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Abstract: This paper estimates the impacts of insect damage on private timberland values in the 
Southeastern U.S. using a large, pooled cross-section of parcel-level timberland transaction price 
data and county-level insect damage data. Our econometric analysis indicates that a 1,000 acre 
increase in a county’s average insect damage acreage reduces timberland prices by 
approximately 1%. Using a variety of approaches to estimate the link between seasonal 
precipitation, temperature, and insect damage acreage, we project an average increase of between 
168 and 550 additional acres of annual insect damage per county under future climate projections 
to 2050 relative to the current climate. Using our econometric estimates, the predicted acreage 
increase in insect damages will lead to an approximate 0.2% ($6/acre) to 0.5% ($14/acre) 
reduction in weighted timberland prices, resulting in total losses of between $1 billion to $2.5 
billion for the entire timberland population in the Southeastern U.S. The methods and results 
highlight how to use empirical data to project future natural disturbance risk from climate change 
on the economic value of forested natural capital. 
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1 Introduction 

Over the past few decades, climate-induced natural disturbances have become more frequent and 
severe, posing significant threats to U.S. forests and causing substantial damage to forest 
productivity and ecosystem services (Dale et al., 2001; Gan, 2004; Abatzoglou and Williams, 
2016; Westerling, 2016; Seidl et al., 2017). Among these disturbances, insects and pathogens can 
be particularly damaging and costly, leading to widespread tree mortality and subsequent 
economic costs (Dale et al., 2001). For example, the outbreak of the southern pine beetle (SPB) 
in the southeastern U.S. has resulted in considerable timber losses, tree mortality, and millions of 
dollars in economic damages (Pye et al., 2011), and SPB outbreaks and damages have been 
moving northward since 2001 (Costanza et al., 2023). Ecological studies have identified several 
factors influencing the patterns and behaviors of insect activities such as climate/weather, 
landscape patterns, host tree characteristics, and natural enemies (Costanza et al., 2023). Among 
these factors, ongoing climate shifts have been recognized as the most significant driver in 
shifting insect population dynamics and range expansions (Gan, 2004; Duehl et al., 2011; Harvey 
et al., 2023), and future climate changes are expected to further alter insect spread (Seidl et al., 
2017; Lehmann et al., 2020). For instance, ecological studies find warmer winter temperatures 
have reduced the cold limitations on the southern pine beetle, which originally thrived in the 
southern U.S. This has led to its gradual expansion into northern states, including New Jersey, 
New York, and Connecticut, posing new challenges to forest management in these regions 
(Weed et al., 2013; Lesk et al., 2017; Heuss et al., 2019; Costanza et al., 2023). Economic 
analyses of such climate-related costs of insects remain limited, and no studies, to our 
knowledge, have linked insect outbreaks with the economic value of forests.  
 

Timberland prices arise from interactions between buyers and sellers in a competitive 
land market which reflects expectations regarding external risks that influence timberland 
management and investment. Natural resource economic theory suggests that timberland prices 
capitalize the risks posed by pests, with a higher likelihood of catastrophic infestations leading to 
greater discounting of future timber rents and therefore, declines in forestland prices (Reed and 
Errico, 1987). The theoretical impact of insect activities on timberland values (Reed and Errico, 
1987), combined with evidence suggesting that climate change has modified the patterns and 
frequency of insect dynamics (Seidl et al., 2017; Lehmann et al., 2020; Harvey et al., 2023), 
suggests a need for information on how the timberland market responds to climate-induced shifts 
in insect risks. A better understanding of market responses to climate-related disturbances 
informs i) private decisions regarding timberland investment and management (Sun and Zhang, 
2001), ii) private costs associated with climate-related natural disasters, and iii) the net benefits 
associated with policies designed to mitigate the impacts of climate extremes. 

 
This study uses econometric methods to estimate the relationship between insect damage 

and the market price of timberland in the southeastern U.S., a region ideal for this analysis due to 
its history of insect outbreaks, significant private timberland ownership, transaction data 
availability, and diverse local climate. Using a pooled cross-sectional dataset of over 30,000 
timberland transactions across 10 states in the southeastern U.S., we estimate how prices for 
timberland respond to insect damages that were present on local forestland just before each land 
transaction was made. The timberland price model uses county and year fixed effects to control 
for time-invariant county-specific omitted variables plus time-varying but spatially-invariant 
omitted variables. Our identification of the price impacts of insect damage relies on within-
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county variation in insect damaged forest acreage and timberland prices. To predict changes in 
forest insect damage under the future climate model CCSM4 with the RCP 8.5 scenario (high 
emission pathway) relative to the current climate condition, we estimate the response of insect 
damage to seasonal temperature and precipitation using a 16-year county-level panel dataset. In 
this analysis, insect-damaged forest acreage serves as the dependent variable, while quadratic 
functions of four seasonal variables for both mean temperature and total precipitation across 
winter (December -February), spring (March-May), summer (June to August), and fall 
(September to November) are included as key independent variables. In addition to conventional 
regression, we use the machine learning method Lasso along with a Tobit approach to estimate 
insect damage model across 10 states in the southeastern U.S. using insect and climate data from 
2004 to 2019.  Finally, we use the estimated insect damage forest model to predict the effects of 
projected climate change on future forest area damaged by insects, and we use the econometric 
timberland price model to project the monetary damages of the resulting climate-induced insect 
damages on the economic value of timberland. 

 
Our findings indicate that larger areas of insect damage generate a negative impact on 

timberland prices, although the magnitude is relatively small. Specifically, a thousand-acre 
increase in annual average forest acreage damaged by insects leads to a roughly 1% decrease in 
timberland prices. It is important to note that the negative impact of insect damage on timberland 
prices captures an average effect that arises from two mechanisms – direct damage to the 
growing stock volume on existing timberland plus any potential change in landowners’ perceived 
risk of owning timberland assets under the threat of insect outbreaks. We then project that future 
climate change leads to an average increase of between 168 and 550 acres of insect damage per 
county under the CCSM4 climate model with RCP 8.5 emissions scenario relative to the current 
climate condition. This predicted increase in insect damage is expected to reduce timberland 
values by a modest amount of approximately 0.2% ($6/acre) to 0.5% ($14/acre), which translates 
to an overall loss of approximately $1 billion to $2.5 billion across the entire landscape of 
timberland. The spatial distribution of price impacts resulting from these predicted changes 
varies by prediction method, with some evidence of higher damages in the northern portion of 
the southeastern U.S. 

 
Our study makes several contributions to literature. First, we contribute to an emerging 

empirical literature that estimates the economic costs of climate change that operate through 
natural disturbances. Specifically, we provide the first empirical estimates of the impacts of 
climate-related insect damage on the economic value of timberland, using parcel-level 
timberland prices across 10 southeastern U.S. states spanning over 17 years. As disturbance 
regimes have changed dramatically due to the warming climate over the past decades (Seidl et 
al., 2017), a growing effort has been devoted to advancing our knowledge regarding the 
economic impacts of natural disturbances within the natural resource economics literature. For 
example, some studies have investigated the implications of forest wildfires for damage to 
structures, recreation opportunities, and residential property values (McCoy and Walsh, 2018; 
Kim and Jakus, 2019; Bayham et al., 2022). Among these studies, several wildfire hedonic 
studies find that wildfire activities cause a significant but short-lived reduction in housing prices 
in the wildland-urban interface (WUI) areas in the western U.S. (Loomis, 2004; Donovan et al., 
2007; Mueller et al., 2009; McCoy and Walsh, 2018). The most closely related study to ours is 
by Wang and Lewis (2024), which estimates drought and wildfire impacts on timberland 
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transaction prices in the Pacific states of the U.S. In contrast, the economics literature is 
relatively sparse on the impact of insect outbreaks on timberland values. We build upon previous 
studies that examine the economic costs of forest disturbances like wildfire to provide the first 
empirical estimates of the impacts of insect damage on the economic value of timberland as 
revealed by observed prices. Furthermore, our findings of timberland value losses due to 
projected increases in insect damage under future climate scenarios add evidence regarding the 
social costs posed by climate change that operate through natural disturbances, which highlights 
the net benefits of mitigating such destructive events.  

