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Introduction 

Large-scale land-use models are used to project trends in the stock of agricultural and 

forested lands (e.g. the U.S. Forest Service’s Resource Planning Act), to examine policies that 

sequester carbon (Lubowski et al. 2006), analyze changes in hydrology (Viger et al. 2011), and 

to anticipate changes in a broad range of ecosystem services such as food/fiber provision, 

wildlife habitat, and carbon sequestration (Lawler et al. 2014). Empirical research in land-use 

economics finds that the relative net economic returns to agriculture, forestry, and development 

strongly drive land-use changes across these broad uses (Lubowski et al. 2008). Recent climate 

economics research finds that climate change is widely expected to alter the growth of crops 

(Schlenker and Roberts 2009), the growth of commercially valuable tree species (Restaino et al. 

2015), and the quality of life for urban populations (Albouy et al. 2016) in the United States. 

Spatially heterogeneous climate impacts on resource growth and quality of life are expected to 

spur a wide variety of adaptations in how land is managed and where people live (Massetti and 

Mendelsohn 2017). The resulting impacts of climate-induced changes in the economic returns to 

agriculture, forestry, and development on broad land-use changes is not well understood. 

 The purpose of this paper is to empirically estimate the effects of climate on land-use 

change across the conterminous United States, and to use the empirical model to simulate the 

effects of future climate change on the allocation of broad land-use in forestry, agriculture, and 

development. An empirical analysis of climate-induced changes in broad land-uses must account 

for the potential economic value of adaptation in land management within each of the land-uses. 

For example, consider the middle of the eastern U.S., a region where climate changes are 

expected to increase the profitability of pine forests when compared to the current climate 

(Mihiar and Lewis 2021). The net economic returns to forestry would rise and reflect the value 
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of adapting to pine forest systems rather than simply reflecting the value of pre-climate change 

forestry. Whether owners of agricultural lands would respond and convert their land to forestry 

depends on how those same climate changes affect the profitability of crops, which depend on 

any adaptations made to crop management (e.g. crop switching). The relative climate impacts on 

both forestry and agriculture should drive land-use changes across these land-uses and will 

critically depend on potential land management adaptation choices that could be made within 

both forestry and agriculture.  

The empirical design of our research is based on a) developing empirical linkages 

between climate and the net economic returns to the major U.S. land-uses of agriculture, forestry, 

and development, and b) developing an empirical link between the net returns to each land-use 

and the choice to change land-uses across agriculture, forestry, and development conditional on 

land quality and the current landscape allocation. We combine previously estimated Ricardian 

functions of the effects of climate on the economic returns to U.S. forestry (Mihiar and Lewis 

2021) with new Ricardian estimations of the effects of climate on the returns to crop land and 

development in order to differentially link climate and net returns to the major land-uses. The 

Ricardian estimations generate county-level average net economic returns as functions of a set of 

climate variables. As with all Ricardian models, the results implicitly account for management 

adaptation within each land-use. We then develop a discrete-choice model of the plot-level 

choice of agriculture, forestry, and developed land-use as a function of the county-level net 

return measures, plot-level measures of soil quality, and a variety of spatial fixed effects that 

exploit the panel nature of the land-use data. The land-use change model is estimated from 

hundreds of thousands of repeated plot-level land-use choices as observed in the USDA’s 

National Resources Inventory (NRI) dataset from 2000 to 2012. The estimated land-use change 



4 
 

model generates transition probabilities that are functions of the county-level net returns to land. 

The effects of climate change on land-use change arise because we use the estimated Ricardian 

functions to adjust the net returns to each land-use to future climate changes, ultimately yielding 

plot-level land-use transition probabilities that are functions of various climate measures based 

on landowners’ revealed land-use behavior, and which account for management adaptation 

within each land-use.    

The primary contribution of this paper is an integration of Ricardian estimation of 

climate-impacts on land-use returns combined with discrete-choice estimation of land-use 

change as a function of land-use returns. Prior work in the econometric Ricardian literature has 

focused on estimating the effects of climate on net economic returns to agriculture (e.g. 

Mendelsohn et al. 1994; Schlenker et al. 2006), urban quality of life (Albouy et al. 2016) and 

forestry (Mihiar and Lewis 2021) but has not gone further and linked projected climate induced 

changes in net returns to broad land-use changes. Conversely, there is an econometric literature 

focused on estimating the effects of net returns to land on changes across broad uses like 

agriculture, forestry, and development (e.g. Lubowski et al. 2006; Lewis and Plantinga 2007; 

Wrenn et al. 2017). With three exceptions, the econometric land-use literature has not 

incorporated climate change into any land-use projections or policy analysis. One exception is 

Haim et al. (2011), who introduce climate change into Lubowski et al.’s (2006) econometric 

setup by projecting agricultural and forest yield changes using natural science projections that 

ignore management adaptation, and linking land development returns to future population 

projections under climate change. As has been discussed extensively in the Ricardian literature 

(e.g. Mendelsohn et al. 1994), estimating Ricardian functions has the advantage of explicitly 

accounting for adaptation in land management such as the choice of crops to plant, the choice of 
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trees to grow, or the influence of climate on the relative attractiveness of locations as a place to 

live. Three additional exceptions include Fezzi et al. (2015) and Mu et al. (2017) who estimate 

econometric models of land-use decision-making within agriculture, and Hashida and Lewis 

(2019) who estimate an econometric model of management choices within forestry– rather than 

across broad land-uses – as a function of climate.  

Our paper also makes two additional contributions to the literature. First, by explicitly 

linking climate change to land-use changes in a manner that accounts for management adaptation 

within land-uses, we provide the first econometric-based projection for how the composition of 

the U.S. landscape will be affected by different climate change scenarios. This evidence 

complements other non-econometric land-use studies based on numerical methods like the 

FASOM model (e.g. Alig et al. 2002). An advantage of the econometric approach over numerical 

approaches is the ability to use evidence on landowners’ revealed behavior combined with 

statistical theory to generate confidence intervals for estimates. Second, we explicitly incorporate 

two primary forms of uncertainty that arise from our approach to projecting land-use change – 

uncertainty arising from the selection of climate model to generate future climatic conditions, 

and uncertainty arising from econometric estimation of parameters describing both net returns to 

land and corresponding land-use change. We follow advice from Burke et al. (2015) and 

consider the effects of different climate change projections by examining sensitivity of results to 

the choice from among four different climate models across both RCP 4.5 and RCP 8.5. Further, 

we use the Krinsky-Robb (1986) method of simulating confidence intervals to examine the 

sensitivity of results to the parameter uncertainty in the estimated models of net returns to land 

and corresponding land-use change. 
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Results indicate that developed land in the U.S. will continue to expand at an 

approximate average rate of 0.82 million acres per year, which translates to a 51% increase by 

2070.2 Our projected future development growth rates are much lower than the U.S. average of 

approximately 1.5 million acres per year observed from 1982-1997, and slightly lower than the 

U.S. average of 0.93 million acres per year observed from 2000-2015.3 The projected expansion 

of developed lands will come at the expense of net losses to all other land-uses, including a 5.6% 

loss in crop land, 7.9% loss in pasture land, and a 2.3% loss in forest land. Among the eight 

alternative climate change scenarios that we consider, we find that drier and warmer climate 

scenarios favor forest land (less projected loss), wetter and cooler climate scenarios favor 

development (higher gain), and wetter and warmer climate scenarios favor crop lands (less loss). 

However, while we find statistical differences in the simulated land-use distributions across the 

eight alternative climate change scenarios we consider, the differences across scenarios are 

practically modest and never diverge from the overarching land-use trajectory of expanding 

development and falling amounts of all other land-uses. Thus, we find that the choice of a 

climate change baseline makes little difference in the amount of projected net land-use change 

across the conterminous U.S. 

