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1. Introduction  

The continuing pace of climate change is spurring significant interest in adapting the 

management of natural resources to new environmental conditions. Knowing how and when 

people make decisions to adapt resource management to climate change is crucial to assessing 

climate damages as well as designing effective policies. While adaptation is often viewed as a 

means of mitigating or lessening damages from climate change, private adaptation decisions, 

particularly in the realm of natural resource management, can generate social costs. Social costs 

arise because many adaptive resource management decisions can alter the ability of resource 

stocks to provide ecosystem services, thereby generating externalities (Hashida et al. 2020). For 

example, altering water applications in agriculture can affect both the supply and quality of water 

(Narita and Quaas, 2014; Fezzi et al., 2015); allocating land to investments in renewable energy 

like wind and solar can alter natural landscapes (Aycrigg et al., 2023) and induce local wildlife 

mortality (Smallwood, 2013; Schöll and Nopp-Mayr, 2021). Social costs, along with uncertainty 

about the dynamics of adaptation decisions present significant challenges to policymakers who 

may wish to incentivize socially optimal adaptation behavior. By studying the factors that affect 

adaptation timing, we can better understand how to design effective policies to mitigate or 

reduce the social costs of private adaptation.   

Weather variability is a key component of climate that can potentially alter the rate of 

adaptation by creating risks for certain land uses and management choices through non-linear 

responses to small changes in weather (Schlenker and Roberts, 2009). Weather variability is a 

particularly salient element of adapting forests to climate change for several reasons. First, in 

countries with significant private ownership of forests like the United States, any private 

adaptation to climate change that occurs through harvest and planting decisions will alter the 

composition of forests and the many market and non-market ecosystem services they provide 

(Hashida et al., 2020). Therefore, adapting private forests to climate change will likely entail a 

range of social costs. Second, previous research finds that climate change may positively affect 

the global forestry sector through productivity improvements (Sohngen, 2020), though a 

significant portion of the benefits are expected to arise through adaptation by altering the types 

of forests that are planted (Massetti and Mendelsohn, 2018). However, variability in weather can 

affect the speed of adaptation in forestry because different tree species, such as various species of 
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commercially valuable conifers, vary in their sensitivity to weather variability. For example, 

Douglas-fir in the western U.S. is sensitive to heat events and drought (Marias et al., 2017; 

Jarecke et al., 2023; Still et al., 2023), whereas most species of yellow pine in the southeastern 

U.S. are sensitive to cold events (South et al., 2002; Nedlo et al., 2009; Pickens and Crate, 2018; 

Lu et al., 2021). In contrast, many common species of hardwood trees are relatively more climate 

resilient with wider natural ranges (Thompson et al., 2009). Therefore, when weather variability 

creates more risk for one forest type than another, changes in weather variability from climate 

change have the potential to alter adaptation incentives between those two types of forests, 

thereby impacting the speed of adaptation and its social costs. No previous study has explored 

the effect of weather variability on the timing of adaptation decisions within forestry, and 

therefore, it is unclear how important it is to account for weather variability when trying to 

project and anticipate future climate adaptation decisions that might generate social costs. 

The purpose of this paper is to develop an empirical framework for identifying and 

estimating the impact of weather variability on the timing of adaptation decisions through an 

application to the forestry sector in the eastern United States. By combining the work of Reed 

(1984), Guo and Costello (2013), and Hashida and Lewis (2019), we outline a theoretical 

framework for identifying the effect of weather-induced risks on climate adaptation decisions in 

forestry, develop a discrete-choice econometric model to empirically estimate the effect of 

weather variability on the probability of harvest and planting choices, and develop a bio-

economic simulation that allows us to isolate the role of weather variability on the time-path of 

adapting eastern U.S. hardwood forests to pine plantations in response to climate change. 

Previous work estimates future private benefits to forestry from adapting eastern U.S. hardwood 

forests to pine plantations (Mihiar and Lewis, 2021), though that study does not examine 

adaptation timing and ignores how weather variability may alter the rate of adaptation. Our 

empirical framework tests whether weather variability slows adaptation from hardwoods to pine 

forests, and also examines the sensitivity of adaptation paths to the range of weather variability 

in future climate projections.  

To estimate our empirical model, we use observed plot-level management decisions and land 

characteristics from the U.S. Forest Service’s Forest Inventory and Analysis (FIA) Database, 

downscaled climate data from the Parameter-elevation Regressions on Independent Slopes 
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Model (PRISM)1, and a newly developed database of net returns to forestry (Mihiar and Lewis, 

2021). A key part of our empirical approach is the use of historical daily variation in wintertime 

low temperatures to construct a measure of weather variability relevant to the adaptive planting 

decision. Using a measure of cold temperature weather variability that measures the average 

number of days with temperatures below freezing (0°C), our results show that more days below 

freezing has a significant and empirically large negative effect on the probability of planting 

pines, even while controlling for winter temperature means. Using a bio-economic simulation of 

the time-path of adaptation based on our parameter estimates, we illustrate that more cold 

weather variability slows adaptation from hardwood forests to pine plantations and that ignoring 

weather variability leads to a large downward bias in estimating future paths of climate 

adaptation. We also find that the range of projected future weather variability from global 

circulation models generates a wide range of adaptation paths. Further, we provide evidence 

regarding the mechanism of weather variability effects on adaptation: freezing temperatures 

reduce timber yields and increase risks of natural disturbance, and these effects are larger for 

pines than for hardwoods. This empirical example provides the first evidence of how weather 

variability can affect the temporal path of forest landscape change through management actions, 

with a key focus on the highly policy-relevant conversion of natural hardwood forests to pine 

plantations in the eastern U.S. Any research focused on modeling climate adaptation behavior in 

a setting where weather variability creates differential risks across adaptation choices should 

consider these incentives to alter adaptation timing.  