 
Second, we show how to use our econometric model to project future climate-change 

driven impacts of insects on the economic value of timberland. Natural science studies 
demonstrate that climate and seasonal variations, especially winter climatic conditions, 
significantly influence the succession and expansion of bark beetles in the western U.S. (Bentz et 
al., 2010; Preisler et al., 2012; Bentz and Klepzig, 2014). However, quantitative evidence on the 
relationship between climate/weather and insect events in the southeastern U.S. is limited (Asaro 
et al., 2017). Most existing work in this area is illustrative and qualitative, with only a few 
empirical efforts attempting to understand the effects of climate/weather on insect outbreaks at a 
large scale in the southeastern U.S. (Gan, 2004; Duehl et al., 2011; Munro et al., 2022). Gan 
(2004) developed a panel estimate of the relationship between climate and SPB risks across 11 
states in the southeastern U.S. using state-level data from 1973 to 1996, though it relied on 
coarse data that may overlook fine-scale variation of climate within each state. In contrast, our 
contribution employs recent county-level panel data on insect damage across a large spatial area, 
and we use three different estimation techniques including conventional fixed effects regression, 
machine learning methods, and a Tobit model to predict changes in forest acreage damaged by 
insects under future climate scenarios relative to current climate condition. This predictive 
capability is essential for integrating with our timberland price estimates to project future climate 
change costs on forests that operate through insect outbreaks. 

2 Timberland market and insect damage in the Southeastern U.S. 

2.1 Timberland market 

We study timberland prices in the southeastern region of the U.S., specifically focusing on ten 
states: Alabama (AL), Arkansas (AR), Florida (FL), Georgia (GA), Louisiana (LA), Mississippi 
(MS), North Carolina (NC), South Carolina (SC), Tennessee (TN), and Virginia (VA). The states 
of Kentucky and West Virginia in the southeastern U.S. were not included because of the limited 
number of timberland transactions observed during our study period between 2004 and 2020. 
The selection of this spatial and temporal scale covers a wide spatial area and ensures sufficient 
variation in timberland prices, insect damage, and local climate conditions. Additionally, the 
2004-2020 timeframe aligns with the availability of insect damage data taken from the Forest 
Inventory and Analysis (FIA) data. We collect timberland transaction data for ten states from the 
real estate data vendor CoreLogic, which provides the most recent and comprehensive land 
transaction records for various land use types, including residential, forest, and agricultural, 
across the U.S. over an extended period. CoreLogic's property database includes both the latest 
transaction records and a separate database with historical transaction information. However, for 
this study, we focus primarily on the most recent transactions to compile a pooled cross-sectional 
dataset, using the latest sale data for timberland parcels. The CoreLogic database contains 
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detailed parcel information such as sale price, sale date, geographic coordinates, land use codes, 
seller and buyer names, and various parcel attributes like acreage and zoning codes2. 
 
 We apply several filters to select forest-related land transaction records. First, we use 
CoreLogic’s land use codes, which classify properties into categories like agricultural, 
commercial, residential, and forest, to extract forest-related parcels from the database. 
Specifically, we include both parcels explicitly coded as forestland and those coded as vacant, 
resulting in approximately 252,379 observations. We include vacant parcels to account for 
possible differences in labeling styles employed by different counties, as some vacant-coded 
parcels might actually be forested or recently clear-cut land. Next, to ensure that our selected 
parcels are private timberland, we geolocate each parcel using its geographic coordinates and 
conduct a quality check. We overlay the selected forest parcels with two additional geospatial 
datasets: the National Land Cover Database (NLCD) and the USGS Protected Areas Database 
(PAD), which distinguish between forest cover and public vs. private ownership. This cross-
referencing allows us to only include the extracted forest-related CoreLogic parcels that are 
forestland and privately owned. By measuring parcels’ spatial proximity to their nearest private 
timberland areas derived using NLCD and PAD maps, we exclude parcels that do not overlap 
with private timberland areas. This step removed about 54% of the observations (53% being 
vacant parcels located outside of timberland areas and 1% being forest-coded parcels not within 
timberland areas). Additionally, we exclude parcels smaller than 5 acres (removing 12%) and 
those within 5 km of urban areas (removing 9%), as these lands are more likely to be valued for 
development potential rather than timber production. Lastly, we filter out non-arm’s-length 
transactions – defined as those with prices below $100/acre – along with extremely high priced 
transactions above $50,000/acre (removing 8%). After applying these filters, we are left with 
approximately 45,000 observations3. 
 

In addition to the filtering rules discussed above, we refine our dataset further by 
integrating land cover information from the USGS National Land Cover Dataset (NLCD) to 
determine the exact land cover class for each parcel at the time of sale. This integration allows us 
to assign a specific NLCD-derived land use category to each parcel during the transaction period. 
Given that NLCD data is available only for specific years (2004, 2006, 2008, 2011, 2013, 2016, 
and 2019), we assign the most recent or prior year's NLCD land cover class to parcels lacking 
NLCD information for the specific transaction year. For example, if a sale took place in 2005, 
the land cover class is derived from the 2004 NLCD map. We find that the majority of our 
sample aligns with forest categories in the NLCD4. Parcels classified under non-forest uses in the 
NLCD (approximately 30%) are excluded from our sample to maintain a clear focus on 
timberland-specific transactions. This process results in a final sample of 31,084 observations. 
Table 1 summarizes timberland prices by state within our study region. Given our interest in 
estimating the effects of insect damage on the average acre of timberland, we weight the data by 
acres in our later empirical estimation to give less weight to small acreage transactions and more 
weight to large acreage transactions. Table 1 shows how weighted average timberland prices are 

                                                           
2 While CoreLogic captures seller information at the time of the transaction, it does not explicitly differentiate 
between industrial and nonindustrial private forestland. 
3 More details about the process of applying each filter rules can be found in Wang (2023). 
4 The NLCD categorizes forest land cover into three types: deciduous forest, evergreen forest, and mixed forest. The 
remaining categories include non-forest land cover types such as shrubland, pasture/hay, and water. 
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lower than unweighted prices, indicating that smaller acreage land is worth more on the land 
market, a result that likely is driven by the closer proximity of smaller acreage land to urban 
areas with correspondingly higher potential for future development rents (Brorsen et al. 2015). 

 
Table 1: Summary of timberland transaction prices by state within the study region 

State Obs Unweighted mean             
($/acre in 2020 U.S. dollars) 

Acres-weighed mean                
($/acre in 2020 U.S. dollars) 

Alabama 5,662 3,545 2,531 
Arkansas 1,713 2,905 2,392 
Florida 5,065 5,689 3,168 
Georgia 1,987 4,405 2,631 
Louisiana 2,804 4,152 3,064 
Mississippi 396 3,929 2,898 
North Carolina 4,306 4,784 3,209 
South Carolina 1,859 5,013 3,109 
Tennessee 5,430 4,133 2,666 
Virginia 1,862 5,931 3,847 
Total 31,084 4,479 2,840 

 Note: Weight is the parcel size measured in acres.  
 
Figure 1 illustrates the spatial distribution of private timberland and timberland 

transactions observed across our study region5. Our transaction sample provides broad 
geographic coverage of timberland areas across the study region, although forested transactions 
are relatively sparse in the CoreLogic data in certain states (e.g. Arkansas and Virginia) and are 
absent in certain counties within North and South Carolina and Mississippi.  
 

 
Figure 1: Map of private timberland and timberland market transactions across the study region. 

                                                           
5 Private timberland map in Fig.1 is developed using both the National Land Cover Database (NLCD) and the USGS 
Protected Areas Database (PAD).  
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2.2 Insect damage 

There are various native and nonnative insect species impacting forests in this area, with the 
most common agents being Gypsy moth (GM), Emerald ash borer (EAB), Hemlock woolly 
adelgid (HWA), and Southern pine beetle (SPB). Among these, SPB is widely recognized as the 
most destructive native bark beetle that causes periodic extensive damage and widespread 
mortality in the commercially valuable pine-dominant forests throughout the southeastern U.S. 
(Ungerer et al., 1999; Gan, 2004; Pye et al., 2011).  

