfire. In sec 3.2, we combine 

observed changes in wildfire arrival rates with timber price and tree productivity parameters to 

generate a testable hypothesis that increased wildfire arrival rates would lower bare land values 

in our study region between 4% and 9%. Third, fires that occur nearby parcel i will lower i’s 

timberland values only if there is a shift in expectations of fire arrival rates, and the spatial 

aspects of fire spread imply that the presence of nearby fires is one avenue through which fire 

arrival expectations may shift. Finally, recent fires that occurred directly on parcel i with a 

positive age growing stock can lower i’s timberland value through destroying the existing stock 

on the stand, even if there is no change in expectations of fire arrival rate. 

4. The empirical analysis 

We conduct empirical analysis using land market data on timberland prices, and the key 

variables in Reed’s model from Sec. 3 provide guidance on which independent variables 

influence prices. However, the explicit functional form from Eq. (4) may not hold if landowner 

assumptions deviate from some of Reed’s assumptions. Therefore, a general statement of the 

value function that determines timberland prices is: 
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𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑉𝑉(𝑃𝑃, 𝑣𝑣𝑣𝑣𝑣𝑣(𝑎𝑎,𝐶𝐶, 𝑠𝑠𝑠𝑠),𝑅𝑅, 𝜆𝜆(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐶𝐶), 𝑆𝑆𝑆𝑆, 𝛾𝛾,𝑈𝑈;  𝜷𝜷)                                   (6) 

Where most variables in Eq. (6) are as described in Sec. 3, but with the addition of soil quality 

(sq), the observed arrival of nearby large wildfires (fire), and capitalized future urban 

development rents (U). The vector 𝜷𝜷 represents parameters that translate the variables in Eq. (6) 

to 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. Following Sohngen (2020), Eq. (6) posits that climate influences timberland prices 

through its effect on both the timber volume function 𝑣𝑣𝑣𝑣𝑣𝑣(𝑎𝑎,𝐶𝐶, 𝑠𝑠𝑠𝑠) and through wildfire risk 

expectations. Following the logic of Sec. 3, wildfire expectations 𝜆𝜆(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐶𝐶) depend on the 

observed rate of nearby wildfire occurrence and climate. While wildfire occurrence is related to 

climate C, it is also driven by fuel loads, vegetation conditions, and random ignition events 

(Abatzoglou and Kolden, 2013; Abatzoglou and Williams, 2016). 

We use a standard log linear reduced-form model of land prices that is widely found in 

both wildfire hedonic analysis and Ricardian studies to estimate the relationship between land 

value and land attributes (Stetler et al., 2010; Mendelsohn and Massetti, 2017). Therefore, we 

specify our pooled cross-sectional model as follows:          

𝐿𝐿𝐿𝐿𝐿𝐿 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖) = 𝛽𝛽0 + 𝜷𝜷𝟏𝟏𝑔𝑔(𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖) + 𝜷𝜷𝟐𝟐𝑓𝑓(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖) +𝛽𝛽3𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖  + 𝜷𝜷𝟒𝟒𝑋𝑋𝑖𝑖 + 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑡𝑡 + 𝜇𝜇𝑐𝑐(𝑖𝑖) + 𝜀𝜀𝑖𝑖𝑖𝑖             (7) 

Where our dependent variable 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is per-acre value of timberland sale 𝑖𝑖 in year t with 

inflation adjusted prices (in 2020 U.S. dollars), g() is a non-linear function of the climate 

measure vapor pressure deficit (VPD), and f() is a vector of large wildfire risk measures. A 

dummy variable depicting the presence of very large nearby fires (VLNF) is included to capture 

the heterogeneous effects of different sized nearby large wildfires. 𝑋𝑋𝑖𝑖 denotes a vector of control 

variables that account for diverse land attributes such as slope and elevation. We use c to index 

counties, and thus 𝜇𝜇𝑐𝑐(𝑖𝑖) represents county fixed effects. Time fixed effects are captured by 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑡𝑡, 

and 𝜀𝜀𝑖𝑖𝑖𝑖 is an idiosyncratic error term. 
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4.1 Identification, fixed effect definitions and four main specifications 

A range of temporal and spatial fixed effects (FE) is included in Eq. (7) to control for 

unobservables that may also affect timberland values. The presence of such temporal and spatial 

unobservables have been criticized for inducing omitted variable bias in cross-sectional 

Ricardian studies (Deschênes and Greenstone, 2007). The vector 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑡𝑡 is included in all main 

specifications and comprises year-specific FE to account for unobserved time-varying 

confounders that are common across space like timber demand, interest rates, macroeconomic 

fluctuations, and federal trade policy changes. The vector 𝜇𝜇𝑐𝑐(𝑖𝑖) is a location-specific FE that 

captures unobserved time-invariant but location-varying unobservables that influence timberland 

prices. A key role of location FE is to capture the baseline wildfire risk that exhibits significant 

spatial variations across space. For example, the coastal mountains in Western Oregon and 

Washington display a significantly lower wildfire risk compared to other areas in the region (Fig. 

2). 

Choosing the appropriate spatial level of location FEs induces a trade-off with our pooled 

cross-sectional data. Defining location FEs at too coarse a scale may fail to capture unobserved 

location-specific factors that vary within a large geographical area and are correlated with our 

key wildfire and drought stress variables. On the other hand, defining location FEs at too fine a 

scale may leave too little within variation in the key independent variables and thus lose 

precision in estimation. In our study, we illustrate the trade-off with the scale of spatial fixed 

effects by including state-level fixed effects (Model 1) and our preferred county-level FEs 

(Model 2). We prefer county-level FEs because they are sufficiently narrow to capture time-

invariant local heterogeneous factors that may affect timberland values, such as baseline wildfire 

risk, local geography, topography, demographics, as well as aspects of climate (such as 
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temperature and precipitation) which do not vary much within counties. State-level FEs may fail 

to capture the large variation in baseline large fire risk within the coastal and eastern portions of 

each state, leading to omitted variable bias. To further examine the sensitivity of large wildfire 

and VPD estimates to different levels of spatial FE, we conduct numerous robustness checks by 

including a range of location FEs at a finer scale than the county, such as census tracts and 

evenly distributed grid cells generated across our study region (Sec. 6.2).  

We also test for robustness against unobservables that vary across counties and time by 

including a specification with county-specific time trends (Model 3). County-specific time trends 

capture factors like timber mill capacity that may change at a greater rate in some areas than 

others. And finally, Model (4) examines the robustness of our main large wildfire results to the 

inclusion of variables depicting small wildfire arrival rates (<1000 acres) in a model with county 

and year FEs. 

4.2 Estimation strategy  

To isolate the drought stress and large wildfire impacts on timberland values, we estimate Eq. (7) 

using ordinary least squares on the pooled cross-sectional data with the fixed effects defined 

above and with county clustered standard errors. Clustering standard errors at the county level 

allows inference robust to arbitrary heteroscedasticity and spatial correlation across parcels 

within the same county. We estimate Eq. (7) weighted by acres to minimize the influence from a 

large number of small-sized parcels and obtain marginal effects for the average timberland acre 

rather than the average timberland parcel.  
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5. Data 

This section discusses data and measurement of the variables used in the empirical analysis. 

5.1 Measurement of timberland prices 

Timberland sales data is sourced from real estate transactions compiled by CoreLogic (CL), a 

private data provider that collects transaction records for the United States. Matching the time 

period of wildfire data, we include the most recent transactions for the universe of timberland 

parcels that were sold between 2004 and 2020. A transaction record includes parcel acreage, land 

use code, coordinates of the parcel centroid, price sold, date sold, and several other property 

attributes. According to the land use code associated with each parcel, we include either single 

parcel sales coded in forest use or multi-parcel sales with all parcels coded in forest use to ensure 

the land price mainly reflects forest use. In a single parcel sale, only one parcel is sold. In a 

multi-parcel sale, several parcels are sold together at a collective value.8 The month and year of a 

transaction are derived from the sale date or, if there is no sale date, from the sale recording 

date.9 For multi-parcel sales, we compute the corresponding transaction-level independent 

variable measures by averaging across those parcels that are part of the same transaction using 

weights equivalent to each parcel's acreage. Transactions with missing sale prices, location 

coordinates, acreages, or both sale and recording dates are removed from the dataset.  