This paper is structured as follows. Section 2 describes the theory underpinning the 

econometric land-use change model with climate adaptation. Section 3 describes the data on net 

returns, land-use change and climate, along with the various econometric specification choices 

that we make. Section 4 presents econometric parameter estimates while section 5 uses the 

parameter estimates to simulate the effects of climate change on U.S. land-use change up to 

                                                           
2 Alternative shared socio-economic pathway (SSP) scenarios with higher income and population growth raise our 
projected future development from 0.82 million acres per year to approximately 1.05 million acres per year. 
3 See Bigelow et al. (2022) for an analysis of the reduction in U.S. development patterns between the 1982-1997 and 
2000-2015 time periods. 
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2070. Finally, section 6 offers concluding thoughts on the intersection between climate change 

and broad land-use changes. 

Materials & Methods 

Theoretical Framework: An econometric land-use change model with climate adaptation 
 

An econometric model of the micro-level choice of changing plot-level land-use to adapt 

to climate change faces two primary challenges. First, the model must represent observable and 

unobservable information regarding the private net returns to land at the same scale in which the 

land-use choice varies (Plantinga and Lewis 2014). Second, the model must account for climate 

adaptation that may induce the choice of management intensity and the private net returns to 

land-use. We build our framework off prior econometric work on discrete-choice land-use 

models (e.g. Bockstael 1996; Lubowski et al. 2006; Lewis and Plantinga 2007) and prior 

econometric work on Ricardian climate models (e.g. Mendelsohn et al. 1994; Albouy et al. 2016; 

Ortiz-Bobea 2020) to develop a land-use change econometric model with climate adaptation. 

 Consider the owner of a homogeneous quality one-acre plot i that begins time period t in 

land-use j. The owner would receive annual revenue 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 from converting the plot to use k, but 

face annual management costs (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖) from use k and annualized costs (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

from converting between use j and use k . The net economic returns to converting to use k are: 

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                     (1) 

An issue with Eq. (1) is that 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖, and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are private information 

observable by the landowner of plot i, but not by the econometrician. Therefore, we re-write 

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 based on factors that are both observable and unobservable to the econometrician: 
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𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0𝑗𝑗𝑗𝑗 + 𝛽𝛽1𝑗𝑗𝑗𝑗𝑁𝑁𝑁𝑁𝑐𝑐(𝑖𝑖)𝑘𝑘𝑘𝑘 + 𝛽𝛽2𝑗𝑗𝑗𝑗𝐿𝐿𝐿𝐿𝑖𝑖 + 𝜇𝜇𝑅𝑅(𝑖𝑖)𝑘𝑘 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                         (2) 

Where 𝑁𝑁𝑁𝑁𝑐𝑐(𝑖𝑖)𝑘𝑘𝑘𝑘 represents the time t average net economic return to land-use k in county c that 

contains plot i,  𝐿𝐿𝐿𝐿𝑖𝑖 is an index representing an observable measure of land quality for plot i, 

𝜇𝜇𝑅𝑅(𝑖𝑖)𝑘𝑘 is a fixed effect representing unobservable factors in region R that contains plot i and 

influence use k,  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 represents unobservable elements of the returns to land for plot i, and the 𝛽𝛽 

terms represent parameters to be estimated. Importantly, the alternative specific constant 𝛽𝛽0𝑗𝑗𝑗𝑗 

will embed the annualized costs associated with converting the land from use j to use k 

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖). Re-writing Eq. (1) into Eq. (2) effectively writes land-use returns for a plot as a 

deviation off the average returns for the county that contains that plot. For land starting in use j, 

the land-use k is chosen in time t if: 

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 > 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝑙𝑙 ≠ 𝑘𝑘                                                       (3) 

Eq. (3) has been shown to be the optimal land-use decision rule when landowners have static 

expectations about future net returns to land (Plantinga 1996). If the 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is assumed to be IID 

type I extreme value, Eq. (3) facilitates a discrete-choice Logit model (e.g. Train 2009) of plot-

level land-use change given a discrete choice set of plausible land-use alternatives, and the 𝛽𝛽 

parameters can be estimated by maximum likelihood. An important feature of the above model is 

that Eq. (3) is conditional on the land starting in use j, and so this is a land-use change model. 

Another feature of Eq. (3) is that the non-linear functions required to estimate it may preclude 

estimating the large set of fixed effects in 𝜇𝜇𝑅𝑅(𝑖𝑖)𝑘𝑘 due to the incidental parameters problem, and so 

BLP contraction-mapping may be required to numerically account for the large set of fixed 

effects in a logit framework (Berry et al. 1995; Train 2009 Ch. 13). The model developed here 
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meets the first modeling challenge of representing observable and unobservable information 

regarding private returns to land at the plot-level scale in which the land-use choice is made. 

 To meet the second modeling challenge, we consider a simple model of climate 

adaptation in land management. Suppose there are 𝑀𝑀𝑘𝑘 possible adaptation choices of land 

management that can be made within land-use k. For example, an owner of land in forestry could 

choose to plant their land in loblolly pine, shortleaf pine, hickory, or some other forest type. An 

owner of land in crop production could choose to plant corn, wheat, cucumbers, or some other 

crop. The net returns to use k under land management m are affected by climate and defined as: 

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚 = 𝑓𝑓𝑘𝑘𝑘𝑘(𝑋𝑋𝑖𝑖𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖;𝛾𝛾)                                                       (4) 

Where 𝑋𝑋𝑖𝑖𝑖𝑖 represents plot-level characteristics that affect economic production of land-use k, 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 represents climatic characteristics around plot i in time t, and 𝛾𝛾 represents parameters 

to be estimated. The function 𝑓𝑓𝑘𝑘𝑘𝑘 represents a hedonic price function that relates characteristics 

of the land and surrounding environment to the economic value of the land in use k which is 

managed with choice m. The resulting net return of plot i under use k in time t is the solution to 

the problem of choosing the land management system m that maximizes the value of the land: 

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚�𝑚𝑚=1
𝑀𝑀𝑘𝑘                                                       (5) 

Since 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚 is a function of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖, then Eq. (5) is a statement that the landowner will 

choose management action m to maximize the net economic returns to land-use k given the 

climate that they face. In turn, the observable county-average net economic return to use k in 

time t is: 

𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 = 1
𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐

∑ 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖
𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐
𝑖𝑖=1                                                         (6) 
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Where 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 is the total acreage of land in county c devoted to use k in time t. Eq. (6) indicates 

that the observable average net returns to use k in county c are a function of the independent 

management choices made by each landowner of use k land in response to their parcel 

characteristics and the climate that they face. We estimate the link between climate conditions 

and the county-mean net returns to use k land with a use-k specific linear Ricardian function: 

𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛾𝛾0𝑘𝑘 + 𝛾𝛾1𝑘𝑘𝑋𝑋𝑐𝑐𝑐𝑐 + 𝛾𝛾2𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 + 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐                                  (7) 

Where observable independent variables include county-aggregated land characteristics 𝑋𝑋𝑐𝑐𝑐𝑐 (e.g. 

percent of land in high quality soil) and county-aggregated climate characteristics 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 

(e.g. county mean temperature, cooling degree days, etc.). Since observable county average net 

returns  𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 arise from many independent management choices made by landowners within 

that county in response to the climate that they face, then estimation of Eq. (7) implicitly 

accounts for how landowners have adapted their management to the climate conditions they face. 

And 𝛾𝛾2𝑘𝑘 maps changes in 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 to changes in 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐, which then affect the optimal land-use 

choice in Eq. (3). Therefore, the framework meets the second modeling challenge by accounting 

for climate adaptation that may induce management choices that affect the management intensity 

and the private net returns to land-use. 