 
To measure insect damage in this region, we collect county-level data on insect damaged 

forest areas from the USDA Forest Service's Forest Inventory Analysis (FIA) across 10 states 
from 2004 to 2019. To ensure data integrity and comparability, we excluded FIA data prior to 
2000 due to the inconsistencies in plot designs, inventory frequencies, methodology, and 
attribution definitions across states. In 1999, standardized plot designs and data collection 
standards were implemented nationwide to enhance consistency among FIA work units. The 
insect damage data represents the annual total acreage of forests damaged by severe insect 
activities in each county and does not differentiate the damage caused by specific insect agents.  

 
As shown in Fig. 2, the annual acreage impacted by insects has generally increased over 

time across the 10 southern states. However, individual states exhibit varied trends; some show 
gradual increases or flat patterns, while Tennessee and Virginia experience declines followed by 
a resurgence. This variability suggests that private timberland owners have faced both rising and 
emerging risks from insect damage over the past two decades. Additionally, Fig. 2 highlights the 
substantial spatial and temporal variation in insect damage, which is critical for our empirical 
analysis. 
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Figure 2. Annual acreage of forests damaged by insects across states, 2000–2019 
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3 Impacts of climate-induced insect damage on timberland prices  

3.1 Mechanism for impact of insect damage 

To better understand the increasing risks posed by climate-related natural disturbances like 
wildfires, insect outbreaks, and droughts, Reed (1984) first incorporated wildfire risk into the 
traditional Faustmann model to study how wildfires influence landowners' harvest decisions. 
Building upon Reed's model, Reed and Errico (1987) examined the effects of insect hazards on 
timber supply in an analytical model by introducing a combined hazard factor into the 
Faustmann model to represent both wildfires and insect infestations. In this context, suppose a 
stand can either be harvested at age 𝑇𝑇 or be destroyed by fire or infestation before reaching the 
harvest age within a single rotation. The combined hazard factor is then expressed as follows: 
                                                      ℎ𝑐𝑐 = �𝜆𝜆 + ℎ                       𝑎𝑎 < 𝑇𝑇

∞                              𝑎𝑎 = 𝑇𝑇                                           (1) 
Where 𝜆𝜆 is the probability of wildfire occurrence, ℎ is the insect infestation rate, 𝑎𝑎 is the age of 
the stand, and 𝑇𝑇 is the harvest age that maximizes land value. The value of bare timberland can 
be written as based on forest economic theories (Reed, 1984; Zhang and Hall, 2020; Zhang, 
2021): 

                           𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑓𝑓(𝑃𝑃, 𝑣𝑣𝑣𝑣𝑣𝑣(𝐶𝐶, 𝑠𝑠𝑠𝑠, 𝑎𝑎),𝑅𝑅, 𝜆𝜆,ℎ, 𝛾𝛾, 𝑆𝑆𝑆𝑆)                                           (2) 
Where 𝑃𝑃 is the timber price, 𝑣𝑣𝑣𝑣𝑣𝑣(𝐶𝐶, 𝑠𝑠𝑠𝑠,𝑇𝑇) is the timber volume for the stand of soil quality 𝑠𝑠𝑠𝑠 
growing in climate 𝐶𝐶, 𝑅𝑅 is the regeneration cost, 𝛾𝛾 is the discount rate, and 𝑆𝑆𝑆𝑆 is the post-
disturbance salvage cost. A higher insect infestation rate ℎ lowers the bare land value 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
since landowners are less certain of receiving future timber rents. As such, insect risks affect 
bare land values in Eq. (2) in a similar way to how fire risk affects bare land values in Reed 
(1984), by implicitly raising the discount rate used by landowners to assess future economic 
returns from timber harvest. Insects can spread across space in a similar manner to wildfire, 
although insect populations have more complex spatial dynamics as they are influenced by a 
range of local biological and ecological factors such as forest structure, landscape pattern, and 
natural enemies (Tobin et al., 2023). Consequently, landowners seeing an increase in local insect 
damages may adjust their expected infestation rate ℎ, and so their bare land value may be 
reduced even if the stand is not directly damaged by insects. 

 
For stands that are not bare land and which have a positive age (volume) a, the land value 

equation must be modified to reflect the value of the standing stock. If insect damages are 
catastrophic, the landowner either harvests the stand in T-a years in the absence of insect 
infestations or experiences a complete loss of timberland value if infestations occur before 
reaching the optimal harvest age. This first rotation payoff is represented by: 

                                  𝑉𝑉1(𝑎𝑎) = �𝑃𝑃 ∗ 𝑣𝑣𝑣𝑣𝑣𝑣
(𝐶𝐶, 𝑠𝑠𝑠𝑠,𝑇𝑇) − 𝑅𝑅  𝑖𝑖𝑖𝑖 𝑇𝑇𝑓𝑓 >= 𝑇𝑇 − 𝑎𝑎 

−𝑆𝑆𝑆𝑆                  𝑖𝑖𝑖𝑖  𝑇𝑇𝑓𝑓 < 𝑇𝑇 − 𝑎𝑎
                                   (3) 

Where 𝑇𝑇𝑓𝑓 is the random time of the insect infestation. Once a harvest or infestation occurs on the 
age a stand, the stand value returns to bare land value in Eq. (2). Therefore, the land value of a 
stand of age a can be written as a sum of the expected present value of future harvest of the age a 
growing stock plus the expected present value of bare land after the first disturbance: 

𝑉𝑉 = 𝐸𝐸[𝑒𝑒−𝛾𝛾𝑇𝑇𝑓𝑓]𝑉𝑉1(𝑎𝑎) + 𝐸𝐸[𝑒𝑒−𝛾𝛾𝑇𝑇𝑓𝑓]𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏                                          (4) 
Where E is the expectation operator over the random variable 𝑇𝑇𝑓𝑓. According to Eq. (4), if a stand 
with a positive age a is catastrophically damaged by insects, its value will consist of only the 
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value of bare land Eq. (2). Conversely, the value of a stand with a positive age growing stock 
that is unaffected by insects will be higher since they have to wait less time for the first harvest 
revenue (Eq. (4)). Therefore, stands that are catastrophically damaged by insects have a lower 
value than those that are not directly affected, even if there is no change in the expected insect 
infestation rate ℎ. 

 
In summary, as demonstrated in Eq. (4), insects affect timberland values through two 

mechanisms: by directly damaging the existing growing stock in stands of age a, or by altering 
landowners’ expectations of insect risks ℎ.  

3.2 Empirical analysis 

In moving to empirical analysis, we follow Wang and Lewis (2024) and write a general 
statement of the timberland value function:  

       𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑉𝑉(𝑃𝑃, 𝑣𝑣𝑣𝑣𝑣𝑣(𝐶𝐶, 𝑠𝑠𝑠𝑠,𝑎𝑎),𝑅𝑅, 𝜆𝜆(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐶𝐶),ℎ(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝐶𝐶),𝑆𝑆𝑆𝑆, 𝛾𝛾,𝑈𝑈;  𝜷𝜷)                  (5) 
Where most variables are defined above, but where the wildfire arrival rate 𝜆𝜆 is a function of 
nearby fire occurrences (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) and climate (Wang and Lewis 2024), and the insect arrival rate ℎ 
is a function of nearby insect outbreaks (insect) and climate. One additional variable added to 
Eq. (5) is 𝑈𝑈, which represents the future value of developing the forestland into urban uses. The 
parameter vector 𝜷𝜷 translates changes in any independent variable into land price. 

 
To disentangle the impacts of insect damage on timberland prices, we explicitly account 

for climate variables, wildfire risks, development pressures, and land attribute variables such as 
slope, elevation, and soil quality that may influence timberland prices. We control for time-
invariant county unobservables (e.g., accessibility to a port) with county fixed effects and we 
control for time-varying but spatially invariant unobservables (e.g., interest rates) with year fixed 
effects. By explicitly accounting for those variables, our identification of insect impacts relies on 
spatial and temporal variation in insect damage and timberland prices within counties. 