We further screen the data for outliers according to several rules to ensure that our 

sample focuses primarily on private timberland with timber production being a non-trivial part of 

its value. Importantly, we overlay parcel locations with our private timberland map described in 

                                                           
8 To link parcels that belong to a common transaction, we use several relevant variables as an identifier to find those 
multi-parcel sales. These variables include county FIPS code, transaction batch date, sale recording document number, 
sale recording document book number, sale recording document page number, sale date, sale recording date, seller 
name, and sale price. 
9 When transaction dates include a year but lack date and month information, we assign June 1st as the date and month. 
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Sec. 2 (Fig. 1(a)) as a quality-control check to ensure each parcel is private timberland. We then 

drop parcels closer than 5km from the nearest urban area and parcels smaller than 10 acres. A 

detailed description of how we screen out outliers is included in the Appendix. The final 

transaction-level sample for our main results contains 9,145 transactions of timberland property. 

With our transaction data georeferenced in GIS (Fig. 5), we then connect each parcel with its site 

characteristics, wildfire indicators, drought stress, and other controls. Compared to the map of 

private timberland (Fig. 1(a)), we can see that parcel transactions cover the entire area where 

private timberland exists. Therefore, we conclude that our sample adequately represents the 

study area.  

 

Figure 5. Spatial distribution of private timberland parcel transactions across the study area  
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5.2 Measurement of drought stress 

We use a 30-year average VPD over the growing season (April to July) following Ricardian 

methods to measure the effects of climate-induced drought stress10. We choose the 30-year 

average not only because it is in line with the Ricardian tradition, but also because timberland is 

a long-term investment that makes it challenging for management to respond to short-term 

climate fluctuations (Mihiar and Lewis, 2021).11 We choose VPD as our preferred drought stress 

variable for the following reasons. First, VPD is an effective indicator of drought conditions to 

assess and monitor moisture stress on vegetation and to predict drought impacts (Gamelin et al., 

2022). Moreover, scientific studies suggest that this integrated plant-relevant variable performs 

better than the simplified temperature and precipitation indicator in reflecting how trees – 

especially the regionally-important Douglas-fir species – respond to extreme climate events such 

as droughts and heat (Restaino et al., 2016). Second, VPD is one of the key climatic factors that 

influence wildfire occurrence (Zhuang et al., 2021). Third, based on our pooled cross-sectional 

data structure, the inclusion of location fixed effects (FE) requires significant within variation in 

climate variables, and VPD shows more variation both within and across counties than other 

climate measures like mean temperature or total precipitation.  

We specify g() as a quadratic form of VPD to capture the non-linear drought impacts in 

Eq. (7). The VPD is merged with each parcel 𝑖𝑖 and measured as a 30-year average over the 

                                                           
10 The Ricardian literature often uses measurements of long-term (e.g., 30 years) average measures of annual and 
seasonal temperatures and precipitations (Mendelsohn et al., 1994; Seo et al., 2005; Sanghi and Mendelsohn, 2008; 
Massetti and Mendelsohn, 2011; Mihiar and Lewis, 2021) or degree-days over the growing season to capture climate 
impacts on land values (Schlenker et al., 2006; Deschênes and Greenstone, 2007; Fezzi and Bateman, 2015). 
11 However, to assess whether land markets respond differently to drought conditions over shorter periods of time 
versus longer periods of time, we have also regressed land prices on alternative average VPD measures over 5, 10, 
and 20 years separately as robustness checks, which are discussed in more detail in Sec. 6.2. 
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growing season (April-July) in the year prior to when parcel 𝑖𝑖 is sold.12 Our VPD data is 

obtained from the Oregon State University Parameter-elevation Regressions on Independent 

Slopes Model’s (PRISM) downscaled historical climate monthly database at a 4 km resolution.  

5.3 Measurement of large wildfire risk 

For wildfire variables, prior literature introduces several approaches for defining wildfire risks in 

forests, each of which captures a unique aspect of wildfire patterns. In wildfire hedonic studies, 

acreage burned, proximity to the nearest fire, and years since the most recent fire are common 

proxies for wildfire risks that are capitalized into nearby home prices (Mueller and Loomis, 2008; 

Mueller et al., 2009; Stetler et al., 2010; Mueller and Loomis, 2014; McCoy and Walsh, 2018). In 

theoretical and numerical studies of timber management, it is common to use measures of fire 

intervals/fire frequencies (the average number of years between fires in a defined area) or fire 

arrival rates (the number of fires occurring within a set time period) to predict the likelihood that 

wildfires may occur on specific stands (Reed, 1984; Amacher et al., 2005; Konoshima et al., 2008; 

Sheehan and Bachelet, 2019).  

We specify a spatial wildfire arrival rate in Eq. (8) to capture landowner expectations of 

large wildfire risk in line with our theory section and wildfire numerical studies13: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖,𝑡𝑡−20𝑟𝑟 = 𝑁𝑁𝑁𝑁.  𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 20 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
20 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

                   (8) 

This metric produces the average annual fire arrival rate over the most recent 20-year period 

before parcel i is sold in year t. Wildfires are a natural part of the ecosystem in western U.S. 

                                                           
12 For example, the mean VPD over the growing season (April-July) between 1974-2003 is computed for sales sold in 
2004. 
13  To connect with the existing wildfire hedonic literature, we also specify a wildfire distance measurement that 
measures the proximity of each parcel to the nearest wildfires. We then perform a robustness check by replacing the 
wildfire arrival rates with this distance-based fire measurement to examine the wildfire effects. More details can be 
found in Sec. 6.2.  
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forests, and landowners know they regularly occur. Changes in wildfire behavior over a long 

period of time are likely to lead to a shift in expectations as landowners' perceptions of wildfire 

risk evolve based on their knowledge, experience, and social interactions (Brenkert-Smith et al., 

2013). Thus, we prefer using a relatively long fire history (e.g., 20 years) to derive the average 

fire risk for each parcel to reflect the pattern and frequency of large wildfires that have prevailed 

around each parcel over a long period of time. Moreover, according to Shatford et al. (2007), 

natural conifer regeneration takes approximately 9-19 years following forest fires. Therefore, it is 

plausible that the impact of large wildfires that occurred greater than 20 years ago may diminish 

with tree regeneration.    

         We include three different independent variables in Eq. (7) to represent this large wildfire 

arrival rate building on three different radii from parcel i: r=0 to capture large fires that burn 

directly on parcel i, and extending rings to capture neighboring large fires of r=0-15km and 

r=15-30km.14 An important feature of specifying wildfire as the linear sum of three different 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖,𝑡𝑡−20𝑟𝑟  variables using three different radii r is our ability to separately estimate price impacts 

from large wildfires that occur directly on the parcel (r=0) from large wildfires that occur on 

nearby land, which the theory in Sec. 3 suggests is important for identifying changing fire arrival 

expectations. One final note about Eq. (8) is that 94% of all large wildfires that occurred within 

15km of each private timberland parcel in our sample burned on non-private timberland, with 

most (about 68%) burning on other land use types such as shrubland and the rest on public 

                                                           
14 As a starting point, we use three rings, ranging from 0-5km, 5-10km, and 10-15km, to distinguish wildfire arrival 
rates at different distances. The rings are chosen arbitrarily. As shown in Appendix Table A1, we find no significant 
difference in wildfire effects among these three rings. Thus, we combine them into one wildfire variable within 0-15 
km around the parcel to capture closer wildfire risks. For wildfire risks further away, we compute fire arrival rates 
within 15-20km and 20-30km but find no statistically significant difference between the two. Thus, we include a 
wildfire arrival rate within 15-30km to account for wildfire risks farther from the center. 
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forestland.15 And so 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖,𝑡𝑡−200−15  should be primarily driven by factors exogenous to the private 

timberland market, such as meteorology, random ignition events, and fuels on non-private 

timberland.16  

See Fig. 6 for a simple depiction showing how we construct the 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖,𝑡𝑡−20𝑟𝑟   in different 

radii 𝑟𝑟 using MTBS wildfire polygon data. The dark area is the parcel perimeter created based on 

parcel coordinates and parcel acres. The green shaded areas represent 15 km rings mapped out 

from the parcel 𝑖𝑖. Suppose three different large wildfire events a, b, and c that have occurred on 

and nearby parcel 𝑖𝑖 in the past 20 years before parcel 𝑖𝑖 sold. Thus, based on equation Eq. (8), 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖,𝑡𝑡−200  would equal 1/20 (=0.05) fires per year since only one fire (c) intersects with parcel 𝑖𝑖. 

The variable 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖,𝑡𝑡−200−15  equals 0/20 (=0.00) fires per year to avoid double counting the arrival of 

fire (c). Likewise, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖,𝑡𝑡−2015−30 equals 2/20 (=0.1) fires per year since two new fires (a) and (b) 

intersect with the outer ring. 