Data sources and econometric specification 
 

In this section, we describe the construction of the private economic returns to productive 

land-use and the estimation of our climate Ricardian functions. We construct net returns 

measures for three distinct land-use systems: crop, forest, and development. The Ricardian 

approach econometrically links the net returns to each land-use with exogenous climate variables 

that are heterogeneous across space. Spatial variation in net returns and climate allow us to 
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identify how local climate, conditioned on land quality, determines the optimal set of intensive 

margin management decisions. 

Data sources on net returns to land 
 

The economic net return to crop land is derived from regional economic accounts 

reported by the U.S. Department of Commerce’s Bureau of Economic Analysis (BEA). The 

BEA’s regional program tracks the geographic distribution of economic activity, providing data 

on farm income and expenses at the county level for the period 1969 - 2014. The BEA defines 

farms as including both crop and animal production. Crop establishments include farms in the 

production of food and fiber, including orchards, groves, greenhouses, and nurseries, primarily 

engaged in growing crops, plants, vines or trees and their seeds. In addition to cash receipts, the 

total net income measure also includes government payments, labor expenses, and the value of 

changes in inventory. Income is included for both sole proprietors and corporate farms. All 

values are converted to per acre measures in 2010 dollars to make then comparable across land-

use systems (i.e. to match forest and development net returns). 

County-specific proxies are constructed to serve as the net return to developed land using 

a residual-based approach. The proxy is derived from the average price per acre of recently 

developed land used for home construction. Annualized net returns to developed land are 

constructed from data in the PUMS survey conducted by the U.S. Census. For the year 2000, the 

data comes from the decennial census. Starting in 2005, the PUMS survey was conducted as part 

of the American Community Survey (ACS). The ACS is done annually and collects owner-

reported property value. The value of land is the difference between the value of newly 

constructed single-family homes from Survey of Construction (SOC) reports and the Census 
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reported property value. The SOC also reports the average lot size which is used to generate per 

acre land price. 

Data on property value, including land and structures, is compiled from the U.S. Census’ 

Public Use Microdata Samples (PUMS 5% sample). The PUMS data is reported at the Public 

Use Microdata Area (PUMA) geographic unit. PUMA boundaries lie completely within state 

boundaries; however, the overlap between PUMA boundary and county boundary varies across 

the country. In some cases, multiple PUMAs will be contained within a single county, while 

other PUMAs may have multiple counties falling within a single PUMA. We developed an 

algorithm that scaled the PUMS data according to neighbor relationships using a GIS to estimate 

the county-level sales price of recently developed homes. County sales price is the weighted 

average of the PUMS property value, where the weight is the area of overlap between county and 

PUMA boundary. 

Lastly, the net economic return to timber production is taken from Mihiar and Lewis (2021). 

Measured in annualized dollars per acre of forestland, this variable is constructed by combining 

stumpage prices, forest establishment costs, and timber yield functions estimated with data from 

the U.S. Forest Service’s Forest Inventory and Analysis (FIA) data. Timber yield functions were 

estimated at the county and species group level and capture the spatial heterogeneity of forest 

productivity across the U.S. The current forested landscape is used to combine species level net 

returns into a composite measure of county level forest net returns. 

Data sources for climate 
 

Historically observed weather and climate data are obtained from Oregon State 

University’s PRISM Climate Group (PRISM 2017). PRISM daily data was obtained for three 
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climate variables: precipitation, minimum temperature, maximum temperature. Mean 

temperature is derived from the minimum and maximum values. Because we are interested in the 

impact of climate on the net return to land, we use the long-term average (normal) of each 

locations’ weather variable. We use various measures of temperature and precipitation for the 

period 1981-2010 measured in degrees Celsius and millimeters (mm), respectively. We 

aggregate the PRISM data to the level of U.S. counties for each variable. These historically 

observed climate data are used to estimate parameters for the Ricardian functions. We discuss 

the specific climate measures used for each net return function below. 

Predictions of future climate are obtained from the University of Idaho, MACA 

Statistically Downscaled Climate Data for CMIP5. MACAv2- METDATA (Multivariate 

Adaptive Constructed Analogs) was developed by Abatzoglou et al (2013). Climate variables are 

reported at a 4km (1/24-deg) resolution, and include mean daily maximum temperature, mean 

daily minimum temperature, and daily total precipitation (mm). As part of the Resource Planning 

Act (RPA) assessment for 2020, the U.S. Forest Service has identified a subset of MACA 

scenarios to represent a full range of future climates (e.g. wet, dry, etc.) (Joyce and Coulson 

2020). Models were evaluated on the basis of their strength at predicting the historically 

observed climate. We evaluate the future landscape across four GCMs at RCP 4.5 and RCP 8.54. 

 

Data source for land-use change 
 

We use the plot-level 2012 National Resources Inventory (NRI) data from the USDA 

Natural Resources Conservation Service as the source for land-use change data. The NRI is a 

                                                           
4 Global climate models used in our analysis include MRI-CGCM3 (Least Warm), IPSL-CM5A-MR (Dry), CNRM-CM5 
(Wet), and NorESM1-M (Hot).  
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longitudinal dataset comprised of land-use, land cover and soil characteristics on non-Federal 

lands across the conterminous U.S. The 2012 NRI data set used here is comprised of 1,362,936 

unique plots covering 3,096 U.S. counties and includes annual observations of land-use after the 

year 2000.5 Land-use conversion is modeled using two-year transition periods starting in 2000 

and ending in 2012, creating six transition periods that comprise starting and ending land-uses. 

Table 1 presents the observed land-use changes between each broad land-use between 2000 and 

2012 in the NRI, and figure 1 shows the land-use to which converted land transitioned over the 

observation period.. The largest net-change in land-use was a loss of almost 11 million acres of 

crop land, and a gain of almost 11 million acres of developed land. However, other uses had 

minimal net changes but much larger gross changes to and from other uses. For example, almost 

2 million acres of forest were converted to pasture while nearly 6 million acres of pasture was 

converted to forest. We also use the plot-level variable land capability class (LCC) as an 

indicator of the quality of land (i.e. LQ in Eq. 2). 

Econometric specification of climate in Ricardian models 
 

Given the above sources of data, we specify Eq. (7), the function that relates vectors of 

climate variables to the net returns for each land-use. The dependent variable is the county 

average net return to land use k, which is averaged over the time period 1997-2014 to create a 

cross-sectional dataset consistent with the traditional Ricardian approach. We build off prior 

research and define the functional form and the choice of climate variables differently for the 

three different Ricardian functions that represent net returns to the major land-uses of forest land, 

crop land, and development. Each of the three Ricardian functions uses U.S. counties as the unit 

                                                           
5 Between 1982 and 1997, land use is observed in 5-year increments. 
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of observation, and we use ordinary least-squares to estimate parameters for each function. A key 

finding of past literature is that climate variables have a non-linear effect on net returns to 

various land-uses, and our specification choices reflect this finding. 

 For the forest Ricardian (k=forest), we employ the Ricardian function specification used 

by Mihiar and Lewis (2021) including climate variables representing average annual temperature 

and total annual precipitation in each county. Temperature and precipitation are specified as 

polynomial functions with a 4th order polynomial. Mihiar and Lewis (2021) present an extended 

analysis of specification, including robustness checks with an alternative specification for 

counties west of the 100th meridian and seasonal climate measures. In addition to climate, 

variables capturing average county soil quality and regional fixed effects are included to specify 

Eq. (7) for forestland.  