 
By using the standard log-linear reduced form function commonly employed in hedonic 

and Ricardian studies on land prices (Stetler et al., 2010; Hansen et al., 2014; Mendelsohn and 
Massetti, 2017), we specify our pooled cross-sectional model with spatial and temporal fixed 
effects as: 
                    𝐿𝐿𝐿𝐿𝐿𝐿 (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖) = 𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐(𝑖𝑖)𝑡𝑡 + 𝜷𝜷𝟐𝟐𝑔𝑔(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖) + 𝜷𝜷𝟑𝟑𝑓𝑓(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖) +          (6) 

𝜷𝜷𝟒𝟒𝑋𝑋𝑖𝑖 + 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑡𝑡 + 𝜇𝜇𝑐𝑐(𝑖𝑖) + 𝜀𝜀𝑖𝑖𝑖𝑖    
Where our dependent variable 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 is per-acre value of timberland sale 𝑖𝑖 in year t with 
inflation adjusted prices (in 2020 U.S. dollars). 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐(𝑖𝑖)𝑡𝑡 is the annual insect damage in county 
c where each parcel 𝑖𝑖 is located in year t. The function g() is a quadratic function of the 30-year 
average climate variables evaluated for parcel 𝑖𝑖 at time t, while the function f() is a vector of 
large wildfire arrival risk for parcel 𝑖𝑖 at time t. The vector 𝑋𝑋𝑖𝑖 denotes land attributes of each 
parcel 𝑖𝑖, such as slope, elevation, and distance to road (Zhang et al., 2013). The term 𝜇𝜇𝑐𝑐(𝑖𝑖) 
represents a fixed effect for county c that contains parcel i, while time fixed effects are captured 
by 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑡𝑡. Finally, 𝜀𝜀𝑖𝑖𝑖𝑖 is an idiosyncratic parcel-time error term. 
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3.2.1 Measurement of timberland prices 

We obtain the most recent timberland transaction data from CoreLogic covering the period from 
2004 to 2020 for ten southern states: Alabama, Arkansas, Florida, Georgia, Louisiana, 
Mississippi, North Carolina, South Carolina, Tennessee, and Virginia. As discussed in Section 
2.1, our sample includes approximately 31,084 private timberland parcels, which is about 12% of 
the original raw CoreLogic sample after applying our filtering rules to create a refined dataset 
that consists only of parcels in a forested use rather than used for a non-forested use like 
residential or agriculture. The dependent variable in our analysis is the per-acre price of 
timberland in 2020 U.S. dollars. 

3.2.2. Measurement of insect damage 

Various metrics have been employed in the existing literature to evaluate insect risks, such as the 
annual infestation rate, probability and magnitude of insect outbreaks, as well as the proportion 
of insect-induced damages against the growing stocks of trees (Reed and Errico, 1987; Gan, 
2004; Munro et al., 2022). Ideally, we can estimate insect impacts that arise from direct damage 
to the stand separately from nearby damage that may influence landowners’ risk expectations, as 
discussed in Sec. 3.1. However, knowing the spatial extent of insect damage is necessary for 
identifying which land parcels were directly damaged by insects. Unfortunately, the absence of 
detailed spatial data on insect damage restricts our ability to identify whether any particular 
timberland parcel was damaged by insects6. Instead, we process comprehensive insect data on 
total insect damaged forest areas at the county level, which allows us to identify whether all 
parcel transactions are within counties that have experienced insect damage (Fig. 2). Given our 
use of county-level insect damage, disentangling the price effects of direct insect damage from 
changes in insect risk expectations is not possible with the data we use. Rather, any impact we 
estimate from insect damage represents the average effect of direct damage and changes in risk 
expectations arising from insect outbreaks.  

 
Our independent variable measuring county-level average annual insect damages is 

constructed using data from the U.S.D.A. Forest Service’s FIA database. For each parcel, we 
calculate the average forest acreage damaged by insects in the county where it is located, using 
data from the five years preceding the sale date. The FIA program conducts annual surveys 
covering approximately 20% of all plots in most southeastern U.S. states, resulting in a full 
survey every five years (Arkansas Department of Agriculture)7. By averaging observations over 
the last five years, we incorporate all available FIA sample plots within each county in 
constructing our insect damage variable. For counties with missing insect data in specific years, 
we calculate the average annual insect damage by averaging over the available data years.  

                                                           
6 We discussed the availability of alternative spatial insect damage dataset and why it is not appropriate for our 
analysis. Detailed discussion can be found in the Appendix B.   
7 Although the 1998 Farm Bill specified that 20% of plots within each state should be surveyed annually, FIA’s 
sampling intensity varies by region and county, typically covering around 10–20% of plots each year due to funding 
limitations (Woudenberg et al., 2010). 
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3.2.3. Measurement of climate 

Natural science and econometric studies suggest that the growth and survival of southern pine 
forests in our study region of the southeastern U.S. is sensitive to minimum winter temperatures 
and extreme heat (Schmidtling, 2001; Chen et al., 2012; Lu et al., 2021; Johnson and Lewis 
2024). Thus, to explicitly account for such climate impacts on the economic value of timberland, 
we calculate 30-year average of winter minimum temperature and growing season maximum 
temperatures (March-November) preceding the sale date of parcel 𝑖𝑖, using monthly historical 
climate data derived from Oregon State University’s PRISM database. We incorporate a 
quadratic form of those climate variables into our model to account for potential non-linear 
climate impacts.  

3.2.4. Measurement of wildfire risk  

In comparison to the western U.S., where wildfires are infrequent but often severe, the eastern 
U.S. experiences a higher frequency of low severity wildfire (Wibbenmeyer and McDarris, 
2021). We obtain wildfire data from the Monitoring Trends in Burn Severity (MTBS) dataset, 
which includes all large wildfires greater than 500 acres in the eastern U.S. since 1984. Fig. 3 
illustrates the number of large wildfires that occurred from 1984 to 2020 in 12 states within the 
southeastern U.S. Unlike the western U.S., where there is a notably upward trend of large and 
severe wildfires, the southeastern U.S. has not been exposed to a big change in large and severe 
wildfires (Costanza et al., 2023). An interesting exception is a surge in large wildfires in Florida 
between 2008 and 2011 (Fig. 3), though most of these Florida fires were concentrated in the 
southern region of Florida where private timberland transactions are scarce. So, timberland 
resources in the southeastern U.S. have not been exposed to as much change in large wildfire 
patterns in the last two decades as timberland has in the western U.S. 

 
We include independent variables that measure potential large wildfire impacts on 

timberland values by calculating the wildfire arrival rates on each parcel, as well as within a 15 
km buffer around each parcel, using MTBS wildfire data and using the same wildfire metrics 
developed by Wang and Lewis (2024). In particular, we measure the number of wildfires that 
have occurred directly on or within 15km of each timberland parcel during the 20 years 
preceding each parcel’s date of sale. 
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Figure 3: Annual number of large wildfires (>500 acres) occurred in the southeastern U.S. from 
1984 to 2020 

3.2.5 Measurement of other land attributes  

For each parcel 𝑖𝑖, we also compile a vector of land characteristics to capture factors that 
influence timberland productivity (e.g., soil quality, elevation, slope, distance to the nearest road) 
and development pressure (e.g., distance to the nearest urban areas). We calculate the non-
irrigated land capability class for each parcel using the soil survey data from the Gridded 
National Soil Survey Geographic Database (gNATSGO) database at a 10m resolution. Slope and 
elevation for each parcel are derived from the national Digital Elevation Model (DEM) model at 
a 1-arc (30m) resolution. We measure the distance between each parcel and its nearest road using 
the spatial map of major roads of the United States 2014 (U.S. Geological Survey, 2014). We 
also measure the distance between each parcel to the boundary of its nearest urban areas 
(including both urbanized areas (UAs) of 50,000 or more people and urban clusters (UCs) of at least 
2,500 and less than 50,000 people) using the U.S. 2010 Census Urban Area shapefiles. More detail 
on the data construction process can be found in Wang (2023). Table 2 provides the summary 
statistics of the dependent and independent variables used in the analysis. 
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Table 2: Summary statistics of dependent and independent variables 

Variable Obs Min Max Mean Weighted mean 

Timberland price ($/acre) 31,084 100.006 49806.61 4478.669 2840.142 

Insect damage (thousand acres) 29,636 0 60.563 2.335 1.978 

Max temp in growing season (Degree C) 31,084 17.730 31.044 26.145 26.612 

Min temp in winter (Degree C) 31,084 -6.676 15.206 1.031 1.638 

Large wildfires per decade on parcel  31,084 0 1 0.001 0.005 

Large wildfires per decade nearby (0-15 km away) 31,084 0 81.5 0.531 0.951 

Soil (non-irrigated land capability class) 29,775 1 8 5.033 5.129 
Elevation (km) 31,084 0 1374.803 181.254 151.372 
Slope (degree) 31,084 0 42.220 5.619 5.071 
Distance to the nearest road (km) 31,084 0.001 19.141 2.599 2.836 
Distance to the nearest urban area (km) 31,084 5.000 67.212 13.762 14.479 
Note: The weight is the parcel size measured in acres. 