                                                           
15 We are interested in fire risks within 15 km of each parcel because we find that large wildfires between 15-30 km 
have no statistically significant effect on land values (see Table 2). 
16 However, large wildfires that occurred directly on the parcel may be endogenous to private timberland because of 
human-caused ignitions on private lands due to equipment use (Downing et al., 2022). To address this issue, we 
identify the cause of each wildfire using a spatial wildfire occurrence dataset. We find that among the 289 parcels (3% 
of our full sample) having at least one large wildfire directly occurred on them, 125 had at least one human-caused 
large fire. By excluding those parcels having at least one human-caused wildfires occurring directly on them from our 
sample, we find no significant difference in wildfire results (see Appendix Table A7), suggesting that this potential 
endogeneity concern is not a major issue in our study. 
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Figure 6. A simple map of fire area 

Our large wildfire data are derived from the Monitoring Trends in Burn Severity (MTBS) 

database, which contains the most comprehensive and most up-to-date wildfire records dating 

back to 1984. This database contains information on the date, boundary, coordinates, and size of 

all large fires that have burned more than 1000 acres in the west. Each parcel's large wildfire 

arrival variable is computed separately. For each parcel, we keep large wildfires that happened 

from six months to 20 years prior to the sale date. The 6-month gap is chosen because we assume 

a land transaction can take up to 6 months to complete.  

The MTBS fire data does not include information on small wildfires less than 1,000 acres 

in size, which can be common in the western U.S.17 To account for these small wildfire impacts, 

we use additional wildfire data from the spatial wildfire occurrence dataset from 1992-2020 

compiled by Short (2022) to calculate small wildfire arrival rates for each parcel based on the 

same spatial fire arrival measure in Eq. (8).18 While Short’s (2022) dataset does not include 

                                                           
17 In our study region, small wildfires occur frequently, but their frequency and severity do not change much over time, 
as shown in Appendix Fig. A2. 
18 Since our transaction sample starts in 2004, we construct the small wildfire arrival rate using the most recent 10-
year period rather than the most recent 20-year period considering the spatial wildfire occurrence dataset only dates 
back to 1992. 
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spatial boundaries of each wildfire like the MTBS, it does include information on the date, 

ignition coordinates, causes, and size of all geo-referenced wildfire records (including both large 

and small fires) across the country. While we prefer the MTBS data’s exact spatial mapping of 

the boundaries of large wildfire events, we test robustness by including small wildfire arrival 

rates as additional controls. Detailed information can be found in Sec. 6.2. 

Finally, in order to capture the heterogeneous fire effects from different sized wildfires like 

very large nearby wildfire (VLNF) events, we include a dummy variable VLNF which equals one 

if the size of the nearest large wildfire to each parcel is greater than 5000 hectares (about 12355 

acres), and zero otherwise19. Our definition of a very large nearby wildfire (VLNF) is based on 

Barbero et al.’s (2015) analysis of climate change and large U.S. wildfires. And since Busby et al. 

(2012) find that fire management effort is lower in landscapes with fragmented ownership between 

public and private landowners, we include a variable representing proximity to the nearest public 

land.  

5.4 Measurement of other land attributes  

For land attributes other than drought stress and wildfire that affect timberland values, we 

include a vector of variables in 𝑋𝑋𝑖𝑖 for each parcel 𝑖𝑖 that contains biophysical factors that affect 

timber productivity through the volume function (soil quality, slope, elevation), variables that 

represent pressure for urban development (distance to the nearest urban area), and a variable that 

represents costs of transporting timber (distance to the nearest road). We compile these land 

attributes from various publicly available data sources, and the process of their creation is 

described in greater detail in the Appendix. 

                                                           
19 The construction of VLNF does not consider fires that occurred directly on the parcel, as direct fire damage to the 
parcel may not notably differ concerning the size of the wildfire—particularly for small parcels. 
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Table 1 provides summary statistics of the dependent and independent variables used in 

the analysis. Both the unweighted and weighted average timberland prices fall within our 

expectations. But the weighted average price appears to be more consistent with estimates 

provided by Mihiar and Lewis (2021) for net returns (rents) to forestry in western counties, as 

well as Hashida and Lewis (2022) for Douglas-fir mean rents.20 Thus, we believe that our 

screening rules discussed in Sec. 5.1, combined with parcel acres weighting, produce reasonable 

timberland prices. As expected, the independent variables vary widely across sales.  

Table 1. Summary statistics of dependent and independent variables 
Variable Obs Min Max Unweighted Weighted by acres 

Mean Std. dev. Mean Std. dev. 
Timberland price per acre ($/acre) 9,145 103 59975 8314.686 9773.464 4357.170 5857.997 
Large wildfires per decade on parcel  9,145 0 1.5 0.016 0.092 0.016 0.096 

Large wildfires per decade near parcel (0-15 km away) 9,145 0 7.5 0.481 0.802 0.630 1.098 

Large wildfires per decade distant (15-30 km away) 9,145 0 13 1.235 1.716 1.561 2.551 
VPD over the growing season (hPa) 9,145 1.798 16.345 8.587 2.202 7.733 2.395 
Equal 1 if a very large nearby fire (VLNF) 9,145 0 1 0.179 0.383 0.209 0.407 
Elevation (km) 9,145 0 2.111 0.527 0.365 0.610 0.481 
Slope (degree) 9,145 0 39.382 11.114 6.845 12.529 6.911 
Soil (non-irrigated land capability class) 8,065 2 8 5.579 1.245 5.985 1.076 
Distance to the nearest road (km) 9,145 0 31.529 4.987 4.496 7.010 7.491 
Distance to the nearest urban area (km) 9,145 5.002 111.355 20.410 15.231 23.960 18.399 
Distance to the nearest public forest (km) 9,145 0 9.101 0.913 1.212 0.856 1.087 

Note: The unit of average annual large fire arrival rate variables was rescaled to a large wildfires per-decade 
measure to simplify the interpretation of estimated coefficients in empirical analysis.  
 

6. Estimation results 

Table 2 presents the coefficient estimates with the large wildfire arrival rates as the key fire 

variables using the full sample of sales prices. As discussed in Sec. 4, the four model 

specifications allow us to estimate results under alternative spatial scale definitions of fixed 

                                                           
20  Suppose the discount rate is 3%, then the annualized rent would be $129 per acre for the average weighted 
timberland price of $4300 per acre. This is modestly higher than the bare land values from Mihiar and Lewis (2021) 
and Hashida and Lewis (2022), which is expected since our sample likely includes mostly parcels that are not bare 
land. 
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effects (Model 1 vs Model 2), with the control of county time trends (Model 3), and with the 

inclusion of the small fire arrival rate (Model 4). 

6.1 Marginal effects of drought stress and large wildfire arrival 

Since VPD enters the equation as a quadratic, it is more intuitive to interpret the results with the 

average marginal effect (AME) of VPD (see the bottom panel of Table 2). Across four model 

specifications, the AME of VPD is fairly consistent and statistically significant (p<0.05), with 

the exception of model (1) where the AME of VPD is positive and not statistically significant. 

The different estimate in model (1) may be due to state-level fixed effects being too coarse to 

account for all time-invariant unobserved factors, resulting in omitted variable bias. According to 

our preferred Model (2), the AME for VPD suggests that, on average, one hPa increase in mean 

VPD over the growing season will decrease timberland values per acre by 5.8%. Appendix Fig. 

A1 shows a larger negative drought impact in current warmer and drier areas. Higher levels of 

VPD over the growing season negatively impact timberland prices regardless of the current VPD 

level, but this impact is only significant in the current VPD range of 7-14 hPa, which is the 

majority of the sample. Inspection of Eq. 6 indicates that the marginal effect of VPD on 

timberland prices operates through productivity effects on the tree volume function and through 

landowner expectations of wildfire risk.  

In terms of large wildfire impacts, we observe significant (p<0.05) negative impacts of 

large wildfire arrival that occurs either on the parcel or on spatially adjacent land within 15km 

(Table 2). We find no evidence that timberland prices are affected by either i) nearby small 

wildfires that occur at any distance away (Table 2 Model 4), or ii) large wildfires that occur 

beyond 15km from each parcel transaction. It is not surprising that timberland markets do not 

respond significantly to small wildfires as they are likely less destructive than large fires, and 



32 
 

their occurrence is relatively stable over time (Appendix Fig. A2). We also find that our 

preferred large wildfire and VPD estimates (Model 2) are robust to the inclusion of county-trends 

(Model 3) and small wildfire arrivals (Model 4). 