 For the crop land Ricardian (k=crop), we build off the voluminous literature on 

agricultural Ricardian models (Mendelsohn et al. 1994; Schlenker et al. 2005; Ortiz-Bobea 2020) 

and specify a new model using our county-average crop land net returns data as the dependent 

variable. In contrast to earlier analyses built on farm land values, we follow Ortiz-Bobea (2020) 

and use a quasi-rent measure for the dependent variable that is consistent with the theoretical 

setup of the econometric land-use model. For specifying climate in the crop land Ricardian, we 

follow Massetti et al. (2016) and choose seasonal average temperatures and seasonal total 

precipitation for our set of climate variables, along with interactions between temperature and 

precipitation. All climate variables are specified with a 2nd order polynomial function to capture 

the non-linear relationship between climate and crop land returns. We also include variables 

representing the proportion of county crop land in each of the eight primary land capability 

classifications (LCC).  
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 For the development Ricardian (k=developed), we build off Albouy et al.’s (2016) cross-

sectional analysis of climate impacts on urban quality of life and specify a new model using our 

county-average developed land net returns data as the dependent variable. Since Albouy et al. 

(2016) found strong support for using heating and cooling degree days to explain urban quality 

of life, we represent climate in the developed land Ricardian with 2nd order polynomial functions 

of heating and cooling degree days, a 2nd order polynomial of total annual precipitation, and 

interactions between precipitation and the heating/cooling degree days variables. Heating and 

cooling degree days represent deviations from the bliss point of 65 degrees Fahrenheit. The 

Ricardian model for developed land estimates the link between climate amenities and developed 

land prices, thereby providing us an avenue in which to link climate change to development land-

use change. 

In addition to climate, we include several standard explanatory variables in the 

development Ricardian that have historically been shown to influence developed land values, 

including population, income, racial composition, and population shares in various education 

levels. We do not include factors like population and income in our timber or crop Ricardian 

models since our dependent variable is an annualized net return to those uses rather than a land 

price that capitalizes all expected future rents, including those from conversion to future 

developed land. This is consistent with Ortiz-Bobea (2020), who found that non-farm influences 

like population and income have no effect on agricultural cash rents. 

Econometric specification in land-use change models 
 

The econometric land-use models estimate the probability of conversion between 

different choices in the land-use choice set. Our choice set includes the major broad land-uses of 
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forest, crop, pasture, range, and development. The choice set differs by county and is determined 

by the observed choices made during the study period, e.g. there is no range land in the 

northeastern U.S. therefore range is not a choice in those counties. Following prior econometric 

studies using NRI data (Lubowski et al. 2006; Lewis and Plantinga 2007), we separately estimate 

four different land-use change models by starting use, creating separate models for land starting 

in forest, crop, pasture, and range. Since almost no land leaves developed use, we do not model 

land-use change for existing developed land and instead assume all developed land remains 

developed with probability of one. Development is a potential land-use choice in all four land-

use change models. The key independent variable is a net return to land measure, 𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐, that 

varies by county c, land use k, and time t. The net return variable is a rolling average of the five 

years preceding each land-use transition period. 

By including a set of use-k fixed effects in the land-use change model that are specific to 

region R that contains plot I, 𝜇𝜇𝑅𝑅(𝑖𝑖)𝑘𝑘, we effectively shift the model’s alternative specific constants 

in a way that captures regional unobservables (e.g. regulations) that influence the choice of use k. 

For the crop and pasture starting uses, we define region to represent state fixed effects separately 

for each possible land-use choice, creating a total of 192 separate fixed effects (crop is the 

omitted use). Given this large number fixed effects, we use the BLP contraction mapping 

approach (Berry et al. 1994) to numerically account for the fixed effects in the non-linear logit 

framework. For the model based on forest starting use, we have a coarser fixed effect structure 

and simply include a dummy variable indicating whether the forest is located in one of four U.S. 

regions (northeast, southeast, rocky mountain, and pacific coast) in order to capture the structural 

difference in forest type composition and distribution. One final specification choice is that we 
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omit the forest net returns variable, 𝑁𝑁𝑁𝑁𝑐𝑐(𝑖𝑖)𝑘𝑘𝑘𝑘, for k=forest from the model with range as a starting 

use due to lack of variation in observed range-to-forest transitions. 

Our econometric model is based on all observed land-use changes during the 2000-2012 

time-period, and so our estimates implicitly embed the land-use change process that occurred 

during this period. For example, urban economics has long argued that urban expansion is driven 

by growth in population and income, as well as commuting costs (Brueckner 2000; Nechyba and 

Walsh 2004). Therefore, since maximum likelihood estimation of Eq. (2) guarantees that the 

estimated land-use model can reproduce the sample land-use shares (Train 2009 Ch. 3), then our 

estimates embed factors that influenced development patterns from 2000-2012, such as 

commuting costs, population and income growth rates that occurred during this time period. In 

addition, our estimates will embed the recent reduction in U.S. development rates that occurred 

between the last two decades of the 20th century and the first fifteen years of the 21st century 

(Bigelow et al. 2022). 

Landscape simulation approach 
 

We simulate changes in broad land-uses across the conterminous U.S. to the year 2070 

under the range of climate scenarios presented in Fig. 1A. According to our model, the estimated 

probability that each plot i transitions from use k to use l in time t is defined by: 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐹𝐹�𝑵𝑵𝑵𝑵𝒄𝒄(𝒊𝒊)𝒕𝒕(𝑋𝑋𝑐𝑐𝑐𝑐,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐;𝜸𝜸�), 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖;  𝜷𝜷𝒌𝒌� ,𝝁𝝁�𝑹𝑹(𝒊𝒊)𝒌𝒌�                        (8) 

Where F[] is the logistic function and 𝑵𝑵𝑵𝑵𝒄𝒄(𝒊𝒊)𝒕𝒕 is the vector of all the time t net return variables in 

county c that contains plot i . The Ricardian functions for 𝑵𝑵𝑵𝑵𝒄𝒄(𝒊𝒊)𝒕𝒕 are embedded into the logistic 

probability function in Eq. (8), which defines the functional relationship between the land-use 
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transition probabilities and the full set of climate variables 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐. The climate change 

scenarios alter the land-use transition probabilities by altering 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 in each future period t, 

which then alters 𝑵𝑵𝑵𝑵𝒄𝒄(𝒊𝒊)𝒕𝒕 through the estimated Ricardian functions and parameter vector 𝜸𝜸�. The 

estimated logit land-use change functions and parameter vectors (𝜷𝜷𝒌𝒌� ,𝝁𝝁�𝑹𝑹(𝒊𝒊)𝒌𝒌) then translate the 

resulting climate changes into the land-use transition probabilities. Each set of transition 

probabilities is defined by starting land-use k, county c, and the land capability class rating of 

plot i (𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖). 

 We use the Krinsky-Robb (1986) approach to simulating confidence intervals for the full 

set of land-use projections under each climate scenario. The simulation works as follows. First, 

we take draws of the Ricardian (𝜸𝜸�) and logit parameter vectors (𝜷𝜷𝒌𝒌� ,𝝁𝝁�𝑹𝑹(𝒊𝒊)𝒌𝒌). Since the Ricardian 

and logit models are estimated independently, the draws are independent across models but 

reflect the estimated covariance structure of the parameters within each model. Second, we 

generate a time-path of the net return variables out to 2070 using the estimated Ricardian 

functions. Third, using the time-path of net returns, we generate a time-path of land-use 

transition probabilities for each NRI plot i, and then scale them to the landscape level using the 

NRI’s expansion factor for each plot. This process generates the full composition of each 

county’s landscape across the broad land-uses. Repeating these steps many times provides a 

distribution of landscape outcomes. 

 An assumption in our simulation is that the price of land in the different land uses will 

change over time according to the estimated Ricardian functions in Eq. (7), but that commodity 

prices are held fixed. The assumption of fixed crop prices under climate change is supported by 

Hertel et al. (2016), who reviewed the widely diverging projected crop price studies that analyze 

future climate change impacts, and they find that “crop prices are expected to be at roughly the 
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same level in 2050 as in 2006” (p. 439). Projections of future timber prices under climate change 

have received less attention, but Sohngen and Tian’s (2016) numerical study finds that climate 

change will lower timber prices by a modest 15% relative to a non-climate change baseline. 