3.3 Estimation strategy  

We use ordinary least squares with standard errors clustered by county to estimate parameters in 
Eq. (6) using our pooled cross-sectional dataset. There is a tradeoff between choosing a coarser 
spatial scale or a more granular spatial scale with which to define spatial fixed effects for parcel-
level analysis in a pooled cross-section. Considering that the expansion and dynamics of insect 
outbreaks correlate with local forest structure and composition, their severity and frequency 
often vary within a state. As a result, adopting a coarser spatial scale fixed effect may not 
adequately capture all potential local factors associated with insect activities. Therefore, we use 
county-level fixed effects to account for unobserved, time-invariant location-specific factors that 
are likely to influence insect outbreaks such as local forest structure and composition, land 
topography, and demographic characteristics. Moreover, the inclusion of county fixed effects 
helps address potential concerns about landowners' adaptations to increasing insect damage, 
which could influence the likelihood and severity of future outbreaks through changes in 
timberland management. Since insect infestations typically occur and spread at a local scale 
(Duehl et al., 2011), it's reasonable to assume that landowners within the same county would 
respond similarly to local outbreaks. By incorporating county fixed effects, we effectively 
capture these adaptation strategies adopted in the same county. We also include year fixed 
effects to capture macroeconomic factors that change over time and affect all timberland 
transactions (e.g., interest rates). 

 
To ensure robust inference, we cluster standard errors at the county level to allow for any 

arbitrary heteroscedasticity and spatial/temporal correlations that may exist across parcels within 
the same county. Lastly, to avoid our estimates being disproportionately driven by a large 
number of small-sized parcels, we estimate Eq. (6) weighted by acres to obtain marginal effects 
for the average timberland acre rather than the average timberland parcel. 
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3.4 Estimation results 

Table 3 presents the coefficient estimates for our main Eq. (6) using the full sample of sales 
prices in the southeastern U.S. We present two sets of results with model (1) including coarser 
state fixed effects and model (2) including a smaller spatial-scale county fixed effect definition. 
As previously discussed, we favor the results obtained with county fixed effects in model (2). 

 
Estimated parameters indicate a significant negative impact of insect damage on 

timberland prices (p<0.05). Specifically, a thousand-acre increase in insect damage within a 
county leads to an approximate 1% decrease in the per-acre market price of that county’s 
timberland as shown in model (2). It is crucial to highlight that our insect damage variable is 
computed using aggregated county-level data, which prevents us from directly observing 
whether insect damage has occurred on or near each parcel. Therefore, our insect result reflects 
an average effect arising from the two mechanisms discussed in Sec. 3.1 - direct damage to 
existing stocks for parcels that have experienced infestations, as well as alterations in 
expectations of risks for parcels that have not been directly affected by infestations but are close 
to areas with insect damage. Importantly, insect outbreaks exhibit significant within-county 
variation over time, which is why the insect damage parameter can be estimated precisely with 
county fixed effects. We note that the difference in the insect parameter value between the state 
fixed effects estimation (model 1) and the county fixed effects estimation (model 2) highlights 
potential omitted variable bias with defining coarser state fixed effects. 

 
Given the quadratic specification of climate variables, we examine the marginal effects of 

climate on timberland prices using the average marginal effects (AME) presented in the bottom 
of Table 3. With more coarse state fixed effects in model (1), the AME indicates that maximum 
growing season temperature has a decreasing effect on timberland prices of -12.8% per degree C 
(p<0.05), while minimum winter temperatures have no statistically significant AME (p<0.05). 
However, Fig. A.1 in Appendix A indicates that the AME of minimum winter temperatures is 
positive when evaluated at a warmer temperature. Notably, there is no statistical significance of 
the AMEs for the two temperature variables when using the finer-scale county fixed effects 
(p<0.05), highlighting the lack of within county variation in these temperature variables. Given 
the small size of most southeastern U.S. counties, the lack of within county variation in 
temperature is unsurprising. Fig. A.1 and Fig. A.2 present the AMEs for each temperature 
variable evaluated at different levels of temperature for the state and county fixed effect 
definitions in models (1) and (2).  
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Table 3: Estimation results of the full sample of sales prices in southeastern U.S. 
Log (price per acre) Model (1) Model (2) 
Average insect damage (thousand acres) 0.002 -0.010** 
 (0.005) (0.004) 
Max Temp in Growing Season 0.809** -0.455 
 (0.410) (0.648) 
Max Temp in Growing Season Squared -0.018** 0.008 
 (0.008) (0.014) 
Min Temp in Winter 0.018 0.090 
 (0.045) (0.065) 
Min Temp in Winter Squared 0.010** 0.004 
 (0.005) (0.011) 
Large wildfires per decade on parcel  0.135 0.552 
 (0.549) (0.536) 
Large wildfires per decade nearby (0-15 km away) -0.005 0.006 
 (0.011) (0.009) 
Soil quality (1=best, 8=worst) -0.032** -0.024 
 (0.016) (0.016) 
Elevation (km) 0.000 -0.001* 
 (0.000) (0.000) 
Slope  -0.004 -0.005 
 (0.004) (0.004) 
Distance to road (km) -0.011 -0.001 
 (0.010) (0.009) 
Distance to urban area (km) -0.010*** -0.008** 
 (0.004) (0.004) 
Constant -1.298 14.317* 
 (5.279) (7.484) 
Year FE Yes Yes 
State FE Yes No 
County FE No Yes 
Observations 28,433 28,433 
R-squared 0.038 0.214 
Average Marginal effects (AME)   
AME of Tmax_grow -0.128* -0.033 
 (0.076) (0.115) 
AME of Tmin_winter 0.048 0.103 
 (0.036) (0.075) 

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at the 
county level. 
 

We fail to reject the null hypothesis that large wildfire occurrences have no effect on 
timberland prices in the southeastern U.S. (p<0.05). Large wildfire frequency in the southeastern 
U.S. has not experienced a large change in recent decades (Fig.3), and so wildfire risk 
expectations are likely not changing. Further supporting this interpretation is the fact that 
southeastern U.S. wildfires have not been as severe as those in the western U.S. (Costanza et al., 
2023). Thus, we interpret our results to indicate that recent large wildfires in the southeastern 
U.S. have not (yet) signaled enough of a change in wildfire risk to alter landowner risk 
expectations in a way that would affect timberland prices. 

 
Our analysis also reveals significant impacts of land attributes on timberland prices, 

though the significance depends on the fixed effect definition we use with the exception of 
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proximity to urban areas. Specifically, timberland prices are higher in areas that are closer in 
proximity to urban areas (p<0.05). A 1 km increase in distance to urban areas lowers timberland 
prices by 1% in model (1) or 0.8% in model (2), which suggests that timberland parcels 
capitalize future development potential consistent with conventional urban economic theory.  

3.5 Robustness checks 

We conduct several sensitivity analyses to assess the robustness of our findings. First, natural 
science studies suggest that wildfire activities can interact with bark beetle outbreaks because 
fires make stands more vulnerable to bark beetle attacks (see Fettig et al. 2022 for a review). 
This interaction may lead to a multicollinearity problem in estimation. To investigate this, we 
conduct an additional analysis examining the correlation between insect damage and all wildfire 
arrival rates. The results reveal a low correlation coefficient of less than 0.02, indicating no 
significant collinearity between insect damage and wildfire variables. To further validate the 
robustness of our results, we re-estimated the impact of insects without including the wildfire 
variables in the model and found robust insect results as shown in Appendix Table A.1.  

 
Second, to further explore a potential endogeneity concern arising from landowners' local 

adaptation to insect damage, we re-estimate the main Eq. (6) by introducing a set of finer spatial 
scale fixed effects than the county. These fine-scale spatial fixed effects are designed to capture 
the potential adaptation practices employed by landowners within the same spatial unit. We 
create evenly distributed grid cells organized into 50 rows and 50 columns, with each grid cell 
covering approximately 46*46 km (labeled as Grid50 FE). Additionally, we implement an even 
finer-scale set of spatial grids with 60 rows and 60 columns, covering approximately 36*36 km 
per grid cell (labeled as Grid60 FE). The results are presented in Appendix Table A.2, which 
demonstrates the robustness and reliability of our initial findings to alternative spatial fixed 
effects.  