The largest negative impact from large fires is from fires that occur directly on the private 

timberland parcel, as an increase in the fire arrival rate of one fire per decade will reduce 

timberland value by 61.6% based on our preferred model (2)21. This result confirms our 

theoretical findings in Sec. 3 that fires which occur directly on parcels with a positive age 

growing stock will have a larger negative effect on timberland values due to the fire damaging 

the existing tree stock on the stand. The negative price impact of spatially proximate large 

wildfire arrival rates within 0-15km provides evidence that the occurrence of spatially proximate 

fire does serve as an avenue for updating timberland owners’ expectations of wildfire risk. 

Furthermore, the results show a negative and statistically significant (p<0.05) estimate of the 

very large nearby fire (VLNF) effect, suggesting that timberland values are about 12.1% lower 

when a very large fire (greater than 5000 hectares) occurs nearby. One interpretation is that very 

large fires within close proximity are more salient and thus have a large impact on timberland 

values through shifting landowner’s risk expectations.  

 In terms of the other independent variables, timberland values are lower in high-elevation 

and steep-sloped areas (p<0.05). Soil quality data is missing for about 12% of the sample and so 

is not included in our main estimation results. Estimation results for the sub-sample that includes 

soil quality can be found in Appendix Table A9, but indicate no statistically significant impact of 

soil quality at any reasonable significance level. In addition, we find that longer distance to roads 

                                                           
21 Fires that happened directly on private timberland may have varying impacts on timberland values as the trees 
regenerate (Shatford et al., 2007). However, in our case, only 289 parcels (about 3% of our sample) have experienced 
fires in the preceding 20 years, and this limited number of observations includes insufficient variation to empirically 
test the dynamic effects of direct wildfire damage. 
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and urban areas negatively affect the value of timberlands (p<0.05), which suggests that 

timberlands located near roads and urban areas generally have a higher land value as a result of 

lower delivery costs and higher development value for other uses. Distance from public forests 

has a positive and significant effect (p<0.05) on timberland values, consistent with Busby et al.’s 

(2012) finding that fire management effort is lower (and fire risk is higher) when public and 

private lands are more fragmented.  
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Table 2. Estimated coefficients of full sample results 

Log (price per acre) Model (1) Model (2) Model (3) Model (4) 
Mean VPD (hPa) 0.148** 0.008 -0.008 -0.002 
 (0.065) (0.092) (0.088) (0.093) 
Mean VPD square -0.009** -0.004 -0.003 -0.004 
 (0.004) (0.005) (0.005) (0.005) 
Large wildfires per decade on parcel -0.370 -0.616*** -0.634*** -0.635*** 
 (0.239) (0.193) (0.209) (0.187) 
Large wildfires per decade nearby (0-15km away) -0.174*** -0.149*** -0.137*** -0.142*** 
 (0.029) (0.027) (0.031) (0.025) 
Large wildfires per decade distant (15-30km away) -0.032** -0.017 -0.018 -0.013 
 (0.015) (0.013) (0.012) (0.015) 
Very large nearby fires (VLNF) =1  -0.078 -0.121** -0.162*** -0.115** 
 (0.062) (0.051) (0.058) (0.052) 
Small wildfires per decade on parcel    -0.099 
    (0.066) 
Small wildfires per decade nearby (0-15km away)    -0.000 
    (0.000) 
Elevation (km) -0.561*** -0.564*** -0.557*** -0.563*** 
 (0.140) (0.156) (0.152) (0.158) 
Slope (degree) -0.002 -0.020*** -0.020*** -0.020*** 
 (0.006) (0.006) (0.006) (0.006) 
Distance to the nearest road (km) -0.023*** -0.014** -0.014** -0.014** 
 (0.006) (0.005) (0.005) (0.006) 
Distance to the nearest urban area (km) -0.013*** -0.008*** -0.008*** -0.007*** 
 (0.002) (0.002) (0.002) (0.002) 
Distance to the nearest public forest (km) 0.063*** 0.044** 0.047** 0.046** 
 (0.019) (0.021) (0.021) (0.021) 
Constant 8.348*** 9.808*** 10.496*** 9.789*** 
 (0.366) (0.435) (0.422) (0.449) 
State and year FE Yes    
County and year FE  Yes  Yes 
County, year, and county-trends FE   Yes  
Observations 9,145 9,145 9,145 9,145 
R-squared 0.467 0.544 0.562 0.545 
Average Marginal effects (AME)     
AME of VPD 0.011 -0.058** -0.058** -0.059** 
 (0.021) (0.026) (0.027) (0.026) 

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the 
county level. The unit of average annual fire arrival rate variables was rescaled to a fires per-decade measure to 
simplify the interpretation of estimated coefficients. 
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6.2 Robustness checks  

We employ several checks to analyze the robustness of our results. The Appendix contains the 

full results, and here we discuss the main points. First, we replace the wildfire arrival rates with 

smaller distance bins from each parcel transaction (0-5km, 5-10km) and we find no significant 

difference within the different 5km bins that are less than 15km from the parcel (Table A1), 

confirming our choice of defining fire proximity with 15km bins. Second, we replace the wildfire 

arrival rates with a variable indicating proximity to the nearest large wildfire, a measure that is 

common in residential hedonic literature (e.g., Stetler et al., 2010; McCoy and Walsh, 2018). The 

results are shown in Appendix Table A2 and the AME of distance to fire shows that timberland 

values will increase by 0.3% for each 1 km distance further from the nearest fire. In addition, an 

interaction term between VPD and fire distance shows that large wildfires have a greater impact 

in high VPD areas where the climate is drier and warmer (Table A2).  

 Third, we examine the robustness of our results to alternative screening rules used to 

create the full sample. We increase the minimum size of parcels in the sample from 10 to 20 

acres, and we increase the minimum distance of each parcel to nearby urban areas from 5km to 

10km. Despite the reduced sample size from these restrictions (Appendix Table A3), results still 

indicate a similar magnitude negative price impact from large wildfires that occur on and nearby 

parcels (see Fig. 7).   

Fourth, since VPD is one of the key factors associated with higher wildfire risks (Mueller 

et al., 2020), one may be concerned that wildfire arrival rates may be too correlated with VPD 

for precise estimation. To examine this concern, we first note that the correlation coefficients 

between all large wildfire variables and VPD are modest (less than 0.25). We also re-estimate the 
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wildfire impacts without VPD included as an independent variable but find a minimal impact on 

the fire arrival conclusions when dropping VPD (see Fig. 7).  

Fifth, since there is minimal theoretical guidance on how and which climate variables 

enter Ricardian models (Mendelsohn and Massetti, 2017), we employ the machine-learning 

technique double-selection lasso to estimate the wildfire effects by examining all possible 

selected parcel and climate variables (including both nonlinear and interaction terms) (Appendix 

Table A4).22 Wildfire impacts conducted with double-selection lasso are very similar to our main 

results (see Fig. 7). 

Sixth, we explore alternative time period definitions used to compute our drought 

measure VPD and wildfire arrival rates. Appendix Table A5 presents the results using different 

calculations of the VPD variable, where this measure is computed using the 5, 10, 15, or 20 years 

prior to each parcel’s sale, as opposed to our main results that compute this measure using 30 

years prior to each parcel’s sale. The AMEs of VPD are largely the same across all definitions of 

time period (Appendix Table A5), and the R2 measure is insensitive to the different calculations. 

Appendix Table A6 displays the results using different calculations of large wildfire arrival rates, 

where this fires/decade measure is computed only using fires over the 5, 10, or 15 years prior to 

each parcel’s sale, as opposed to our main results that compute this measure using fires over the 

20 years prior to each parcel’s sale. We continue to observe negative and decreasing fire impacts 

as fires occur farther away, though the estimates contain more noise when using short and recent 

time windows. An important point is that goodness-of-fit is worse when replacing the fire arrival 

rate variables with similar calculations that use shorter time periods of less than 20 years. 

                                                           
22 In addition to VPD, we include 30-year averages of annual and seasonal mean temperatures and precipitations, as 
well as mean temperature and precipitation over the growing season (April-July). 
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We also examine a concern that large wildfires that occurred directly on parcels may be 

endogenous if caused by humans on that parcel. We identify the cause of each large wildfire 

using the spatial wildfire occurrence data and then drop parcels having human-caused large 

wildfires that occur directly on them from our sample and re-estimate our wildfire effects. 

Appendix Table A7 shows no significant differences in coefficients after dropping those parcels.  