This paper contributes to the broader empirical economics literature covering climate change 

impacts on agriculture and natural resource management. Significant prior attention has focused 

on estimating long-run equilibrium effects on agricultural land values using Ricardian cross-

sectional econometrics (Massetti and Mendelsohn, 2018). Weather variability is a key part of 

panel approaches to estimating short-run effects on agriculture, where identification of climate 

impacts is from within-region weather variation in linear econometric models (Blanc and 

Schlenker, 2017). Daily weather data has also been shown to be useful in identifying key 

thresholds that can create non-linear responses in an economic outcome from climate (Schlenker 

                                                 
1 PRISM Climate Group, Oregon State University, https://prism.oregonstate.edu, data created 6 Mar 2018, 

accessed 14 July 2023. 
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and Roberts, 2006, 2009), or in developing various climate measures through binning, and other 

methods, to use as independent variables (Hsiang, 2016). Empirical forest-climate work consists 

of Ricardian studies of climate impacts on U.S. forest rents (Mihiar and Lewis, 2021), estimation 

of past carbon fertilization on U.S. wood volume (Davis et al. 2022), and an analysis of the effect 

of climate means on forest management decisions and the future forest landscape in the Pacific 

states of the western U.S. (Hashida and Lewis, 2019). In addition, there is evidence that changes 

in wildfire risks – which partially emerge from weather variability extremes – have altered risk 

expectations and lowered western U.S. timberland prices (Wang and Lewis, 2024). We 

contribute to this literature by showing how risk from weather variability can impact adaptation 

timing for long-lived forest resources, by using daily weather data to create measures of risk that 

vary across adaptation choices, and then estimating how weather variability affects discrete 

adaptation choices from empirical data. Further, by showing how uncertain future weather 

variability generates a range of future adaptation paths for forests, we contribute to the literature 

on adjustment costs in climate change, which focuses on how landowners may imperfectly learn 

about and adapt to climate change (Kelly et al. 2005; Wright and Erickson 2004; Narita and 

Quaas 2014).  

This paper also contributes to the forest economics literature focused on analyzing climate 

change impacts on state, U.S., and global timber markets, as well as societal welfare (Sohngen 

and Mendelsohn, 1998; Sohngen et al., 2001; Lee and Lyon, 2004; Sohngen and Tian, 2016). 

These studies primarily use dynamic optimization methods and partial equilibrium frameworks 

and show that there are positive productivity and supply effects of climate change in the forestry 

sector which are heavily influenced by adaptation (Sohngen, 2020). However, these approaches 

rely heavily on assumptions of optimal decision-making and perfect foresight and lack empirical 

evidence on the link between weather variability and forest management decisions. By taking an 

empirical approach to analyzing adaptation decisions in forestry, we can explicitly test whether 

weather variability influences forest management, and the degree to which projected weather 

variability influences the path of adaptation.  

Finally, since the forest sciences literature finds that natural forests produce more non-market 

ecosystem services and biodiversity than plantation forests (Hua et al., 2022), our findings also 

provide a broad empirical contribution for conservation science by showing how weather 
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variability will affect the timing of landowner adaptation from natural to plantation forests, a key 

piece of information for optimal conservation planning (Costello and Polasky, 2004). By 

showing how weather variability will slow adaptation and therefore slow the loss of ecosystem 

services across the eastern U.S., these findings can inform the prioritization of conservation 

actions. For example, conservation becomes more urgent in regions with less cold weather 

variability where the conversion of natural hardwoods to plantation pines is likely to occur at a 

faster rate.   

The remainder of the paper is organized as follows: Section 2 provides context for the forest 

adaptation decision in the eastern United States. Section 3 presents a theoretical model to 

identify the intuition of risk from weather variability in this decision. Section 4 outlines our 

empirical methods. Section 5 presents our data. Section 6 and 7 present the results of our 

empirical estimation and our simulation exercise. We conclude with a discussion of our results, 

their implications, and avenues for future research. 