 
Third, to address potential biases from timberland parcels with high development 

pressure near urban boundaries, we exclude parcels within 5 km of urban boundaries in the main 
estimation. This 5 km buffer is informed by prior research indicating that development values 
decline with distance from urban centers (Plantinga et al., 2002). To test the robustness of our 
findings, we conducted sensitivity analyses using larger radii of 10 km and 15 km from urban 
boundaries. The results, detailed in Appendix Table A.3, consistently indicate a negative impact 
of insect damage on timberland market prices across all thresholds. However, at the 15 km 
radius, the insect damage effect becomes insignificant, likely due to a substantial reduction in 
sample size (nearly two-thirds of observations are excluded with the 15 km filter), which limits 
variation in key variables and introduces more noise. Despite this, our conclusions regarding the 
negative impact of insect damage remain robust with the 10 km radius.  

 
Fourth, given that larger timberland properties are typically traded at a lower price per 

acre due to the presence of fewer buyers of large properties, we also included a dummy variable 
distinguishing between large (≥1,000 acres) and small parcels (≤1,000 acres) to assess potential 
price differences between the markets for small and large forested parcels. Results, shown in 
Appendix Table A.4, indicate that while larger parcels do tend to sell for lower prices, the 
dummy indicator for larger timberland parcels is not statistically significant in our preferred 
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model (2). Importantly, adding the large property dummy variable does not change the estimated 
effects of insect damage, confirming the robustness of our earlier findings. 

 
Finally, since most of our sample consists of small parcels, we prefer to estimate Eq. (6) 

using parcel acres as a weighting factor to mitigate the disproportionate influence of these 
smaller parcels, as discussed in Section 3.3. However, we assess the robustness of our findings 
by comparing them to estimates that do not employ acreage weighting. The results, presented in 
Appendix Table A.5, consistently demonstrate a negative impact of insect damage, albeit at a 
slightly reduced magnitude. 

4 Price impacts due to future changes in insect damage driven by climate change 

Natural science studies suggest that climate warming is expected to further influence insect 
spread, such as the projected northward expansion of the southern pine beetle (SPB) in the 
coming decades (Weed et al., 2013; Lesk et al., 2017; Seidl et al., 2017; Lehmann et al., 2020). 
In this section, we develop an econometric model to estimate parameters that govern how insect 
damage is affected by seasonal variability in temperature and precipitation by regressing county 
annual insect damage on seasonal mean temperature and total precipitation using panel data from 
2004 to 2019 across 10 southeastern U.S. states. We then use these estimated parameters to 
predict changes in insect damage under future average seasonal temperature and precipitation 
projections (2021-2050) relative to current average seasonal conditions (1991-2020). Finally, we 
quantify timberland price responses to predicted changes in insect damage using our estimates 
from Eq. (6). The future temperature and precipitation projections to 2050 are derived from the 
downscaled Multivariate Adaptive Constructed Analogs (MACA), utilizing high-resolution data 
from the Community Climate System Model version 4 (CCSM4) under the Representative 
Concentration Pathways (RCP) 8.5 scenario (a high-emission pathway).  

4.1 Predicting changes in insect damage under future climate projections  

Drawing upon key insights from the existing natural science literature, we use insect damage 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐 in county c and year t as the dependent variable, with a range of seasonal temperature 
and precipitation variables used as independent variables to estimate the relationship between 
insect damage and seasonal variability in temperature and precipitation. The rationale for 
choosing these seasonal climatic factors is discussed in more detail in Appendix B. Considering 
insect populations are often affected by a number of local biological and ecological factors, such 
as host tree characteristics, landscape patterns, natural enemies, and local competitors (Asaro et 
al., 2017), we incorporate county fixed effects into our model to account for unobserved 
location-specific variables that may influence insect activities and evolve slowly over time. 
Given there is no well-defined theoretical framework guiding the functional form between insect 
damage and seasonal variability in temperature and precipitation, we adopt a linear-in-
parameters quadric function to allow for potential nonlinear effects of weather on insect damage. 
Our model specification is written as follows8: 
 
                                                           
8 We do not specifically model and control for drought effects in the model because we find summer drought 
indicator measured as summer average vapor pressure deficit is highly correlated with summer mean temperature. 
This potential multicollinearity issue leads to imprecise estimates and makes it difficult to accurately isolate the 
effects of drought and summer temperature. 
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                          𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐𝑐𝑐 = 𝛼𝛼0 + 𝛼𝛼1𝑓𝑓(𝑃𝑃𝑐𝑐𝑐𝑐) + 𝛼𝛼2𝑔𝑔(𝑇𝑇𝑐𝑐𝑐𝑐) + 𝛼𝛼3ℎ�𝑇𝑇𝑐𝑐,𝑡𝑡−𝑚𝑚� + 𝜔𝜔𝑐𝑐 + 𝜖𝜖𝑐𝑐𝑐𝑐      (7) 
Where 𝑓𝑓(𝑃𝑃𝑐𝑐𝑐𝑐) is a quadratic function of current seasonal total precipitation in county c and year 
t; 𝑔𝑔(𝑇𝑇𝑐𝑐𝑐𝑐) is a quadratic function of current seasonal mean temperature in county c and year t; and 
ℎ�𝑇𝑇𝑐𝑐,𝑡𝑡−𝑚𝑚� is a quadratic function of lagged seasonal mean temperature in county c and year t-m, 
where m is the number of years lagged from the current year. The term 𝜔𝜔𝑐𝑐 represents county 
fixed effects and  𝜖𝜖𝑐𝑐𝑐𝑐 is an idiosyncratic error term.  

 
We estimate the parameter vectors 𝜶𝜶 and 𝝎𝝎 in Eq. (7) using three different estimation 

approaches: ordinary least squares (OLS), the Lasso machine learning method, and a Tobit 
model. OLS is a conventional estimation approach widely used for linear regression equations 
like Eq. (7). However, the Lasso method offers an alternative approach, particularly suited for 
cases with numerous potential covariates and unclear theoretical structures (Muthukrishnan and 
Rohini, 2016; Ranstam and Cook, 2018), as in our study. Lasso automatically selects 
independent variables from the large set of potential seasonal variables in Eq. (7) based solely on 
their statistical explanatory power and suppresses irrelevant variables. This feature improves 
interpretability and enhances out-of-sample prediction performance by mitigating overfitting. In 
contrast, OLS prediction includes all potential weather and climate variables, which may 
increase the risk of overfitting and reduce the accuracy of out-of-sample predictions. The Tobit 
model is particularly suitable for our analysis due to the presence of a zero-censored dependent 
variable (insect damage). Unlike OLS and Lasso, Tobit explicitly accounts for censoring in the 
data, ensuring that predictions for the dependent variable align with the observed data structure. 
While OLS and Lasso may generate negative prediction outcomes—unrealistic in the context of 
insect damage—the Tobit model avoids this issue by appropriately handling the zero-censoring 
structure in both estimation and prediction. In summary, OLS provides a traditional regression 
framework but may suffer from overfitting in the presence of numerous predictors. Lasso 
addresses overfitting by selecting variables based solely on statistical performance, which 
enhances prediction accuracy but does not necessarily align with theoretical considerations for 
variable selection. Tobit is advantageous when dealing with censored data, such as the zero-
censored dependent variable in this study. Additionally, since Lasso selects variables 
automatically, depending on the specific combinations of weather and climate predictors, it can 
yield different magnitudes and spatial patterns of insect damage compared to OLS and Tobit. 
 