Finally, we assess the robustness of results to different location fixed effect definitions by 

estimating the main Eq. (7) with a series of alternative spatial fixed effects. While our main 

results use county fixed effects, here we define census tract fixed effects as well as randomly 

distributed grid cells across the study region (Appendix Table A8). We create evenly distributed 

grid cells formed by 25 rows and 25 columns (about 40*72 km per grid cell, labeled as Grid25 

FE), and a finer-scale 50 rows*50 columns set of spatial grids (about 20*36 km per grid cell, 

labeled as Grid50 FE23). Importantly, we find strong robustness of our main large wildfire and 

VPD impacts to alternative definitions of spatial fixed effects (See Fig. 7). The VPD and large 

wildfire arrivals all negatively impact timberland values on a robust and significant basis, with 

similar magnitudes.  

 

 

 

 

 

 

 

 
                                                           
23 See Fig. A4 in the Appendix for reference. 
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Figure 7. Marginal effects of large wildfire arrival rates in different robustness checks 
Note: CountyFE represents the full sample estimators with our preferred county FE. Subsample represents the 
estimators with restrictive screening rules. VPD5, 10, 15, and 20 represent the full sample estimators with average 
VPD over the past 5, 10, 15, and 20 years, respectively. No_human represents the full sample estimators after 
dropping sales with at least one human-caused large wildfire occurred directly on them. No_VPD represents the full 
sample estimators after excluding VPD. Lasso represents the double-selection lasso estimators. The final three 
estimators represent the full sample estimators with different location FEs.  

7. Capitalization impacts of historical changes in drought stress and large wildfire risks  

In this section, we examine how observed changes in drought stress and large wildfire risks have 

contributed to the economic value of timberland over the past two decades. Specifically, by using 

estimated coefficients from our preferred model (2) in Table 2, we analyze how changes in the 

VPD and wildfire variables over the past two decades have affected the economic value of 

timberland. We focus on a comparison between 1984-2003 (past period) and 2001-2020 (current 
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Large wildfires per decade nearby (0-15km away)

Large wildfires per decade distant (15-30km away)

Very large nearby fires (VLNF) =1 
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period). As our main Eq. (7) is a log-level regression, the capitalization impact on parcel i from 

changes in mean VPD and large wildfire arrival equals:    

𝐸𝐸𝐸𝐸𝐸𝐸. % 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑡𝑡  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: %∆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,𝐷𝐷 = exp[𝛽𝛽1
�(𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖,91−20 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖,74−03)] − 1                         (9)    

𝐸𝐸𝐸𝐸𝐸𝐸. % 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: %∆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,𝐹𝐹 = ∑ {exp[𝛽𝛽2(� 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖,01−20
𝑟𝑟 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖,84−03

𝑟𝑟
𝑟𝑟 )] − 1} +

                                                                             exp[𝛽𝛽3
��𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖,01−20 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖,84−03� − 1                   (10)      

𝐸𝐸𝐸𝐸𝐸𝐸. % 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 = %∆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,𝐷𝐷 + %∆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,𝐹𝐹                  (11) 

Where 𝛽𝛽1
� represents the vector of estimated coefficients of mean VPD, 𝛽𝛽2

� is the vector of 

estimated coefficients of large wildfire arrival rate in different radii r, and 𝛽𝛽3� is the estimated 

coefficient of VLNF from our preferred model (2) in Table 2. Because our sample starts in 2004 

and ends in 2020, we define the mean VPD in the past period as a 30-year average over the 

growing season between 1974 and 2003, and the mean VPD in the current period as a 30-year 

average over the growing season between 1991 and 2020. In a similar manner, we calculate the 

large wildfire arrival rate within different radii in the past period using large wildfire records 

between 1984 and 2003, and during the current period using records between 2001 and 2020. 

Also, we use large wildfire records between 1984 and 2003 to compute the VLNF variable in the 

past, and use large wildfire records between 2001 and 2020 to compute the VLNF variable in the 

current period. Fig. 2 and Fig. A3 in the Appendix show the spatial distribution of wildfires and 

mean VPD during the past and current period, respectively.  

 Table 3 summarizes the mean drought impacts, large wildfire impacts, and total 

capitalization impacts across different subregions within our study area. As examined in Sec. 6.1, 

we calculate the drought impact using Eq. (9) only for those parcels having statistically 

significant VPD impacts and set the drought impact to zero for those parcels that have 

statistically insignificant VPD effects. On average, the results show that changes in VPD 
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between the 1974-2003 and 1991-2020 time periods have resulted in a 1.78% loss in timberland 

value per acre for the full sample, with some regional heterogeneity.  

For wildfire impacts, on average, we see that increasing wildfires between the 1984-2003 

and 2001-2020 periods led to an 8.01 % reduction in timberland value per acre for the full 

sample, with regional heterogeneity. We also decompose the overall large wildfire impacts 

across fires that occurred on each parcel, spatially proximate fires that occur nearby, and very 

large nearby fires. A key finding is that increases in fires that directly occurred on timberland 

parcels lowered land values by about 1%, while increases in neighboring fires (including very 

large nearby fires) accounted for the majority of the land value losses, collectively lowering land 

values by approximately 7% (Table 3). While fires that directly burn a parcel have a much larger 

per-acre impact than nearby fires (Table 2), this region simply contains more private timberland 

that is close to nearby wildfires than private timberland that is directly burned. As we argued in 

Sec. 3, spatially proximate fires that don’t directly burn a private parcel should impact land 

values through increases in the expected wildfire arrival rate. Our finding of a 7% land value 

reduction due to higher neighboring wildfire arrival rates also confirms our testable hypothesis 

from Sec. 3.2, which was that the observed increase in landowners’ expectations of wildfire rates 

would lower timberland values between 4% and 9%, and provides evidence that risk 

expectations from wildfire arrival are being updated through the more frequent occurrence of 

nearby fires. In addition, we should note that a portion of our estimated damages from drought 

stress (-1.78%) and from fires that directly burn private timberland parcels (-1.09%) could also 

embed changes in landowner risk expectations along with productivity effects and direct 

damages to the existing stock. As noted by Eq. (6), climate variables like VPD affect the 

timberland value function through both productivity effects on the volume function and through 
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wildfire risk expectations. Nevertheless, a primary finding from Table 3 is that changes in risk 

expectations account for the majority of estimated damages from recent changes in wildfire and 

drought stress.   

To scale our estimates up to the population of private timberland across the Pacific states, 

we note that the parcel transactions we use cover the entire geographical range of private 

timberland in this region, as illustrated in Fig. 5. According to federal Forest Inventory and 

Analysis Data (FIA), there are about 25,800,000 acres of private timberland across the three 

Pacific states. Using the share of timberland in each subregion as a weight, we then calculate the 

aggregated population-weighted drought stress, large wildfire, and total capitalization impacts 

for the entire Pacific region. We find that the increase in VPD and large wildfire arrival rates 

results in a 1.04% and 8.74% loss, respectively, in timberland value per acre for the full 

population. Overall, changes in drought stress and large wildfires lead to a total population-

weighted loss of approximately 10% of timberland values, or approximately $436 per acre. Thus, 

the total losses in timberland values caused by changes in drought stress and large wildfires over 

the past two decades would be about $11.2 billion for the three Pacific states, equivalent to our 

estimated reduction in per acre value (-$436/acre) times the total acres (25,800,000 acres) of 

private timberland.  
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Table 3. Capitalization impacts of wildfire and drought changes between current period (2001-
2020) and past period (1984-2003) across different subregions within the study area 

 
Full 
sample 

 California Oregon Washington Population 
weighted    

West of 
Cascades 

East of 
Cascades 

West of 
Cascades 

East of 
Cascades 

Drought stress impacts -1.78% 0.23% -1.62% -1.16% -0.19% -3.43% -1.04% 
Total large wildfire impacts -8.01% -13.74% -8.42% -3.26% -5.02% -8.15% -8.74% 
        From changes in large fires on each parcel  -1.09% -3.77% -0.39% 0.02% 0.04% -1.36% -1.36% 
        From changes in nearby large fires -4.24% -8.23% -2.93% -3.43% -0.07% -6.05% -4.32% 
        From changes in nearby very large fires  -2.68% -1.74% -5.10% 0.15% -4.99% -0.72% -3.06% 
Total capitalization impacts -9.79% -13.51% -10.04% -4.42% -5.21% -11.58% -9.78% 

Note: We calculate the population-weighted drought stress, large wildfire, and total capitalization impacts based on 
weights of 0.28, 0.28, 0.08, 0.21, and 0.15, respectively, for California, West of Cascades Oregon, East of Cascades 
Oregon, West of Cascades Washington, and East of Cascades Washington. 