2. Study context 

2.1 Pines vs Hardwoods: distribution, ecosystem services 

The study area, which comprises 10 states in the southeast and mid-Atlantic U.S. has four 

key characteristics that make it an ideal location to study the effects of weather variability on 

climate adaptation. First, over 86% of the forestland in the southeastern United States is privately 

owned, which means that changes in forest composition will primarily be the result of 

economically motivated management decisions (harvest and planting). Second, the forest types 

in this region can be broadly categorized into two groups, planted pines and hardwoods, which 

we use to define our choice set in the empirical model. The “planted” distinction here refers to 

the fact that post-harvest, southern pine species are primarily replanted by hand. In fact, 92% of 

the planted forests in this region are comprised of the forest groups in our planted pine choice 

group (Oswalt et al., 2014). Planting differs from natural regeneration methods where, upon 

harvest, seed trees are left standing in order to allow a stand to naturally regrow. While 100% of 

observed pine forests in our sample are not planted, the majority of them are2. Third, the most 

                                                 
2 See Table A1 in the supplementary material for detailed data on artificial regeneration by forest type group. 
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commercially valuable trees, pines, are grown in warmer locations in the south while the cooler 

regions in the inland mid-Atlantic, Kentucky and Tennessee in particular, are dominated by less 

commercially valuable hardwood forests (Fig. 1). Planted pine forests make up 43% of our 

sample, while natural hardwood forests make up the other 57%. Fourth, planted pines and 

hardwoods have different sensitivities to cold weather, and so variability in minimum 

temperatures is likely to influence landowner choices in this region. 

 

 

 

The distinction between the two replanting decisions (hardwoods or pines) is important in 

the context of ecosystem service provision. Pine forests are heavily managed and commonly 

occur as plantations to the detriment of ecosystem functions (Gilliam, 2016), whereas hardwood 

Figure 1: Average wintertime temperature and forest group distribution. Top Panel: current distribution of 
hardwood and pine forests. See Table A1 for the categorization of forest types into these choice groups. 
Bottom panel: current long-term (30 year) average non-growing season temperatures. Data source: 
PRISM Climate Group, Oregon State University, https://prism.oregonstate.ed 
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forests tend to be naturally regenerated, managed less intensively, and have notably high 

biodiversity. For example, researchers have found that outside of the tropics, the hardwood 

forests of the Appalachian region have some of the highest levels of tree diversity (Keyser and 

Brown, 2016). Differential rates of carbon sequestration across forest types (Schiffman and 

Johnson, 1989; Brown and Schroeder, 1999; Goodale et al., 2002; Novick et al., 2015) means 

adaptation between forest types will have additional climate consequences. As such, landowners’ 

decisions to convert hardwood forests to pine plantations in response to a changing climate is a 

land-use change that may negatively affect biodiversity and alter the level of other forest 

ecosystem services (Carnus et al., 2006; Haskell et al., 2006; Paillet et al., 2010; Hua et al., 

2022). 

2.2 Incentives for adaptation in the mid-Atlantic United States  

Since climate can alter the relative returns to different forest types, climate change has 

the potential to alter the management decisions of forest landowners, and consequently the forest 

landscape, as landowners adapt to a new climate. Areas in the mid-Atlantic are expected to reach 

temperatures similar to the region directly south, increasing the relative returns of pine forests 

and incentivizing landowners to plant pine forests in favor of hardwood forests. To illustrate the 

incentives that landowners in the eastern U.S. will have to switch to pine forests under climate 

change, Figure 2 presents a graph of two estimated Ricardian functions for a common hardwood 

forest type (elm-ash-cottonwood) and a pine forest type (loblolly-shortleaf). While meant for 

illustrative purposes, this figure highlights the large economic premium that the planted pine 

species have over hardwoods at the higher temperatures of the southeastern U.S., while also 

illustrating the sharp decline in that premium at lower temperatures.  

In a world without adaptation costs, a landowner with recently harvested land at a 

location with a mean temperature around 12°C would be indifferent between planting the two 

forest types, according to this figure. At locations below this temperature, elm-ash-cottonwood 

forests have higher returns and would be preferred by the landowner, whereas above 12°C, 

loblolly-shortleaf forests would be preferred. We refer to locations like this as the adaptive 

margin. While we are most interested in adaptation decisions at this margin, including the states 

furthest south gives us the range of climate data needed to estimate the relationship between 
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observed landowner behavior and warmer temperatures that have not yet been seen in the mid-

Atlantic. 

 

 

 

 

To put these data into context, take the state of Kentucky for example, where the average 

temperature of FIA forest plots is 13.2°C (slightly above the adaptive margin), and where 94% of 

FIA forest plots are hardwood types. In 2050, the average temperature in Kentucky is projected 

to increase to 15.9°C 3. With such temperature increases, Figure 2 suggests that loblolly-shortleaf 

pines will become increasingly more profitable for the landowner than the elm-ash-cottonwood 

hardwood forests.  

                                                 
3 According to aggregated MACA climate projections assuming the RCP 8.5 warming scenario. 

Figure 2: Ricardian functions of a pine and hardwood forest type: Elm-Ash-Cottonwood (solid line) and 
Loblolly-Shortleaf (dashed line). These functions were estimated with county-level data from Mihiar and 
Lewis (2021), using simple Ricardian functions with annual net returns to forestry regressed on a 
quadratic function of mean annual temperature. One way to look at this graph is to consider that moving 
left to right along the x axis is like moving from north to south in the eastern U.S. 
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3. Climate adaptation under weather variability risk: Theoretical foundations  

This section integrates the work of Reed (1984), Guo and Costello (2013), and Hashida and 

Lewis (2019), and illustrates how weather variability can impact the timing of forest 

management choices through changes in risk that vary across management choices. 