Further, recent work has found that carbon fertilization has already increased timber productivity 

in at least some areas (Davis et al. 2022), which would also exert downward pressure on future 

timber prices and potentially counter any supply-induced price increases arising from land-use 

change out of forests. Other complications for projecting future commodity prices include global 

forces such as international trade deal changes and economic growth and land-use change in 

other countries. Given our main interest in simulating how projected changes in temperature and 

precipitation influence broad land-use changes in the U.S., and the uncertainty and modest 

projected future crop and timber price impacts from climate change, we argue that holding 

commodity prices fixed is reasonable for this analysis. We leave a study of scenarios with 

commodity price changes for future research. 

Results 

Ricardian functions 

The Ricardian function for each of the three land-uses (crop, forest, developed) is 

estimated using cross-sectional OLS, weighted by each county’s acreage in that particular land-

use. Full parameter estimates are presented in Tables S1 – S3. In the crop Ricardian (Table S1), 

estimates indicate that crop returns are sensitive to seasonal climate measures, as 15 out of 20 

climate parameters are significantly different from zero using single parameter tests (p<0.1). In 

the forest (Table S2) and development Ricardian (Table S3) models, all eight climate parameters 

are significantly different from zero in each model using single parameter tests (p<0.1).   
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 To examine how the different climate scenarios affect the projected future path of net 

returns to forestry, crops, and developed land-uses, we simulate the future time-path of net 

returns to each use under alternative climate change scenarios, where each climate scenario 

represents a combination of global climate model and representative concentration pathway and 

generates varying levels of precipitation and temperature. Supplementary Fig. S1 presents 

projected paths for each scenario. Temperature increases range from just over 1℃ to 3℃ across 

the scenarios, while annual precipitation ranges from -3.4% to +7.4% (Fig. 1A). Fig. 1B-1D 

presents the time path for the average net return for each land-use using mean climate change, 

along with 95% confidence intervals. Average crop returns (Fig. 1B) and forest returns (Fig. 1C) 

increase moderately for most scenarios, with a mean increase of 23% for crops and 22% for 

forestry. While average forest returns increase in all eight climate scenarios, there are some 

climate scenarios in which crop returns fall (Fig. S1). In contrast, development returns (Fig. 1D) 

have a declining time path for all scenarios, with a mean decrease of 32%. As seen in Fig. S1, 

there is variation in the magnitude of the Ricardian functions across climate scenarios, but the 

qualitative trends are consistent. While the forest Ricardian comes from Mihiar and Lewis 

(2021), the crop and development Ricardian functions are new estimations. For context with 

prior Ricardian estimates, the projected trends in crop and development returns under climate 

change are consistent with Ortiz-Bobea’s (2020) Ricardian estimations of agriculture and 

housing prices, though our projected increases in crop returns are slightly larger. In addition, the 

projected declining trends in development returns are consistent with Albouy et al.’s (2016) 

projections that an urban quality-of-life metric is expected to decline under climate change 

across most U.S. regions. Despite the declining trends in development returns, the level of 

projected average development returns remains far higher than the average returns to the other 
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land-uses. Finally, while Fig. 1 and Fig. S1 present average national net returns, there is 

substantial variation in projected net return paths across counties. 

Land-use change functions 

Parameter estimates from the land-use change equations for each of the four starting 

land-uses are presented in Table 2. All estimates are derived from maximum likelihood, where 

the likelihood function is weighted by the NRI’s expansion factor. Results are intuitive and 

indicate that increases in the net returns to a particular land-use will increase the probability of 

choosing that particular use (p<0.05). We also find evidence that the land capability class (LCC) 

influences land-use transition probabilities. LCC is measured as an integer between 1 and 8, with 

1 being the best quality for producing agricultural goods. Results indicate that landowners are 

more likely to convert low quality cropland (higher LCC) to other uses except development, and 

less likely to convert low quality land from other uses to crop land (p<0.05). Results are 

consistent with prior land-use change models estimated from the NRI (e.g. Lubowski et al. 2006; 

Lewis and Plantinga 2007).  

Landscape simulations under climate change scenarios 
 

Mean net land-use change projections for the conterminous U.S. are presented in Table 3 

along with 95% confidence intervals in parentheses. Net land-use change projections are 

simulated across the eight climate change scenarios comprised of GCM-RCP combinations 

visually depicted in Fig. 1A.  

 The key finding of our simulations (Table 3) is that developed land is projected to 

increase on net by around 46 million acres by 2070 (~0.82 million acres per year), while all other 

uses are projected to experience net declines. As expected, our projected future developed land-
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use growth rates of 0.82 million acres per year is similar to the average rate from the 2000-2012 

period used for estimation (0.93 million acres per year), and much lower than the approximate 

1.5 million acres per year from 1982-1997 that was used in previous national land-use 

projections (Lubowski et al. 2006; Lawler et al. 2014).6 When compared to the historical 

developed land-use change rate of 0.93 million acres per year, the lower projected rate of 

developed land-use change of 0.82 million acres per year is largely driven by i) the projected 

decrease in developed net returns that arise from climate changes in temperature and 

precipitation (Fig. 1D) and ii) the modest projected increase in timber and crop net returns that 

arise from climate change (Fig. 1B and 1C). Approximately 62% of newly developed acres occur 

in counties currently designated as non-metropolitan7, and nearly half (46%) of that development 

expansion is projected to occur in the Southern region of the U.S. 

The largest projected decline is in crop land (~ -17.7 to -24 million acres) and the 

smallest projected decline is in range land (~ -5.75 to -7.5 million acres). Forest land (~ -9.5 

million acres) and pasture land (~ -7.5 to -11.3 acres) have moderate projected declines. The 

projected decline in crop land is most sensitive to the different climate scenarios, with the largest 

projected decline (-23.9 million acres) occurring in a relatively warmer and wetter scenario 

(CNRM-CM5 at RCP 4.5), while the lowest projected decline (-17.7 million acres) occurs in the 

middle scenario (NorESM1-M at RCP 8.5) where climate changes are relatively moderate as 

seen in Fig 1. Note however that the 95% confidence intervals overlap across all scenarios for 

                                                           
6 Using a land-use model based on the 1992-1997 NRI data, Lawler et al. (2014) project a baseline 71% increase in 
development over a 50-year horizon, which is much higher than our projected 50-year increase of 50%. 
7 The Rural-Urban Continuum system developed by USDA Economic Research Service classifies metro and non-
metro U.S. counties. Non-metro counties are defined as having a population less than 250,000 and not containing 
a metro area. 
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the crop land projections. The projected changes in forest and developed land have much smaller 

variation across the eight climate scenarios. 

Fig. 3 presents Krinsky-Robb distributions for the projected changes in forest, crop, and 

developed land. The first column in Fig. 3 compares the projected net land-use change 

distributions across relatively wet and dry climate scenarios. The drier scenario (IPSL-CM5A-

MR RCP 4.5) has less forest land loss, a smaller expansion of developed land, and greater crop 

land loss when compared with the wetter scenario (MRI-CGCM3 RCP 4.5). The second column 

in Fig. 3 compares the least warm climate scenario (MRI-CGCM3 RCP 4.5) with a relatively 

hotter scenario (NorESM1-M RCP 8.5), with the hotter scenario having slightly less forest land 

loss, a smaller expansion of developed land, and lower crop land loss when compared with the 

least warm scenario. Thus, drier and warmer climate scenarios favor forest land (less projected 

loss), wetter and cooler climate scenarios favor development (higher gain), and wetter and 

warmer climate scenarios favor crop lands (less loss). But the overall pattern of development and 

corresponding losses in all other uses is unchanged across climate scenarios. 