Attributing our population-weighted drought stress and large wildfire damage estimates 

to climate change can be informed by two recent climate attribution studies. One study by 

Zhuang et al. (2021) finds that approximately two-thirds of the variation in VPD in the western 

U.S. between 1979 to 2020 is explained by anthropogenic climate warming, whereas the 

remaining one-third of the VPD trend is due to the natural variability of atmospheric circulation. 

Using this climate attribution evidence, our VPD-induced damages can be attributed to climate-

induced damages (a loss of 0.69%, ~$0.8 billion) and non-climate-induced damages (a loss of 

0.35%, ~$0.4 billion) as shown in Table 4. Another study by Abatzoglou and Williams (2016) 

suggests that ~55% of the increased western U.S. fuel aridity from 1979-2015 was due to 

anthropogenic climate change. If we attribute 55% of our estimated total large wildfire damages 

to climate change, then our results suggest a loss of 4.81% (~$5.4 billion) in timberland values 

comes from climate-induced increases in large wildfire arrival and a loss of 3.93% (~$4.4 

billion) comes from non-climate-induced increases in large wildfire arrival (e.g., from increased 

fuels). In total, our results indicate that recent climate change is responsible for a reduction in 
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timberland values by 5.5% ($6.2 billion) through climate-induced increases in large wildfires and 

vapor pressure deficits.  

Table 4. Climate attribution for drought stress and large wildfire impacts 

  Population 
weighted 

  California Oregon Washington 

      West of 
Cascades 

East of 
Cascades 

West of 
Cascades 

East of 
Cascades 

Attribution of drought stress impacts -1.04% 0.23% -1.62% -1.16% -0.19% -3.43% 
        Climate change -0.69% 0.15% -1.07% -0.77% -0.13% -2.26% 
        Non-climate change -0.35% 0.08% -0.55% -0.39% -0.06% -1.17% 
Attribution of large wildfire impacts -8.74% -13.74% -8.42% -3.26% -5.02% -8.15% 
        Climate change  -4.81% -7.56% -4.63% -1.79% -2.76% -4.48% 
        Non-climate change factors -3.93% -6.18% -3.79% -1.47% -2.26% -3.67% 
Total climate change impacts -5.50% -7.41% -5.70% -2.56% -2.89% -6.74% 
Total non-climate change impacts -4.28% -6.10% -4.34% -1.86% -2.32% -4.84% 

Note: Following Zhuang et al. (2021), about two-thirds of VPD impacts are attributed to anthropogenic climate 
warming, whereas the remaining one-third is due to the natural variability of atmospheric circulation. Following 
Abatzoglou and Williams (2016), about 55% of large wildfire impacts is explained by climate change, whereas the 
remaining is due to non-climate change factors that influence large wildfire occurrence.  

8. Discussion 

Natural resources have been adversely affected by a variety of climate-induced disturbances, 

including heatwaves, droughts, large wildfires, storms, and flooding. For example, the western 

U.S., a region with diverse climate regimes and valuable natural capital embedded in forest 

resources, has been suffering from drought and increasingly frequent large wildfires in recent 

years due to rising temperatures (Abatzoglou and Williams, 2016). However, it is unclear how 

natural resource markets have already responded to such climate shocks. To fill this gap in the 

literature, we develop an econometric analysis of wildfire and climate impacts on market prices 

for private timberland across the Pacific states in the western U.S. Our pooled cross-sectional 

data of over 9,000 individual timberland transactions from 2004-2020 across the entire Pacific 

coast of the U.S. allows us to control for a range of spatial and temporal fixed effects to help 
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identify the effects of drought stress and large wildfire arrivals on timberland values. Our results 

indicate that increasingly frequent large wildfire arrival over the past two decades has already 

lowered the economic value of timberland through two avenues: i) a 1.36% reduction in land 

value due to direct fire damage on the existing forest stock, and ii) a 7.38% reduction in land 

value due to increasingly frequent neighboring fires that have altered landowners’ expectations 

of fire arrival and increased the risk of investing in private timberland. Building off prior climate 

change attribution studies that link changes in VPD and large wildfires in the western U.S. to 

anthropogenic climate change (Abatzoglou and Williams, 2016; Zhuang et al., 2021), our results 

suggest that recent climate change is responsible for lowering timberland values in the Pacific 

states by 5.5% (~$6.2 billion). 

Our findings illustrate that in comparison to the price reduction caused by direct burning 

of private timberland, the primary damage to timberland values arises from altered landowner’s 

risk expectations in the land market. We contribute to recent calls for analyzing how markets 

capitalize and develop expectations of future climate change. While prior studies have 

emphasized how scientific forecasts of climate change can be capitalized into agricultural land 

markets (Severen et al., 2018), we show that locally increasing rates of climate-related natural 

disasters can serve as an avenue for altering landowner expectations of climate impacts and 

become capitalized into land values. We interpret this mechanism of local climate disasters 

impacting climate expectations and capitalizing into land values as an example of what Massetti 

and Mendelsohn (2018) call reactive adaptation, whereby people adjust to climate changes as 

those changes are observed. Local climate-induced natural disasters like wildfire, flooding, and 

wind damage are quite salient, and our results provide evidence that changes in their local 

frequency alter risk expectations for assets like land. Prior economic studies of future climate 
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change on forestry differ in their assumptions of landowner expectations, ranging from 

numerical analyses that assume current landowners perfectly anticipate future climate change 

(e.g., Sohngen and Mendelsohn, 1998; Sohngen and Tian, 2016) to empirically-based 

simulations that assume landowners react to climate change as it occurs (Hashida and Lewis, 

2019).   

Given our application to timberland markets, our empirical estimates are strongly 

consistent with testable hypotheses that emerge from theoretical natural resource economic 

representations of wildfire. We show that our approximate 7% estimated land value loss arising 

from increasingly frequent local large wildfire arrival rates is supported by numerical 

parameterization of Reed’s (1984) model with local data. Further, our finding that spatially 

proximate large wildfire events affect neighboring private timberland values is consistent with 

numerical studies that emphasize how spatial externalities associated with large wildfire spread 

from adjacent land in forests should be capitalized into land values (e.g., Konoshima et al., 2008; 

Busby et al., 2012; Lauer et al., 2017).  

Our results also highlight the exposure of U.S. forestry to risk from wildfire, and the 

persistent and increasing problem arising from the lack of widespread markets to insure against 

losses to timber from wildfire (Chen et al. 2014). To the extent that some private landowners 

hold insurance for timber losses to fire, those insurance premiums should be capitalized into their 

land prices (Bin et al. 2008) and our results would be conditional on the current state of 

insurance. For many years, the State government in Oregon was the only state that had private 

insurance for wildfire suppression expenses, though that policy was dropped in 2023 as a result 

of rising premiums and deductibles due to increasing wildfire risk.24  

                                                           
24  The decision to drop the private insurance was made on 4/3/2023 in a meeting of the Oregon Department of 
Forestry’s Emergency Fire Cost Committee. 
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 Our findings of how natural resource markets have already been affected by climate-

induced shocks such as drought stress and wildfire risks have several important policy 

applications. First, by estimating how natural resource markets react to climate-induced disaster 

shocks, our results show how ongoing climate change can alter the value of natural capital, 

which can impact private investments made in natural capital and require public intervention to 

prevent unintended externalities from management changes. Second, we add new insights into 

existing estimates of wildfire damages, which focus on damages to air and water quality, 

property losses, health care costs, injuries, and fire suppression costs (Dale, 2010).  Our findings 

add an additional cost of recent large wildfire events by showing how climate-induced increases 

in fire arrival change the land market’s perceived risk of holding timberland assets, thereby 

generating costs for current timberland owners even if their land has not yet burned. 

Caveats to our study include the following. First, our land price model does not consider 

future climate forecasts, which may affect current land prices (Severen et al., 2018). A challenge 

with incorporating climate forecasts would be matching the year of forecast availability to the 

year of each parcel transaction, which is more challenging in long pooled cross-sectional datasets 

like ours than it is in cross-sectional studies. Second, we would perceive our estimates of large 

wildfire impacts as a lower bound of impacts on forests since fire will also damage many non-

market ecosystem services from forests like recreation (Gellman et al. 2022) that would not be 

accounted for in a study like ours that uses land market prices of timberland.  
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Appendix  

In this section of the Appendix, we describe our data sources and data collection process in 

detail. 