3.1 Weather variability affects the value of forestland through its effect on risk and timber yields   

Consider the risk-neutral owner of a forest parcel with type F trees of age a in year t who 

discounts future values with a constant factor 𝛿𝛿. The landowner faces a set of climate conditions 

(𝑐𝑐𝑡𝑡) described by measures of central tendency such as seasonal means of temperature and 

precipitation that directly affect the productivity of growing trees. In addition, the landowner 

faces weather variability (𝑤𝑤𝑤𝑤𝑡𝑡) such as variation in seasonal temperature extremes. The 

landowner’s plot of timber is influenced by a yield function 𝑌𝑌𝐹𝐹 for their forest type F, which 

governs how the trees grow over time. Yields are a function of stand age, climate means, and 

weather variability: 𝑌𝑌𝐹𝐹(𝑎𝑎, 𝑐𝑐𝑡𝑡,𝑤𝑤𝑤𝑤𝑡𝑡). If the owner harvests their stand, they gain net harvest 

revenues of 𝑉𝑉ℎ(𝐹𝐹,𝑎𝑎) and then must choose the forest type to plant on their bare land (a=0) post-

harvest (ph). If the owner decides not to harvest, the stand continues to grow until t+1.  

The landowner also faces the risk of a catastrophic event that eliminates their growing 

stock, where the event occurs with a known annual probability of 𝜆𝜆𝐹𝐹 that follows an independent 

Poisson process and is a function of climate means (𝑐𝑐𝑡𝑡) and weather variability (𝑤𝑤𝑤𝑤𝑡𝑡). The post-

harvest land value function is therefore an expected value conditional on 𝜆𝜆𝐹𝐹(𝑐𝑐𝑡𝑡,𝑤𝑤𝑤𝑤𝑡𝑡): 

 𝑉𝑉𝑝𝑝ℎ|ℎ(𝐹𝐹,𝑌𝑌𝐹𝐹(𝑎𝑎, 𝑐𝑐𝑡𝑡,𝑤𝑤𝑤𝑤𝑡𝑡),𝜆𝜆𝐹𝐹(𝑐𝑐𝑡𝑡,𝑤𝑤𝑤𝑤𝑡𝑡)), as is the value of not harvesting (nh): δV𝑝𝑝ℎ|𝑛𝑛ℎ(𝐹𝐹,𝑌𝑌𝐹𝐹(𝐴𝐴 +

1, 𝑐𝑐𝑡𝑡+1,𝑤𝑤𝑤𝑤𝑡𝑡+1), 𝜆𝜆𝐹𝐹(𝑐𝑐𝑡𝑡+1,𝑤𝑤𝑤𝑤𝑡𝑡+1)).  

The landowner’s value function in time t is the solution to the problem of picking the 

maximum of i) harvesting the stand today and planting the optimal forest type F to maximize the 

expected post-harvest land value function, or ii) letting the stand grow in age to a+1 and 

revisiting the harvest decision: 

V(𝐹𝐹,𝑌𝑌𝐹𝐹(𝑎𝑎, 𝑐𝑐𝑡𝑡,𝑤𝑤𝑤𝑤𝑡𝑡), 𝜆𝜆𝐹𝐹(𝑐𝑐𝑡𝑡,𝑤𝑤𝑤𝑤𝑡𝑡)) =

𝑚𝑚𝑎𝑎𝑚𝑚 �
𝑉𝑉ℎ(𝐹𝐹,𝑎𝑎) + max

𝐹𝐹
[δ𝑉𝑉𝑝𝑝ℎ|ℎ(𝐹𝐹,𝑌𝑌𝐹𝐹(0, 𝑐𝑐𝑡𝑡+1,𝑤𝑤𝑤𝑤𝑡𝑡+1),𝜆𝜆𝐹𝐹(𝑐𝑐𝑡𝑡+1,𝑤𝑤𝑤𝑤𝑡𝑡+1))]𝐹𝐹=1𝐹𝐹′

δV𝑝𝑝ℎ|𝑛𝑛ℎ(𝐹𝐹,𝑌𝑌𝐹𝐹(𝐴𝐴 + 1, 𝑐𝑐𝑡𝑡+1,𝑤𝑤𝑤𝑤𝑡𝑡+1),𝜆𝜆𝐹𝐹(𝑐𝑐𝑡𝑡+1,𝑤𝑤𝑤𝑤𝑡𝑡+1))
    (1) 
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The climate adaptation decision on the extensive margin occurs when the landowner harvests 

their stand and chooses type F trees to replant from a choice set of F’ different types of trees that 

can physically grow on their land (Guo and Costello, 2013). A landowner that chooses not to 

harvest in t=1 postpones the adaptation decision. 