For a more rigorous comparison of the projected distributions, we employ the 

Kolmogorov-Smirnov (KS) test to compare the distribution of land-use outcomes between each 

of the eight climate change scenarios. In 26 out of 28 tests we reject the null hypothesis that the 

distribution of outcomes is the same (p<0.05). The two exceptions where the KS test revealed no 

statistical difference in the distribution of outcomes occurred between NorESM1-M RCP 4.5 and 

RCP 8.5, and between MRI-CGCM RCP 4.5 and RCP 8.5. 

Robustness to including shared socio-economic pathways (SSPs) 
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 Future population and income are expected to play a significant role in how society 

manages the landscape. Although the present research is focused on the role of climate in driving 

land-use change, our framework allows for the inclusion of socio-economic projections. To 

explore robustness of our land-use change projections, we investigate how alternative 

assumptions of future population and income affect landscape outcomes. We utilize downscaled 

Shared Socio-Economic Pathways (SSP) projections for population and income for counties in 

the conterminous U.S. (Wear and Prestemon 2019). The SSPs define a range of mitigation and 

adaptation challenges that society may face under a changing climate, and how those challenges 

translate to socioeconomic conditions (Riahi et al. 2017). We consider two SSPs for additional 

analysis. SSP1 describes a world where the global economy follows a path toward sustainability, 

and SSP2 assumes society continues along its current trajectory with slow, uneven progress 

towards sustainability. We pair SSP1 with the more modest climate change scenario RCP 4.5 and 

we pair SSP2 with the bigger climate changes in scenario RCP 8.5, consistent with Moss et al. 

(2010). 

 The population and income projections from the SSP scenarios are incorporated into our 

land-use change simulations through the developed land net return function (Eq. 4, m=developed 

land) since that equation is an estimated function of county-level population and income. We 

project future developed net returns using county-level population and income changes from 

Wear and Prestemon’s (2019) downscaling of SSP scenarios to the county level up to the year 

2070. As seen in Supplementary Fig. S2, the increasing population and income in the SSP 

scenarios induce developed net returns to increase over time compared to our main projections of 

developed net returns from Fig. 1. The higher rate of increase in developed net returns from the 

SSP scenarios raises the amount of land converted into developed uses (from approx. 0.82 
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million acres/year to approx. 1.05 million acres/year) and therefore, lowers the amount of land 

that remains in all other land uses (Supplementary Table S4). However, the relative effect of the 

Climate variables from Eq. (4) on net land-use change is robust to whether we include SSP 

scenarios or not. In comparing the net land-use changes from our main results in Table 3 to the 

corresponding net land-use changes from the SSP scenarios in Table S4, the two sets of 

projections have a correlation coefficient of 0.998. So, incorporating the SSP scenarios changes 

the level of land-use change, but not the pattern of changes in response to climate. Drier and 

warmer climate scenarios continue to favor forestland, wetter and cooler climate scenarios 

continue to favor developed land, and wetter and warmer climate scenarios continue to favor 

cropland. 

Conclusion 

The purpose of this paper is to generate empirically-based projections of broad land-use changes 

for the conterminous U.S. across multiple climate change scenarios.  Climate econometrics 

research has estimated how climate affects farm land values (Mendelsohn et al. 1994; Schlenker 

et al. 2006; Massetti et al. 2016), agricultural rents (Ortiz-Bobea 2020), forestry returns (Mihiar 

and Lewis 2021), and urban quality of life (Albouy et al. 2016). Econometric land-use research 

has estimated how net returns to land affect discrete changes across broad land-uses (Bockstael 

1996; Lubowski et al. 2008; Wrenn et al. 2017; Bigelow et al. 2017). We contribute to this 

literature by developing a land-use change model with climate adaptation, consisting of a 

combination of Ricardian estimation of climate on net returns to land with discrete-choice 

estimation of net returns to land on land-use changes. Our land-use change model with climate 

adaptation provides the basis for a land-use projection based on the microeconomic theory of 
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how landowners adapt to climate change by choosing both the broad land-use and the 

management activity within each land-use that maximizes the value of their land. 

We project broad land-use changes as a function of eight climate change scenarios that 

consist of four different global climate models (GCMs) and two different representative 

concentration pathways (RCPs). These eight climate change scenarios give us variation in 

warming (+1 to +3C) and precipitation (-4% to +7.5%). These climate change scenarios generate 

spatially-heterogeneous time paths of temperature and precipitation changes across a landscape 

that itself is spatially-heterogeneous in both starting land-use distributions and net returns to 

alternative uses. Our approach translates the projected climate changes to changes in net returns 

to each land-use, which are then embedded in our estimated plot-level land-use transition 

probabilities to project future landscape change conditional on the starting landscape and climate 

change path. Results indicate that developed land is projected to continue growing at a rate of 

approximately 0.82 million acres per year with corresponding declines in all other land uses. The 

projected declines are largest for crop land, smallest for range land, with moderate declines 

projected for forest and pasture. In comparing projected land-use changes across scenarios, we 

find that drier and warmer climate scenarios favor forest land (less projected loss), wetter and 

cooler climate scenarios favor development (higher gain), and wetter and warmer climate 

scenarios favor crop lands (less loss). However, the magnitude of land-use change is similar 

across climate change scenarios and the overall pattern of development and corresponding losses 

in all other uses is unchanged across climate scenarios. In a robustness check that examines 

incorporating alternative population and income growth scenarios from shared socio-economic 

pathways (SSPs), we find that the SSP scenarios raise the amount of land converted into 

developed uses and lower the amount of land that remains in all other land uses, though the 
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relative effect of climate on the different land-uses remains the same whether we include SSP 

scenarios or not.  

There are limitations and caveats with our approach and results. First, our land-use 

change model embeds an assumption of static expectations – landowners are implicitly assumed 

to make decisions at any point in time by comparing the current level of net returns to each land-

use. However, if landowners are forward looking and anticipate a changing path of net returns to 

each land-use, then they may make decisions in a more anticipatory fashion such as assumed in 

the numerical analyses of the global timber sector under climate change (Sohngen and 

Mendelsohn 1998; Sohngen and Tian 2016). Second, our cross-sectional Ricardian functions 

may be subject to the common criticism that such models are sensitive to omitted variables 

(Blanc and Schlenker 2017). Third, though our land-use projections capture three key forms of 

uncertainty – across four climate models and in parameter estimation of both the net return 

model and the land-use change model – there are many other forms of uncertainty that we do not 

incorporate. In particular, we do not incorporate uncertainty that arises from downscaling the 

climate change projections, or uncertainty embedded within each of the four global climate 

models. 

Finally, while our projections generate implicit changes in the price of land that would 

occur in response to temperature and precipitation changes, we do not model the resulting impact 

of land-use changes on commodity prices (e.g. crops, timber, etc.). However, we can speculate as 

to how incorporating endogenous commodity prices would alter the land-use change projections. 

Since all our projections result in net losses in timber and agricultural lands, it is possible that 

reductions in supply of timber and agricultural commodities may occur. If land-use change leads 

to such supply reductions, then it would be reasonable to expect corresponding price increases 
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for timber and agricultural commodities that would increase the net returns to forest and crop 

lands. Since our results show that higher net returns in a particular land use raise the probability 

of choosing that use, then endogenizing timber and agricultural commodities should reduce the 

amount of land that is converted out of timber and agricultural uses and our current results would 

overstate forest and agricultural land losses. However, a full consideration of changing 

commodity prices would be complicated by other factors that might lower commodity prices 

over time, such as technology-induced crop yield increases (Hertel et al. 2016) and timber 

productivity increases resulting from carbon fertilization (Davis et al. 2022). A future research 

advance could integrate the land-use change model here with scenarios from market models of 

commodity prices under climate change. 