Timberland prices: The following screening rules are used to eliminate outliers and ensure our 

analysis primarily focuses on land with timber production being a non-trivial portion of its 

market value. We start by removing sales with land prices less than $100/acre or greater than 

$60,000/acre (in 2020 U.S. dollars) to make sure our sample consists of arm's length transactions 

within a reasonable price range. This upper price limit is detected by a box plot. To ensure each 

plot is private timberland, we then select parcels with distance to the nearest government-defined 

private timberland (see Sec. 2) less than 1 km as a quality-control check. To ensure land isn’t 

primarily valued for future development, parcels with a distance to the nearest urban area less 

than 5 km or a sale size smaller than 10 acres are excluded. As a final step, we only keep sales 

starting in 2004 and ending in 2020 for the three Pacific states (Washington, Oregon, and 

California) to match the wildfire data which is only available between 1984 and 2020. Therefore, 

each sale is able to be matched with a wildfire history over the past 20 years to achieve 

consistency in wildfire measurements.  

Land attributes: For each parcel, we also gather additional land characteristics from a variety of 

sources. We use non-irrigated land capability class as a proxy for soil quality, where this data is 

taken from the Gridded National Soil Survey Geographic Database (gNATSGO) database, which 

contains detailed soil information at a 10m resolution for all areas of the U.S. Land capability 

classes are represented by numbers 1 through 8, and the larger the number, the more restrictions 

the land has on its use. As soil data have a high resolution, assigning soil class to the parcel's 

centroid may not be accurate in determining soil quality for large parcels. So, we create a buffer 
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around each parcel to estimate its boundary, with the buffer area equal to the total acreage of the 

parcel. Within each parcel, we calculate the area associated with each soil class. Following that, 

a spatial-weighted average based on the area of each soil class is computed to aggregate the soil 

classes to the parcel level. We also include slope and elevation variables using data derived from 

the national Digital Elevation Model (DEM) model at a 1-arc (30m) resolution. Each sale is 

assigned a slope and elevation corresponding to the centroid of the parcel. We use distance to the 

nearest road to approximate the costs of delivery for timber production, where distance is 

calculated in GIS using the map of major roads of the United States 2014. We measure the urban 

development potential of each parcel using the distance to the nearest urban area, which has been 

used in prior hedonic studies of land values (Bigelow et al., 2017). The distance to the nearest 

urban areas is computed in GIS using the U.S. 2010 Census Urban Area shapefiles, where urban 

areas include both urbanized areas (UAs) of 50,000 or more people and urban clusters (UCs) of 

at least 2,500 and less than 50,000 people as defined in the 2010 Census. While our main data 

filters described in Sec. 5.1 likely drop the forested parcels with the highest urban development 

potential, there likely remains some residual future development value embedded in our 

timberland transaction prices that will be captured in the distance to nearest urban area variable. 
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Appendix tables 

Table A1: Results with finer scale of wildfire arrival rates 

Log (price per acre) Model (1) Model (2) 
Mean VPD (hPa) 0.003 0.007 
 (0.093) (0.092) 
Mean VPD square -0.004 -0.004 
 (0.005) (0.005) 
Large wildfires per decade on parcel -0.628*** -0.623*** 
 (0.189) (0.190) 
Large wildfires per decade nearby (0-5km away) -0.177** -0.164* 
 (0.087) (0.095) 
Large wildfires per decade nearby (5-10km away) -0.184*** -0.172*** 
 (0.042) (0.043) 
Large wildfires per decade nearby (10-15km away) -0.144*** -0.122*** 
 (0.037) (0.033) 
Large wildfires per decade distant (15-20km away)  -0.010 
  (0.038) 
Large wildfires per decade distant (20-30km away)  -0.021 
  (0.017) 
Very large nearby fires (VLNF) =1 -0.122** -0.120** 
 (0.050) (0.051) 
Elevation (km) -0.589*** -0.568*** 
 (0.156) (0.156) 
Slope (degree) -0.020*** -0.020*** 
 (0.006) (0.006) 
Distance to the nearest road (km) -0.015*** -0.014** 
 (0.005) (0.005) 
Distance to the nearest urban area (km) -0.008*** -0.008*** 
 (0.002) (0.002) 
Distance to the nearest public forest (km) 0.043** 0.044** 
 (0.021) (0.021) 
Constant 9.811*** 9.795*** 
 (0.436) (0.440) 
County and year FE Yes Yes 
Observations 9,145 9,145 
R-squared 0.544 0.544 
Average Marginal effects (AME)   
AME of VPD -0.060** -0.058** 
 (0.026) (0.026) 
Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the 
county level. 
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Table A2.  Results with distance to the nearest fire 

Log (price per acre)  
Mean VPD (hPa) -0.046 
 (0.103) 
Mean VPD square -0.004 
 (0.006) 
Distance to the nearest large wildfire (km) -0.005 
 (0.006) 
Distance to the nearest large wildfire square -0.000 
 (0.000) 
Mean VPD * Distance to the nearest large wildfire 0.001 
 (0.001) 
Very large nearby fires (VLNF) =1 -0.084 
 (0.052) 
Elevation (km) -0.574*** 
 (0.160) 
Slope (degree) -0.020*** 
 (0.006) 
Distance to the nearest road (km) -0.018*** 
 (0.006) 
Distance to the nearest urban area (km) -0.007*** 
 (0.002) 
Distance to the nearest public forest (km) 0.042* 
 (0.022) 
Constant 9.626*** 
 (0.470) 
County and year FE Yes 
Observations 9,145 
R-squared 0.535 
Average marginal effects (AME)  
AME of VPD -0.060** 
 (0.029) 
AME of fire distance 0.003* 
 (0.002) 

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the 
county level.  
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Table A3. Results with alternative size and urban proximity specification 

Log (price per acre)  
Mean VPD (hPa) -0.086 
 (0.078) 
Mean VPD square -0.000 
 (0.004) 
Large wildfires per decade on parcel -0.736*** 
 (0.180) 
Large wildfires per decade nearby (0-15km away) -0.100*** 
 (0.028) 
Large wildfires per decade distant (15-30km away) -0.011 
 (0.013) 
Very large nearby fires (VLNF) =1  -0.072 
 (0.068) 
Elevation (km) -0.507*** 
 (0.163) 
Slope (degree) -0.019*** 
 (0.006) 
Distance to the nearest road (km) -0.013** 
 (0.006) 
Distance to the nearest urban area (km) -0.007*** 
 (0.002) 
Distance to the nearest public forest (km) 0.019 
 (0.021) 
Constant 10.080*** 
 (0.445) 
County and year FE Yes 
Observations 4,705 
R-squared 0.584 
Average Marginal effects (AME)      
AME of VPD -0.093*** 
 (0.023) 

  Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the 
county level.  
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Table A4. Results with and without VPD 

Log (price per acre) Model (1) Model (2) 
   
Large wildfires per decade on parcel -0.710*** -0.530*** 
 (0.191) (0.120) 
Large wildfires per decade nearby (0-15km away) -0.169*** -0.113*** 
 (0.030) (0.017) 
Large wildfires per decade distant (15-30km away) -0.022* -0.007 
 (0.011) (0.010) 
Very large nearby fires (VLNF) =1  -0.140*** -0.064** 
 (0.048) (0.030) 
Elevation (km) -0.527***  
 (0.170)  
Slope (degree) -0.020***  
 (0.006)  
Distance to the nearest road (km) -0.013**  
 (0.006)  
Distance to the nearest urban area (km) -0.008***  
 (0.002)  
Distance to the nearest public forest (km) 0.047**  
 (0.021)  
Constant 9.101***  
 (0.186)  
County and year FE Yes  
Observations 9,145 9,145 
R-squared 0.540  
Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A5. Results with different time periods of average VPD 