3.2 When weather variability affects the value of alternate land uses differentially, adaptation 
speed is affected. 

The representation of the value function in Eq. (1) assumes that weather variability 

affects land value through incremental effects on timber yields (𝑌𝑌𝐹𝐹) and through the risk of 

discrete catastrophic loss die-back events (𝜆𝜆𝐹𝐹). Prior literature on forest management establishes 

that the presence of a catastrophic risk raises the rate used to discount future timber rents from 

the land by an amount equal to 𝜆𝜆𝐹𝐹, such that 𝜕𝜕𝑉𝑉 𝜕𝜕𝜆𝜆𝐹𝐹⁄ < 0 and 𝜕𝜕𝑉𝑉𝑝𝑝ℎ|ℎ 𝜕𝜕𝜆𝜆𝐹𝐹⁄ < 0 (Reed, 1984). In 

addition, higher yields indicate a more productive stand that raises the value function: 𝜕𝜕𝑉𝑉 𝜕𝜕𝑌𝑌𝐹𝐹⁄ >

0. Further, assume that the relationship between stand value and weather variability arises 

because the effect of weather variability on yields has the opposite sign from the effect of 

weather variability on risk,  

Assumption: If 𝜕𝜕𝑌𝑌𝐹𝐹 𝜕𝜕𝑤𝑤𝑤𝑤𝑡𝑡⁄ > 0 =>  𝜕𝜕𝜆𝜆𝐹𝐹 𝜕𝜕𝑤𝑤𝑤𝑤𝑡𝑡⁄ < 0, and if 𝜕𝜕𝑌𝑌𝐹𝐹 𝜕𝜕𝑤𝑤𝑤𝑤𝑡𝑡⁄ < 0 =>  𝜕𝜕𝜆𝜆𝐹𝐹 𝜕𝜕𝑤𝑤𝑤𝑤𝑡𝑡⁄ > 0 

Intuitively, an increase in weather variability that lowers yields will also increase catastrophic 

risks, and vice versa. For example, increasingly large changes in extreme temperatures that lower 

timber yields will make a die-back event more likely for the whole stand of trees. 

To consider the mechanisms for how an exogenous change in weather variability affects 

adaptation in forestry, consider the common situation where a landowner is currently growing 

type F1 forests, and is considering whether to harvest their land and either replant with the same 

type F1 trees or convert to type F2 trees. Now consider two simple cases. In case 1, suppose that 

weather variability only affects the yields and risks of growing type F2 trees while having no 

effect on the currently growing type F1 trees. Therefore, any exogenous change in weather 

variability that increases yields and reduces risk for type F2 land – i.e. 𝑌𝑌𝐹𝐹2 increases and 𝜆𝜆𝐹𝐹2 falls 

– will accelerate adaptation to type F2 land by increasing the value of the adapting use and, 

therefore, increasing the opportunity cost of waiting to harvest. In contrast, any exogenous 

change in weather variability that lowers yields and increases risk for type F2 land – i.e. 𝑌𝑌𝐹𝐹2 



12 
 

decreases and 𝜆𝜆𝐹𝐹2 rises – will slow adaptation to type F2 land by decreasing the value of the 

adapting use and, therefore, decreasing the opportunity cost of waiting to harvest. Case 1 would 

apply to owners of hardwood forests in the Mid-Atlantic U.S. where the adapting use (type F2) 

are cold-sensitive pine trees. 

Now consider a second case (case 2) where weather variability only affects the yields and 

risks of growing the current stock of type F1 trees, while having no effect on the other type F2 

trees to which the landowner is considering adapting. Therefore, any exogenous change in 

weather variability that raises yields and reduces risk for type F1 land – i.e. 𝑌𝑌𝐹𝐹1 increases and 𝜆𝜆𝐹𝐹1 

falls – will slow adaptation to type F2 land by increasing the value of the current use and thus 

increasing the opportunity cost of harvesting the F1 stand today. In contrast, any exogenous 

change in weather variability that lowers yields and increases risk for type F1 land – i.e. 𝑌𝑌𝐹𝐹1 

decreases and 𝜆𝜆𝐹𝐹1 rises – will accelerate adaptation to type F2 land by decreasing the value of the 

current use and thus decreasing the opportunity cost of harvesting the F1 stand today. This 

mechanism arises because changes in weather variability affect the post-harvest value function 

from continuing to grow type F1 trees along with the value function from letting the current type 

F1 trees grow, while having no impact on the value function for F2 forests. Case 2 could apply to 

owners of Douglas-fir conifer trees in the western U.S. that are sensitive to extreme heat while 

other alternatives such as hardwoods or ponderosa pines are less sensitive.  

A key feature of Eq. (1) is that weather variability affects yields and catastrophic risk in the 

opposite direction, and those effects differ across adaptation choices. In contrast, risks that affect 

all adaptation choices (e.g. wildfire) are less likely to impact adaptation choices since those risks 

create less of a difference between the value function of each choice. The empirical application 

in this paper most closely fits case 1, whereby owners of hardwood forests face minimal yield 

impacts and risk of cold damage to their existing forests but considerable yield impacts and risk 

of cold damage if they adapt to a pine plantation. Thus, the theoretical framework leads to a 

testable hypothesis that any increase in cold weather variability that lowers productivity and/or 

raises risks to planted pines will slow adaptation from hardwoods to pine forests, ceteris paribus. 