The natural sciences have examined how climate change may impact natural resource 

stocks through dynamic ecosystem changes, such as species range shifts (e.g. Lawler et al. 

2009). However, ecosystems may also be affected by human decisions regarding the use of land, 

as people adapt to a changing climate. Adaptation that results in changes across broad land-uses 

can alter the supply of a range of non-market ecosystem services in addition to market changes in 

food and fiber production (Lawler et al. 2014). While the climate econometrics literature has 

made notable advances in the past decade in studying climate impacts on many sectors including 

sea level rise (Larsen et al. 2015), productivity (Zhang et al. 2018), agriculture (Ortiz-Bobea 

2020), forestry (Hashida and Lewis 2019), and others, there is a notable gap in estimating 

climate impacts on broad land-use changes. This is all against a policy backdrop with 

considerable interest in encouraging tree planting on non-forested land (a broad land-use change) 

as a means of mitigating climate change (e.g. the Trillion Trees Act in the U.S. House of 

Representatives). However, since climate is an input into the economic value of many land-uses, 
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and since the climate is changing and widely expected to continue changing, the efficacy of 

encouraging tree planting must be evaluated against a baseline where climate change is ongoing 

and affecting land-use changes. In addition, the economics of dynamic conservation policy 

design requires information on how climate change may impact land-use decision making, which 

will in turn affect ecosystem service provision (Lewis and Polasky 2018; Augustynczik et al. 

2020). We view our results as providing foundational evidence of how an underlying baseline 

landscape change process in the U.S. is affected by alternative climate change scenarios.        
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Tables and Figures 
 

Figure 1: Projected Net Returns Using the Mean Climate Projection Through 2070 with Krinsky-Robb Confidence Bounds 

  

Notes: Panel (a) shows variation in temperature and precipitation projections across all eight GCM-RCP scenarios. Dashed horizontal and vertical lines indicate 
mean climate change projection. Panel (b-d) plot projected net returns using mean change in temperature and precipitation. 
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Table 1: Observed Gross Land-use Change (2000-2012) in thousands of acres 

 End in  
Forest 

End in 
Developed 

End in  
Crop 

End in 
Pasture 

End in  
Range 

Total in  
2000 

Start in  
Forest 

402,376 
98.03% 

4,957 
1.21% 

455 
0.11% 

1,998 
0.49% 

682 
0.17% 

410,468 
100% 

Start in 
Developed 

200 
0.25% 

79,407 
99.51% 

103 
0.13% 

58 
0.07% 

32 
0.04% 

79,841 
100% 

Start in 
 Crop 

1,628 
0.44% 

2,712 
0.74% 

343,655 
93.75% 

17,171 
4.68% 

1,383 
0.38% 

366,549 
100% 

Start in 
Pasture 

5,938 
5.10% 

1,773 
1.52% 

9,811 
8.43% 

97,044 
83.36% 

1,856 
1.59% 

116,442 
100% 

Start in  
Range 

732 
0.18% 

1,735 
0.43% 

1,527 
0.38% 

505 
0.12% 

400,074 
98.89% 

404,573 
100% 

Total in  
2012 

410,674 
(+406) 

91,018 
(+10,784) 

355,448 
(-10,998) 

116,718 
(+354) 

403,995 
(-546) 1,377,583 

Note: Observed land-use transitions on non-Federal lands in the conterminous U.S. obtained from the National 
Resources Inventory (NRI) survey conducted by U.S. Department of Agriculture’s Natural Resources Conservation 
Service. 
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Table 2: Logit Parameter Estimates for Land-use Choice Models 

 Starting Land-Use 
Starts in  

Crop 
Starts in Pasture Starts in  

Forest 
Starts in  
Range 

Crop Net Return in 
$1,000s (Crop Choice) 

2.593*** 
(0.1610) 

2.197*** 
(0.1213) 

2.263*** 
(0.5928) 

5.973*** 
(0.4399) 

Forest Net Return in 
$1,000s (Forest 

Choice) 

0.217** 
(0.0916) 

0.336*** 
(0.02724) 

0.0812*** 
(0.5928) - 

Development Net 
Return in $10,000s 
(Developed Choice) 

0.103*** 
(0.0141) 

0.113*** 
(0.01082) 

0.0867*** 
(0.01015) 

0.107*** 
(0.01155) 

LCC (Pasture Choice) 0.263*** 
(0.00827) 

0.392*** 
(0.009275) 

0.0637** 
(0.03838) 

-1.819*** 
(0.1600) 

LCC (Forest Choice) 0.086** 
(0.0506) 

0.509*** 
(0.01490) 

0.5024*** 
(0.03233) 

-0.00896 
(0.05030) 

LCC (Rangeland 
Choice) 

0.438*** 
(0.0284) 

1.116*** 
(0.009982) 

0.4129*** 
(0.05587) 

0.236*** 
(0.0390) 

LCC (Developed 
Choice) 

-0.0683** 
(0.02735) 

0.379*** 
(0.02559) 

0.282*** 
(0.03462) 

0.193*** 
(0.05114) 

Alternative-Specific 
Constants Yes Yes Yes Yes 

Regional and Use-
Specific Fixed Effects State State FIA region No 

     
Number of 

Observations 1,077,732 392,294 1,211,500 609,443 

Log Likelihood Value 63723.76 63814.85 26885.72 8972.08 
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Table 3: Projected Net Land-use Change (2014-2070) in millions of acres 

 MRI-CGCM3 IPSL-CM5A-MR CNRM-CM3 NorESM1-M 
RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Developed 
46.79 46.4 45.98 46.16 46.47 45.85 46.06 45.5 

(-11.76, -8.02) (44.51, 48.58) (44.22, 47.96) (44.20, 48.45) (44.68, 48.62) (44.14, 47.76) (44.21, 48.11) (43.72, 47.55) 

Forest 
-9.88 -9.87 -8.99 -9.66 -9.41 -9.24 -9.75 -9.75 

(-11.76, -8.02) (-11.76, -8.01) (-10.87, -7.18) (-11.58, -7.79) (-11.30, -7.55) (-11.12, -7.40) (-11.66, -7.89) (-11.63, -7.93) 

Crop 
-20.09 -18.22 -23.07 -18.56 -23.85 -22.71 -18.11 -17.69 

(-22.61, -17.35) (-21.56, -14.41) (-25.74, -20.30) (-21.97, -14.78) (-26.75, -20.90) (-25.66, -19.54) (-21.17, -14.64) (-21.18, -13.61) 

Pasture 
-10.4 -11.29 -7.5 -10.3 -7.46 -7.93 -10.98 -10.74 

(-12.56, -8.28) (-13.67, -8.94) (-9.74, -5.33) (-12.75, -7.94) (-9.79, -5.17) (-10.30, -5.54) (-13.17, -8.79) (-13.14, -8.47) 

Range 
-6.43 -7.02 -6.42 -7.64 -5.75 -5.96 -7.22 -7.32 

(-8.04, -5.01) (-9.53, -5.28) (-7.88, -5.06) (-10.01, -5.91) (-7.17, -4.49) (-7.49, -4.63) (-9.48, -5.47) (-10.24, -5.43) 
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Figure 2: Observed Land-use Transitions for the Conterminous United States (2000-2012) 

 

Note: This network flow diagram shows land that starts in one land-use in 2000 and moves to an alternative land-use 
in 2012.
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Figure 3: Krinsky-Robb Distribution of Selected Landscape Outcomes 
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Supplemental Tables and Figures 

 