However, the inclusion of numerous county fixed effects in our model increases 
computational costs when using Lasso with our large dataset, and Lasso’s penalty can shrink 
fixed effects coefficients to zero, potentially biasing estimates by omitting key local variation. To 
keep county fixed effects in the model but still use Lasso, we employed a two-stage approach by 
first regressing insect damage on county fixed effects to account for the effects of time-invariant 
location-specific variation on insect damage, and then obtain residuals that capture the remaining 
variation in insect damage that can be partially explained by time and county varying weather 
variables. We then apply Lasso to select relevant seasonal temperature and precipitation 
covariates that best explain the within-county varying residuals after the initial fixed effects 
estimation. Finally, we regress insect damage on the set of Lasso-selected independent seasonal 
variables along with the full set of county fixed effects to estimate parameters in Eq. (7). For our 
third method, we use the Tobit model to account for the fact that nearly half of the observations 
in our estimation data report zero insect damage. The Tobit method’s primary advantage is the 
ability to explicitly model such censored data in cases with many zero values, such as our setting. 
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We evaluate the predictive performance of OLS, Lasso, and Tobit through a split-

sampling approach which assesses how well each model predicts out-of-sample9. We divide our 
sample into two datasets: a training set used for estimation (2004–2016), and a validation set 
used for assessing out-of-sample prediction (2017–2019). Parameters are estimated on the 
training data and predictions are made on the validation data using the estimated coefficients 
from the training data. We assess the models' performance by comparing the predicted values of 
the insect dependent variable to its actual values in the validation data, using the metrics root 
mean squared error (RMSE) and R-squared (R²). Table 4 summarizes the out-of-sample test 
results for each estimation method. Among the three estimation methods, Lasso has the lowest 
RMSE and highest R-squared for the validation data, although the results are only slightly 
different from OLS and Tobit. The R-squared values across all models are expected, as our 
approach primarily relies on weather and location-specific time-invariant variables to explain 
variations in insect damage. Other local biological and ecological factors, such as host tree 
species and interactions with natural enemies and competitors (Asaro et al., 2017), also play 
important roles. However, incorporating these environmental variables and obtaining their future 
projections is challenging due to data limitations across the large geospatial scope of this study 
(Munro et al., 2022). 

 
Table 4: Out-of-sample test results across different models 
Estimation Method Sample RMSE R-squared Obs 
OLS Training  1.761 0.578 10,008 
  Validation 2.596 0.486 1,802 
Lasso Training  1.732 0.573 10,008 
  Validation 2.358 0.497 1,802 
Tobit Training  1.461 0.594 10,008 
  Validation 2.396 0.381 1,802 

 
To evaluate the impact of climate change on insect damage, we use our parameter estimates from 
Eq. (7) to predict insect damage using average seasonal temperatures and precipitations under 
current climate conditions (1991-2020) and projected future average seasonal conditions (2021-
2050) under climate change, respectively10. We then calculate the difference between the two 
predictions to determine the expected changes in insect damage for each county that are due to 
climate change. Table 5 summarizes the predicted changes in annual insect damage under future 
projections to 2050, using the CCSM4 climate model with the RCP 8.5 scenario, compared to 
current seasonal conditions.  On average, the OLS estimates predict an increase in insect damage 
of around 550 acres per county per year, while Lasso and Tobit predict a relatively smaller 
increase in insect damage of approximately 168 acres and 450 acres per county, respectively. 

                                                           
9 For the lasso regression, we use the adaptive lasso option, an extension of lasso that applies an alternative penalty 
weighting approach to perform variable selection and shrinkage (Zou, 2006). 
 
10 We predict changes in insect damaged area based on long-term average seasonal temperatures and precipitation to 
avoid the influence of extreme seasonal variations in specific years, which may not be representative of long-term 
trends. 
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The predictions show a wide range under the OLS and Tobit models, indicating significant 
spatial heterogeneity, while the Lasso approach exhibits much less variation. 
 
Table 5: Predicted Changes in Annual County Average Insect Damage  
Variable Obs Mean Std. dev. Min Max 
Insect Damage w/ OLS (thousand acres) 885 0.549 1.853 -3.589 7.081 
Insect Damage w/ Lasso (thousand acres) 885 0.168 0.094 -0.188 0.480 
Insect Damage w/Tobit (thousand acres) 885 0.450 2.322 -7.676 17.727 

 
Fig. 4 illustrates the spatial distribution of predicted changes in insect-damaged forest 

acreage for each county based on the results from the three prediction methods. All three 
predictions suggest that cooler northern areas are expected to see a larger increase in insect 
damage, while the warmer, wetter southern areas may experience declines as rising temperatures 
hinder insect growth and activity. Overall, our predictions are consistent with findings from 
natural science research predicting the northward expansion of the southern pine beetle (SPB), 
which has historically been confined to pine forests in the southeastern U.S. (Weed et al., 2013; 
Bentz and Klepzig, 2014; Dodds et al., 2018). The warming climate facilitates the SPB's range 
expansion by removing climatic barriers that have limited the SPB’s survival and spread. Our 
findings are also consistent with prior economic research that shows how a warming climate in 
the northern part of our study region will see landowner adaptation from hardwood to pine 
forests (Johnson and Lewis,2024), suggesting that landowner planting decisions will alter the 
composition of the forest towards pine trees that are more susceptible to SPB. 
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Figure 4. Spatial distribution of predicted changes in annual county average insect damage 
acreage under different prediction methods. These predicted changes are from an RCP 8.5 
climate change scenario relative to a scenario with no changes in climate. 
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4.2 Estimating timberland price impacts from climate-induced changes in insect damage  

Based on our estimated predicted changes in insect damage in Sec 4.1 (as shown in Fig. 4), we 
can quantify how such changes further alter the economic value of timberland based on the 
estimated timberland price model in Eq. (6). Considering the log-linear relationship between 
insect damage and timberland prices, the price impacts on parcel i from changes in insect 
damage equals11: 
 
𝐸𝐸𝐸𝐸𝐸𝐸. % 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: %∆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 = 100(exp(𝛽𝛽1�(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐(𝑖𝑖),2050 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐(𝑖𝑖),2020)) − 1)    (8)     
 
Where 𝛽𝛽1� is the estimated coefficient of insect damage from our preferred model (2) in Table 3. 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐(𝑖𝑖),2020 represents predicted average insect-damaged forest acreage under the current 
average seasonal conditions (1991-2020) in county c where parcel i is located and 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐(𝑖𝑖),2050 
represents predicted average insect-damaged forest acreage under the projected future average 
seasonal conditions (2021-2050) in county c where parcel i is located. 

 
Table 6 summarizes the estimated losses in timberland prices resulting from predicted 

average changes in insect damage under future seasonal conditions (2021–2050) compared to 
current seasonal conditions (1991–2020) using our three prediction approaches: OLS, Lasso and 
Tobit. The results indicate that price impacts vary across states and by estimation method, though 
the variations remain within a reasonable range. For example, in Alabama, the predicted changes 
in insect-damaged forest acreage under future seasonal conditions compared to current seasonal 
conditions lead to a timberland price increase of 0.04% or a decrease of 0.12%, depending on 
whether insect damage is predicted using the OLS or Lasso method. While specific state-level 
impacts exhibit some variation depending on the method employed, the overall pattern across the 
southeastern region shows consistent negative effects on timberland prices. On average, the 
OLS-based predictions show that the projected change in insect damage leads to an average 
reduction of approximately 0.5% in timberland prices. In contrast, the smaller average Lasso and 
Tobit predictions of climate-induced changes in insect damage lead to a slightly smaller average 
decrease of about 0.2% and 0.34% in timberland prices. These variations in predicted outcomes 
reflect the trade-offs (variable selection and censored data structure) associated with each model, 
as discussed in Section 4.1. Thus, no single model emerges as definitively "best" in this analysis. 
Exploring alternative methods could enhance the robustness of these results and provide 
additional insights. 

 Since our dataset of parcel transactions covers the entire geographical extent of our study 
region (Fig. 1), we extend our estimates to the population of private timberland throughout the 
10 southeastern states. Based on timberland data from the federal Forest Inventory and Analysis 
Data (FIA), there are about 174,226,300 acres of private timberland in total across the ten 
southeastern states. By leveraging the proportion of timberland in each individual state within 
this region, we calculate population-weighted timberland value losses due to anticipated insect 
damage shifts driven by future climate projections, which is about 0.5% based on OLS, 0.2% 
based on Lasso and 0.35% based on Tobit.12  Since a 0.5% (0.2% or 0.35%) drop in timberland 
                                                           
11 Eq. (8) is derived based on the exact change in price in response to a change in insect damage. 
12 The weights for the states - AL, AR, FL, GA, LA, MI, NC, SC, TN, VA - are as follows: 0.13, 0.11, 0.09, 0.14, 
0.08, 0.11, 0.10, 0.07, 0.08, and 0.09, respectively, determined by the proportion of timberland within each state in 
relation to the overall timberland within this region. 
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values equates to approximately $14 ($6 or $10) per acre, the total losses in timberland values 
amount to roughly $2.5 billion ($1 billion or $1.7billion) across the ten southeastern states, 
which is equivalent to our estimated reduction in per acre value – -$14/acre (OLS) or -$6/acre 
(Lasso) or -$10/acre (Tobit) – multiplied by the total acres (174,226,300 acres) of private 
timberland.  
 