Testing this hypothesis also requires controlling for the key climate means (𝑐𝑐𝑡𝑡) that can affect 

tree growth and risk, along with devising empirical measurements of cold weather variability that 

impact yields and risk to pine forests.  
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4. Empirical methods  

We test the hypotheses that 1) weather variability with regard to wintertime temperatures 

slows adaptation to pine forests, and it does so through 2) increasing the risk associated with 

planting pines, and/or 3) decreasing yields. We use a nested discrete choice model of forest 

management decisions that explicitly accounts for the effect of weather variability on the 

decision to plant pines and on the probability of a loss-generating discrete disturbance event. To 

test the second mechanism through which weather variability affects adaptation speed, we 

estimate the effects of short-term weather variability on short-term annual timber yields. 

Additionally, we test the extent to which ignoring weather variability leads to biased projections 

of adaptation speed. To accomplish this, we estimate a version of the model presented below 

where our measure of weather variability, days<0, is excluded from planting and disturbance 

nests. 

The key empirical contribution comes from our use of long-term and short-term daily 

weather variation to create measures of variability that represent the differential risk across 

economic adaptation choices. Since replanting choices on any given plot only occur once every 

few decades when the plot is harvested, and since we observe replanting choices at several points 

in time for different plots in a pooled cross section, our identification of the effects of climate 

and weather variability on management decisions relies on both spatial and temporal variation in 

the climate variables, including our measure of weather variability (e.g. Fig. 4). We first describe 

our measures of variability, followed by our estimation methods. 

4.1 Measures for weather variability that affect adaptation in forestry  

Climate is the distribution of weather, including its variability. In our study region of the 

southeastern U.S., studies have identified that winter temperatures are a key environmental 

variable determining risk to the survival of southern pines (Schmidtling, 2001; Lu et al., 2021). 

Furthermore, unseasonably warm wintertime temperatures can increase the risk of cold damage 

to southern pine seedlings, especially when followed by very cold temperatures (Pickens and 

Crate, 2018). In contrast, cold temperatures create minimal risks to the survival of the hardier 

hardwood forest types that thrive in cooler parts of the eastern U.S. Thus, an owner of a 

southeastern U.S. hardwood forest is likely to be well described by case 1 in Section 3.1, where 



14 
 

weather variability creates risk for the adapting forest type (pines) but not the existing forest type 

(hardwoods). 

Perhaps the simplest way to empirically measure cold weather variability is by counting 

the number of days in a year that a minimum temperature is expected to be below a threshold 

temperature (𝑇𝑇∗), where temperatures less than 𝑇𝑇∗ harm the growth of pine trees. For 

southeastern U.S. pines that are sensitive to freezing temperatures, 𝑇𝑇∗could be set to 0°C and the 

number of days in a year with a minimum temperature below 𝑇𝑇∗would be a pertinent measure of 

weather variability. We construct both a short- and long-term variability measure which we 

compute as the average annual number of days below 0°C in the 5 years and 20 years preceding 

the plot’s observation in year t.  

Figure 3 illustrates the impact of cold weather variability on the feasibility of planting 

southeastern U.S. pines. Both panels represent the distributions of daily minimum non-growing 

season temperatures of two plots with the same mean non-growing season temperature (𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡�������) 

but different levels of weather variability. Therefore, more days below 𝑇𝑇∗ can lower yields 

(𝜕𝜕𝑌𝑌𝐹𝐹 𝜕𝜕𝑤𝑤𝑤𝑤𝑡𝑡⁄ < 0) and can increase the probability of catastrophic loss (𝜕𝜕𝜆𝜆𝐹𝐹 𝜕𝜕𝑤𝑤𝑤𝑤𝑡𝑡⁄ > 0).  

 

 

 

 

 

 

 

 

Panel A in Figure 3 shows temperature distributions of two plots that have 𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡������� just 

above T* (orange vertical line). In this case, even though both plots have different levels of 

variability, they have similar days<0 and therefore face similar yield effects and catastrophic loss 

risks from cold temperatures. The difference in weather variability across both plots would have 

Figure 3: Illustration of the effect of weather variability on planting pines. Catastrophic risks to pine 
survival occur at temperatures below 𝑇𝑇∗ and the probability of catastrophic loss is 𝜆𝜆 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡 ≤ 𝑇𝑇∗). 

 

𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡������� 𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡������� 

A B 

T* T* 
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minimal impacts on either plots’ yields or risks of catastrophic loss. On the other hand, panel B 

depicts the same two plots but with higher 𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡�������. In this case, the landowner with lower 

variability faces fewer days below T* and thus a smaller negative yield impact and lower risk of 

catastrophic loss from adapting to pines than their counterpart. As such, the landowner with 

lower weather variability is more likely to plant pines. A key point from Figure 3 is that the yield 

effects and probability of catastrophic loss depends on measures of weather variability which are 

distinctly different from climate/mean temperature. The two plots in Panel A indicate an example 

of two plots with a similar climate mean (𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡�������) and a similar value of the relevant weather 

variability measure (days below T*). On the other hand, Panel B indicates an example where the 

two plots have a similar, but higher climate mean (𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡�������) and very different values of the days 

below T* measure of weather variability. Thus, empirically controlling for climate means 

(𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡�������) is not sufficient for measuring weather variability impacts on forestland values and, 

therefore, adaptation decisions.  