Table S1: Parameter Estimates for Crop Ricardian 
 
 Crop Net Return 
Winter Temperature 1.136 

(2.662) 
Winter Temp Squared 0.518*** 

(0.143) 
Spring Temperature 47.267*** 

(6.641) 
Spring Temp Squared -2.660*** 

(0.269) 
Summer Temperature 12.851 

(11.997) 
Summer Temp Squared -0.473* 

(0.271) 
Fall Temperature -35.366*** 

(10.246) 
Fall Temp Squared 2.553*** 

(0.439) 
Winter Precipitation 0.346*** 

(0.048) 
Winter Precip Squared -0.0004*** 

(0.0001) 
Spring Precipitation -0.199 

(0.134) 
Spring Precip Squared 0.001*** 

(0.0002) 
Summer Precipitation -0.826*** 

(0.154) 
Summer Precip Squared 0.001 

(0.001) 
Fall Precipitation 0.397*** 

(0.172) 
Fall Precip Squared 0.001*** 

(0.0002) 
Winter Temp x Precip 0.008 

(0.005) 
Spring Temp x Precip -0.019** 

(0.009) 
Summer Temp x Precip 0.032*** 

(0.008) 
Fall Temp x Precip -0.058*** 

(0.009) 
County Proportion in LCC 1 240.314*** 

(25.669) 
County Proportion in LCC 2 32.437*** 
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(10.762) 
County Proportion in LCC 3 14.812 

(11.498) 
County Proportion in LCC 4 -19.401 

(13.930) 
County Proportion in LCC 5 128.080*** 

(28.912) 
County Proportion in LCC 6 -19.456** 

(11.754) 
County Proportion in LCC 7 -41.014*** 

(11.313) 
Constant -81.950 

(96.809) 
  
Observations 3,070 
Adjusted R-squared 0.337 
Residual SE 62.547 (df = 3042) 
F Statistic 58.753*** (df = 27; 

3042) 
 *p<0.1; **p<0.05; 

***p<0.01 
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Table S2: Parameter Estimates for Forest Ricardian 
 
 Forest Net Return 

Mean Temperature 17.123*** 
(4.011) 

2nd Order Temp -2.875*** 
(0.543) 

3rd Order Temp 0.207*** 
(0.030) 

4th Order Temp -0.005*** 
(0.001) 

Annual Precipitation 0.151*** 
(0.058) 

2nd Order Precip -1.996e-04*** 
(6.628e-05) 

3rd Order Precip 1.096e-07*** 
(2.997e-08) 

4th Order Precip -1.842e-11*** 
(4.721e-12) 

Temp-Precip Interaction -0.002*** 
(0.001) 

Constant -59.905*** 
(20.406) 

  
Observations 2,442 

Adjusted R-squared 0.374 

Residual SE 8598 (df = 2431) 

F Statistic 146.8*** (df = 10; 
2431) 

 *p<0.1; **p<0.05; 
***p<0.01 
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Table S3: Parameter Estimates for Development Ricardian 
 Development Net 

Return 
Heating Degree Days (HDD) -83.118*** 

(5.067) 
HDD Squared 0.005*** 

(0.001) 
Cooling Degree Days (CDD) -199.232*** 

(8.428) 
CDD Squared 0.030*** 

(0.003) 
Annual Precipitation -154.521*** 

(16.685) 
Precip Squared 0.026*** 

(0.003) 
HDD x Precip 0.021*** 

(0.003) 
CDD x Precip 0.043*** 

(0.007) 
  
Population Density 2.077*** 

(0.352) 
Median Household Income 1.274*** 

(0.120) 
Black Share of Population 4630.074 

(4288.274) 
Hispanic Share of Population 21549.930*** 

(6395.196) 
Share of Population with High School 
Education 

-369.457** 
(148.465) 

Some College 1894.851*** 
(153.170) 

Associate degree 191.326 
(244.882) 

Bachelor’s Degree 443.895** 
(186.117) 

Graduate Degree -471.710* 
(246.183) 

Constant 312735.400*** 
(18480.760) 

  
Observations 3,089 

Adjusted R-squared 0.528 

Residual SE 25292.360 (df = 3071) 

F Statistic 204.417*** (df = 17; 
3071) 

 *p<0.1; **p<0.05; 
***p<0.01 
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Table S4: Alternative Projected Net Land-use Change (2014-2070) in millions of acres with SSP Scenarios 

 MRI-CGCM3 IPSL-CM5A-MR CNRM-CM3 NorESM1-M 
 RCP 4.5 - 

SSP1 
RCP 8.5 - 

SSP2 
RCP 4.5 - 

SSP1 
RCP 8.5 - 

SSP2 
RCP 4.5 - 

SSP1 
RCP 8.5 - 

SSP2 
RCP 4.5 - 

SSP1 
RCP 8.5 - 

SSP2 

Developed 
60.05 57.84 58.46 56.51 60.44 58.21 58.19 55.81 

(54.65, 65.68) (53.03, 63.31) (53.19, 63.82) (51.75, 61.83) (54.90, 66.20) (53.42, 63.31) (53.50, 63.56) (51.22, 60.93) 

Forest 
-14.9 -14.37 -13.74 -13.61 -14.64 -13.81 -14.28 -13.79 

(-18.31, -11.82) (-17.31, -11.46) (-16.60, -11.05) (-16.50, -10.88) (-17.97, -11.32) (-16.75, -10.92) (-17.39, -11.32) (-16.64, -10.99) 

Crop 
-23.81 -21.23 -26.4 -21.33 -27.82 -26.27 -21.38 -20.43 

(-29.12, -19.06) (-26.45, -15.46) (-31.54, -21.49) (-26.90, -15.86) (-33.09, -22.77) (-31.23, -21.40) (-26.76, -16.50) (-25.81, -14.58) 

Pasture 
-12.39 -12.98 -9.42 -11.74 -9.74 -9.82 -12.76 -12.09 

(-16.05, -8.69) (-16.79, -9.23) (-13.21, -5.52) (-16.02, -7.84) (-13.69, -5.77) (-13.96, -5.94) (-16.54, -8.98) (-16.03, -8.47) 

Range 
-8.96 -9.25 -8.9 -9.83 -8.25 -8.31 -9.78 -9.48 

(-11.47, -6.55) (-12.42, -6.69) (-11.23, -6.54) (-12.53, -7.41) (-10.65, -6.15) (-10.72, -6.23) (-12.64, -7.27) (-12.65, -6.96) 
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Table S5: Projected Net Land-use Change (2014-2070) in Percent Change from 2012 Baseline 

 MRI-CGCM3 IPSL-CM5A-MR CNRM-CM3 NorESM1-M 

 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Developed 51.91% 51.48% 51.01% 51.21% 51.55% 50.87% 51.10% 50.48% 

Forest -2.40% -2.40% -2.19% -2.35% -2.29% -2.25% -2.37% -2.37% 

Crop -5.55% -5.03% -6.37% -5.12% -6.58% -6.27% -5.00% -4.88% 

Pasture -8.62% -9.36% -6.22% -8.54% -6.18% -6.57% -9.10% -8.90% 

Range -1.59% -1.74% -1.59% -1.89% -1.42% -1.48% -1.79% -1.81% 
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Figure S1: Projected Net Returns Across Eight Alternative Climate Scenarios 

 

Note: Panel (a) shows mean climate change across all eight scenarios with dashed horizontal and vertical lines. Net returns are projected into the future using 
mean change in temperature and precipitation. 
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Figure S2: Alternative Projections of Development Net Returns 

 

 

Note: Projected time path of US average developed net returns under i) mean for all GCMs (Climate Change Only), ii) shared socio-economic pathway 1 with 
mean projections for RCP 4.5 (RCP 4.5 – SSP1), and iii) shared socio-economic pathway 2 with mean projections for RCP 8.5 (RCP 8.5 – SSP2). 95% 
confidence intervals presented. 
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