Table 6: Summary of predicted insect impacts on timberland prices under three alternative 
methods for predicting future changes in acreage damaged by insects from climate change  
State Obs OLS  Lasso Tobit 

  Mean Mean Mean 

Alabama 5,662 0.04% -0.12% 0.68% 
Arkansas 1,713 -0.70% -0.29% 0.18% 
Florida 5,065 1.79% -0.08% 0.83% 
Georgia 1,987 0.16% -0.19% 0.26% 
Louisiana 2,804 1.07% -0.16% 0.28% 
Mississippi 396 0.72% -0.14% 0.40% 
North Carolina 4,306 -1.78% -0.19% -1.77% 
South Carolina 1,859 -0.26% -0.14% 0.03% 
Tennessee 5,430 -1.88% -0.17% -0.91% 
Virginia 1,862 -3.99% -0.28% -4.32% 
Total 31,084 -0.45% -0.16% -0.34% 
Population-weighted  -0.43% -0.18% -0.35% 

 
 

Fig. 5 illustrates the spatial pattern of predicted insect damage impacts on parcel-level 
timberland prices using OLS, Lasso, and Tobit predictions. Under future climate projections, the 
price impacts suggest that northern areas of the region are generally expected to experience a 
greater decline in timberland values due to increased insect damage. In contrast, southern states, 
such as Florida, may see a rise in timberland value due to reduced insect activities.  
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Figure 5: Spatial distribution of predicted insect damage impacts on timberland prices using 
OLS, Lasso, and Tobit predictions of physical acreage damage from climate change.  



27 

 

5 Conclusion and discussion 

The forest resources in the southeastern U.S. are valuable stocks of natural capital that provide 
numerous ecosystem services, support regional biodiversity, and contribute to the regional 
economy through timber production (Zhang, 2022; McIntosh and Zhang, 2024). However, recent 
observed and projected changes in local climate patterns have sparked growing concerns about 
the increasing risk of climate-induced natural disturbances, such as wildfires, insect outbreaks, 
and hurricanes, which could severely impact forested natural capital stocks in this region (Parks 
and Abatzoglou, 2020; Anderegg et al., 2022). For example, the warming climate is expected to 
increase the likelihood of southern pine beetle (SPB) outbreaks, one of the most common and 
destructive forest insect agents, and expand their range northward (Ungerer et al., 1999; Gan, 
2004). Thus, economic projections of landowner incentives to adapt to climate change by 
planting pines in the northern part of the southeastern U.S. (Johnson and Lewis, 2024) are 
expected to occur alongside a northward expansion of pine pests like SPB. Despite numerous 
natural science studies highlighting the adverse effects of insect outbreaks on forest structures 
(Lesk et al., 2017; Dodds et al., 2018; Heuss et al., 2019), their impact on timberland markets in 
the southeastern U.S. still remains unclear. 

 
This paper provides a framework to estimate the impacts of insect damage on the market 

price of timberland using a pooled cross-section of parcel data covering almost 30,000 
timberland transaction prices from 2004 to 2020 across ten states in the southeastern U.S. We 
employ a reduced-form linear econometric model with spatial and temporal fixed effects to 
estimate the impacts of insect damage on timberland prices. Identification is facilitated by county 
and year fixed effects that control for location-specific and year-specific unobserved factors that 
could otherwise confound our analysis, enabling us to isolate the impact of insect damage on 
timberland values. Our full sample results indicate that a thousand-acre increase in insect damage 
within a county decreases that county’s timberland prices by about 1%, holding all other factors 
constant. Since our insect damage data is county level and does not enable us to identify which 
parcels within a county are directly damaged by insects, the insect damage result reflects two 
channels, i) the direct impact of insect damage on existing timber growing stock, and ii) any 
potential change in landowners' risk expectations of owning timberland assets within the county.  

 
In order to predict changes in forest area damaged by insects under future climate 

projections relative to the current climate condition, we estimate the relationship between insect 
damage and seasonal temperature and precipitation using a 16 year-panel with the county-year as 
the unit of observation across 10 states in the southeastern U.S. We employ three different 
estimation techniques including OLS, the machine learning approach Lasso, and a Tobit model 
to estimate parameters and predict changes in insect damages under the CCSM climate 
projections with the RCP 8.5 scenario relative to the current climate. We find that future climate 
change leads to modest average increases in insect damage across the southeastern U.S., with an 
average expansion of between 168 acres and 550 acres per county per year, depending on which 
estimation method we use. Notably, the northern area of the study region is expected to see a 
larger increase in insect damage than the southern portion, consistent with recent findings from 
natural science studies (Weed et al., 2013; Lesk et al., 2017). The price impacts resulting from 
these projected changes in insect damage indicate a modest population-weighted average decline 
of between 0.2% and 0.5% in timberland values, depending on which method is used to project 

https://www.sciencedirect.com/science/article/pii/S0378112718312751?casa_token=56PPRgEy93AAAAAA:JNMt2IAQhCXBkqR6wI94To-yuYdBRNzqO8RaIaG-2EXZ75haOVyTvTAAwOHQeXUllaFLuXhO3rQ#b0200
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insect damage. When translated to a population-level damage in dollars, the projections of insect 
damage translate to an overall loss of between $1 billion and $2.5 billion.  

 
Our findings of modest negative price impacts from insect damage contribute to the 

growing body of knowledge on economic impacts of climate change on natural resources 
through natural disturbances, including the social costs that climate change poses for private 
timberland management. In comparison to wildfire impacts on the value of forests, we find that 
climate-induced changes in insect damage are expected to have a much lower impact on the 
economic value of forests in the U.S. southeast (~0.2% to 0.5% reduction) than the estimated 
impact of changes in recent wildfire risk has already had on the economic value of forests in the 
Pacific states of the western U.S. (~10% reduction) (Wang and Lewis 2024). Focusing on 
comparing the impacts of wildfire across regions, we note that while acreage burned from large 
wildfires has increased in both the western and southeastern U.S., the acreage that has burned 
with moderate and high severity has increased by much more in the western U.S. than in the 
southeastern U.S. (Costanza et al. 2023). In estimating timberland price impacts from large 
wildfires, we find that timberland prices do not respond to local wildfire events, which suggests 
that landowner expectations of wildfire arrival rates have likely not changed in the southeastern 
U.S. One interpretation is that since there have been minimal changes in moderate to high 
severity wildfires in the southeast, then landowners have rationally not shifted their expectations 
of wildfire arrival in that region. In contrast, Wang and Lewis (2024) find that timberland prices 
fall when exposed to nearby large wildfire events in the Pacific states of the western U.S., a 
result they attribute to landowners updating their expectations of wildfire arrival rates in 
response to the large increase in high severity large wildfires that has already occurred in that 
region.  

 
There are several caveats to our study that are worth mentioning. First, our insect damage 

data at the county level are limited in terms of identifying damage to individual parcels or 
distinguishing between damage caused by different insect agents. Thus, in the future, improved 
spatial data on the damage caused by various insect agents will enable a better understanding of 
how timberland markets respond to diverse insect risks. Second, our finding of price impacts of 
climate-induced insect damage should be viewed as a lower bound as we are not able to account 
for the losses of many non-market goods and ecosystem services provided by forests associated 
with insect damage. Moreover, similar to other Ricardian studies of climate impacts on land 
values (Mendelsohn and Massetti, 2017), our approach does not account for general equilibrium 
impacts that result from future shifts in the price of timber. Lastly, we project insect damage 
using three methods: conventional OLS estimation, the machine learning approach Lasso, and 
the Tobit model. While Lasso offers the highest prediction accuracy, it involves trade-offs 
between improving prediction performance and identifying key explanatory variables. We leave 
it to future research to evaluate which approach is preferred.   
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