Figure 4 highlights the spatial and temporal heterogeneity of days<0 which is notably 

lower east of the Appalachian Mountains and much higher north and west of that range. 

Temporal changes in days<0 are slight, but we do see an increase over time in days<0. 
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4.2 Empirical specification   

We model the climate adaptation decision using a nested discrete-choice, random utility 

framework, building off the work of Hashida and Lewis (2019). The nested nature of the forest 

management problem is illustrated in Figure 5. An owner of a timber stand faces the decision to 

harvest their stand or not. Conditional on harvesting, they face the decision to plant pines or 

regenerate hardwoods. Conditional on not harvesting, the stand continues to grow and the 

landowner bears some risk of natural disturbance. Climate and weather variability enter into both 

the planting and natural disturbance models (in the lower nest) which are separately estimated, 

Figure 4: Weather variability in 2002 (top) and 2014 (bottom) as measured by the 20-year average 
annual number of days < 0°C . Data source: PRISM Climate Group, Oregon State University, 
https://prism.oregonstate.edu 
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(2) 

while also affecting the harvest decision due to the inclusive value from the nested logit structure 

(Train 2009), which is consistent with the theoretical foundation in Eq. (1).  

 

 

 

 

 

 

 

 

 

4.2.1 Disturbance and growth model  

If a landowner chooses not to harvest their forest, it will continue to grow, but also face 

the possibility of being naturally disturbed by weather, fire, pests, animals, or disease. We define 

a plot as naturally disturbed if two conditions are met: 1) it is observed to have been naturally 

disturbed, and 2) it has experienced negative growth, which indicates that the disturbance caused 

substantial damage to the stand. The probability of disturbance, conditional on a plot not being 

harvested, is a function of climate, weather variability, ownership, elevation, and location. Since 

we know that observed disturbance events occurred between inventory years t-d and t, we 

construct our weather variability and climate measures over that same time period in order to 

capture the weather events and climate near the time of the disturbance. In our application, d=5 

years to capture the measurement period of the FIA data.  

Disturbance is estimated with the following latent value binary outcome specification: 

𝑉𝑉𝑛𝑛𝑡𝑡
𝑝𝑝ℎ|𝑛𝑛ℎ = 𝛼𝛼0 + 𝛼𝛼1𝑡𝑡𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡���������𝑛𝑛𝑡𝑡 + 𝛼𝛼2𝑤𝑤𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑝𝑝𝑡𝑡𝑛𝑛𝑡𝑡��������������+ 𝛼𝛼3𝑠𝑠𝑡𝑡𝑤𝑤𝑤𝑤𝑛𝑛𝑡𝑡 + 𝛼𝛼4𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛 + 

𝛼𝛼5𝑡𝑡𝑒𝑒𝑡𝑡𝑤𝑤𝑎𝑎𝑡𝑡𝑝𝑝𝑃𝑃𝑡𝑡𝑛𝑛 + 𝛼𝛼6𝑡𝑡𝑃𝑃𝑝𝑝𝑤𝑤𝑎𝑎𝑡𝑡𝑡𝑡𝑛𝑛 + 𝛼𝛼7𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛 ∗ 𝑠𝑠𝑡𝑡𝑤𝑤𝑤𝑤𝑛𝑛𝑡𝑡 + 𝜗𝜗𝑠𝑠(𝑛𝑛) + 𝜀𝜀𝑛𝑛𝑛𝑛𝑡𝑡 

For 𝑡𝑡ℎ|𝑡𝑡ℎ = 𝑡𝑡𝑎𝑎𝑡𝑡𝑛𝑛𝑃𝑃𝑎𝑎𝑒𝑒 𝑑𝑑𝑝𝑝𝑠𝑠𝑡𝑡𝑛𝑛𝑃𝑃𝑃𝑃𝑎𝑎𝑡𝑡𝑐𝑐𝑡𝑡 𝑡𝑡𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡 | 𝑡𝑡𝑃𝑃 ℎ𝑎𝑎𝑃𝑃𝑤𝑤𝑡𝑡𝑠𝑠𝑡𝑡 

Figure 5: The nested structure of forest management decisions. Climate enters the lower nest planting 
and disturbance models. 
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(3) 

Where 𝑉𝑉𝑛𝑛𝑡𝑡
𝑝𝑝ℎ|𝑛𝑛ℎ

 is a latent variable depicting the value of stand n in year t that has not been 

harvested (nh). Since the unharvested stand is subject to natural disturbance events that affect its 

value, we estimate parameters in Eq. (2) with a binary dependent variable equal to 1 if plot n has 

been naturally disturbed and 0 if not; 𝑡𝑡𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑛𝑛𝑡𝑡����������� is the 5-year mean annual temperature, 

𝑤𝑤𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑝𝑝𝑡𝑡𝑛𝑛𝑡𝑡�������������� is the 5-year mean wintertime precipitation, and 𝑠𝑠𝑡𝑡𝑤𝑤𝑤𝑤𝑛𝑛𝑡𝑡 is the short-term (5-year) 

weather variability; 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛 indicates whether the stand is a pine stand (𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛 = 1) or a hardwood 

stand (𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛 = 0); 𝑡𝑡𝑃𝑃𝑝𝑝𝑤𝑤𝑎𝑎𝑡𝑡𝑡𝑡𝑛𝑛 is a binary variable indicating whether the plot is privately owned 

or otherwise; and 𝜗𝜗𝑠𝑠(𝑛𝑛) are state-level fixed effects. The disturbance model is estimated using the 

58,466 plot-time observations that were not harvested. As a robustness check, we also estimate 

this model with a long-term measure of weather variability where d = 20. 