Log (price per acre) Model (1) Model (2) Model (3) Model (4) 
Mean VPD over the past 5 years (hPa) 0.029    
 (0.068)    
Mean VPD over the past 5 years square -0.005    
 (0.003)    
Mean VPD over the past 10 years (hPa)  0.018   
  (0.081)   
Mean VPD over the past 10 years square  -0.004   
  (0.004)   
Mean VPD over the past 15 years (hPa)   0.018  
   (0.081)  
Mean VPD over the past 15 years square   -0.005  
   (0.004)  
Mean VPD over the past 20 years (hPa)    0.013 
    (0.085) 
Mean VPD over the past 20 years square    -0.004 
    (0.005) 
Large wildfires per decade on parcel -0.595*** -0.608*** -0.602*** -0.604*** 
 (0.193) (0.196) (0.193) (0.193) 
Large wildfires per decade nearby (0-15km away) -0.147*** -0.150*** -0.148*** -0.148*** 
 (0.027) (0.028) (0.028) (0.028) 
Large wildfires per decade distant (15-30km away) -0.019 -0.018 -0.017 -0.017 
 (0.012) (0.012) (0.013) (0.013) 
Very large nearby fires (VLNF) =1  -0.126** -0.126** -0.125** -0.124** 
 (0.054) (0.052) (0.052) (0.052) 
Elevation (km) -0.542*** -0.545*** -0.551*** -0.557*** 
 (0.157) (0.156) (0.155) (0.156) 
Slope (degree) -0.020*** -0.021*** -0.021*** -0.020*** 
 (0.006) (0.006) (0.006) (0.006) 
Distance to the nearest road (km) -0.015** -0.014** -0.014** -0.014** 
 (0.006) (0.006) (0.005) (0.005) 
Distance to the nearest urban area (km) -0.008*** -0.008*** -0.008*** -0.008*** 
 (0.002) (0.002) (0.002) (0.002) 
Distance to the nearest public forest (km) 0.044** 0.044** 0.045** 0.045** 
 (0.021) (0.021) (0.021) (0.021) 
Constant 9.716*** 9.738*** 9.776*** 9.819*** 
 (0.398) (0.404) (0.397) (0.407) 
County and year FE Yes Yes Yes Yes 
Observations 9,145 9,145 9,145 9,145 
R-squared 0.544 0.544 0.544 0.544 
Average Marginal effects (AME)     
AME of VPD -0.047* -0.050** -0.055** -0.057** 
 (0.024) (0.025) (0.024) (0.025) 

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the 
county level. 
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Table A6. Results with different time periods of large wildfire arrival rates 

Log (price per acre) Model (1) Model (2) Model (3) 
Mean VPD (hPa) 0.041 0.029 0.006 
 (0.098) (0.096) (0.092) 
Mean VPD square -0.007 -0.006 -0.004 
 (0.005) (0.005) (0.005) 
Large wildfires per decade on parcel over the past 5 years -0.202***   
 (0.069)   
Large wildfires per decade nearby (0-15km away) over the past 5 years -0.014   
 (0.018)   
Large wildfires per decade distant (15-30km away) over the past 5 years -0.019**   
    
Large wildfires per decade on parcel over the past 10 years  -0.368***  
  (0.104)  
Large wildfires per decade nearby (0-15km away) over the past 10 years  -0.036  
  (0.023)  
Large wildfires per decade distant (15-30km away) over the past 10 years  -0.025**  
  (0.012)  
Large wildfires per decade on parcel over the past 15 years   -0.561*** 
   (0.163) 
Large wildfires per decade nearby (0-15km away) over the past 15 years   -0.118*** 
   (0.024) 
Large wildfires per decade distant (15-30km away) over the past 15 years   -0.020* 
   (0.011) 
Very large nearby fires (VLNF) =1 -0.096* -0.101* -0.120** 
 (0.055) (0.054) (0.053) 
Elevation (km) -0.564*** -0.557*** -0.557*** 
 (0.164) (0.162) (0.156) 
Slope (degree) -0.021*** -0.021*** -0.020*** 
 (0.006) (0.006) (0.006) 
Distance to the nearest road (km) -0.018*** -0.018*** -0.015*** 
 (0.006) (0.006) (0.006) 
Distance to the nearest urban area (km) -0.008*** -0.008*** -0.008*** 
 (0.002) (0.002) (0.002) 
Distance to the nearest public forest (km) 0.045** 0.045** 0.046** 
 -0.096* -0.101* -0.120** 
Constant 9.320*** 9.532*** 9.745*** 
 (0.426) (0.423) (0.440) 
County and year FE Yes Yes Yes 
Observations 9,145 9,145 9,145 
R-squared 0.538 0.538 0.544 
Average Marginal effects (AME)    
AME of VPD -0.069*** -0.066*** -0.059** 
 (0.025) (0.025) (0.026) 

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the 
county level. 
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Table A7. Dropping sales with at least one human-caused large fire directly occurred on 
them 

Log (price per acre)  
Mean VPD (hPa) -0.008 
 (0.090) 
Mean VPD square -0.003 
 (0.005) 
Large wildfires per decade on parcel -0.630*** 
 (0.211) 
Large wildfires per decade nearby (0-15km away) -0.148*** 
 (0.030) 
Large wildfires per decade distant (15-30km away) -0.018 
 (0.013) 
Very large nearby fires (VLNF) =1  -0.119** 
 (0.052) 
Elevation (km) -0.584*** 
 (0.158) 
Slope (degree) -0.020*** 
 (0.006) 
Distance to the nearest road (km) -0.014** 
 (0.006) 
Distance to the nearest urban area (km) -0.008*** 
 (0.002) 
Distance to the nearest public forest (km) 0.042* 
 (0.021) 
Constant 9.667*** 
 (0.448) 
County and year FE Yes 
Observations 9,020 
R-squared 0.545 
Average Marginal effects (AME)      
AME of VPD -0.059** 
 (0.026) 

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the 
county level. 
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Table A8: Results with different levels of location fixed effects 

Log (price per acre) Model (1) Model (2) Model (3) 
Mean VPD (hPa) -0.171** -0.135* -0.136 
 (0.086) (0.078) (0.085) 
Mean VPD square 0.006 0.003 0.004 
 (0.005) (0.005) (0.005) 
Large wildfires per decade on parcel -0.545** -0.636*** -0.680*** 
 (0.217) (0.221) (0.189) 
Large wildfires per decade nearby (0-15km away) -0.126*** -0.170*** -0.112*** 
 (0.026) (0.038) (0.038) 
Large wildfires per decade distant (15-30km away) -0.016 -0.010 -0.023* 
 (0.021) (0.013) (0.012) 
Very large nearby fires (VLNF) =1  -0.147*** -0.136*** -0.044 
 (0.054) (0.047) (0.054) 
Elevation (km) -0.638*** -0.633*** -0.613*** 
 (0.127) (0.136) (0.167) 
Slope (degree) -0.023*** -0.030*** -0.029*** 
 (0.005) (0.004) (0.005) 
Distance to the nearest road (km) -0.012* -0.005 -0.004 
 (0.007) (0.005) (0.007) 
Distance to the nearest urban area (km) -0.006*** -0.005** -0.006 
 (0.002) (0.002) (0.004) 
Distance to the nearest public forest (km) 0.038 0.067*** 0.094*** 
 (0.026) (0.023) (0.026) 
Constant 9.699*** 11.593*** 11.438*** 
 (0.420) (0.429) (0.532) 
Census tracts and year FE Yes   
Grid25 and year FE  Yes  
Grid50 and year FE   Yes 
Observations 9,145 9,145 9,145 
R-squared 0.591 0.581 0.627 
Average Marginal effects (AME)    
AME of VPD -0.072*** -0.081*** -0.068*** 
 (0.023) (0.019) (0.023) 

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the 
county level. 
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Table A9. Results with soil quality 

Log (price per acre)  
Mean VPD (hPa) 0.009 
 (0.096) 
Mean VPD square -0.004 
 (0.005) 
Large wildfires per decade on parcel -0.589*** 
 (0.191) 
Large wildfires per decade nearby (0-15km away) -0.166*** 
 (0.028) 
Large wildfires per decade distant (15-30km away) -0.010 
 (0.013) 
Very large nearby fires (VLNF) =1  -0.114** 
 (0.047) 
Elevation (km) -0.576*** 
 (0.158) 
Slope (degree) -0.019*** 
 (0.006) 
Distance to the nearest road (km) -0.016** 
 (0.007) 
Distance to the nearest urban area (km) -0.009*** 
 (0.002) 
Distance to the nearest public forest (km) 0.044** 
 (0.022) 
Soil quality (nirr) -0.009 
 (0.032) 
Constant 9.922*** 
 (0.464) 
County and year FE Yes 
Observations 8,065 
R-squared 0.365 
Average Marginal effects (AME)      
AME of VPD -0.055** 
 (0.027) 

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the 
county level. 
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Appendix figures 

 
Figure A1. Estimated marginal effects of mean VPD  
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Figure A2. Frequency (above) and severity (below) of small wildfires by state and year 

Note: Small wildfires (less than 1000 acres) not included in the MTBS data are derived from the USFS spatial 
wildfire occurrence database.  
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Figure A3. Spatial distribution of 30-year average VPD in the past and current period 

 

 

         

Figure A4. Grid25 and Gird50 grid cells, respectively 
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