 In order to test if weather variability negatively affects pine yields more than hardwood 

yields consistent with Sec. 3, we estimate short-term (5-year) timber growth using a two-part 

Tobit model with similar specifications to the disturbance model. The first part is a binary probit 

model which estimates the probability that a stand experiences zero growth. This model is 

estimated using the sample of plots that experienced non-negative growth: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝑤𝑤𝑡𝑡ℎ𝑛𝑛𝑡𝑡 = 1)
= Φ(𝜏𝜏0 + 𝜏𝜏1𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡 + 𝜏𝜏2𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡2 + 𝜏𝜏3𝑡𝑡𝑒𝑒𝑡𝑡𝑤𝑤𝑎𝑎𝑡𝑡𝑝𝑝𝑃𝑃𝑡𝑡𝑛𝑛 + 𝜏𝜏4𝑡𝑡𝑃𝑃𝑝𝑝𝑤𝑤𝑎𝑎𝑡𝑡𝑡𝑡𝑛𝑛 + 𝜏𝜏5𝑡𝑡𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑛𝑛𝑡𝑡�����������
+ 𝜏𝜏6𝑡𝑡𝑛𝑛𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑝𝑝𝑡𝑡𝑛𝑛𝑡𝑡��������������� + 𝜏𝜏7𝑠𝑠𝑡𝑡𝑤𝑤𝑤𝑤𝑛𝑛𝑡𝑡 + 𝜏𝜏8𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛 + 𝜏𝜏9𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛 ∗ 𝑠𝑠𝑡𝑡𝑤𝑤𝑤𝑤𝑛𝑛𝑡𝑡 + 𝜙𝜙𝑠𝑠(𝑛𝑛)) 

Where 𝑡𝑡𝑃𝑃𝑛𝑛𝑃𝑃𝑃𝑃𝑤𝑤𝑡𝑡ℎ𝑛𝑛𝑡𝑡 is a binary variability indicating whether a plot experienced zero growth 

(=1) or positive growth (=0) between years t-5 and t, and Φ indicates the standard normal CDF. 

The second part of the Tobit estimates stand growth on the sample of plots that are actively 

growing (positive growth):  

log (∆𝑤𝑤𝑃𝑃𝑒𝑒𝑛𝑛𝑡𝑡) = 𝛾𝛾0 + 𝛾𝛾1𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡 + 𝛾𝛾2𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡2 + 𝛾𝛾3𝑡𝑡𝑒𝑒𝑡𝑡𝑤𝑤𝑎𝑎𝑡𝑡𝑝𝑝𝑃𝑃𝑡𝑡𝑛𝑛 + 𝛾𝛾4𝑡𝑡𝑃𝑃𝑝𝑝𝑤𝑤𝑎𝑎𝑡𝑡𝑡𝑡𝑛𝑛 + 𝛾𝛾5𝑡𝑡𝑚𝑚𝑡𝑡𝑎𝑎𝑡𝑡𝑛𝑛𝑡𝑡�����������+
𝛾𝛾6𝑡𝑡𝑛𝑛𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑝𝑝𝑡𝑡𝑛𝑛𝑡𝑡���������������+ 𝛾𝛾7𝑠𝑠𝑡𝑡𝑤𝑤𝑤𝑤𝑛𝑛𝑡𝑡 + 𝛾𝛾8𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛 + 𝛾𝛾9𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛 ∗ 𝑠𝑠𝑡𝑡𝑤𝑤𝑤𝑤𝑛𝑛𝑡𝑡 + 𝛾𝛾𝑠𝑠(𝑛𝑛) + 𝜔𝜔𝑛𝑛𝑛𝑛𝑡𝑡  (4) 

Where the dependent variable, (log (∆𝑤𝑤𝑃𝑃𝑒𝑒𝑡𝑡𝑛𝑛), is the log of stand growth observed on plot n 

between years t-5 and t. Stand growth is the annual change in merchantable timber volume, 

measured in metric board feet (mbf)/acre/year. Stand age in time t (𝑎𝑎𝑛𝑛𝑡𝑡𝑛𝑛𝑡𝑡) is also included as a 

quadratic, to approximate standard non-linear tree growth functions.  

Both the disturbance and growth models include an interaction term: 𝑡𝑡𝑝𝑝𝑡𝑡𝑡𝑡𝑛𝑛 ∗ 𝑠𝑠𝑡𝑡𝑤𝑤𝑤𝑤𝑛𝑛𝑡𝑡   

which allows us to directly estimate how cold temperatures differentially affect the yields and 
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disturbance risks of pine and hardwood forests, providing a single parameter test on the 

interaction parameter of the mechanisms through which weather variability can affect adaptation 

speed between these forest types as presented in Sec. 3.  

4.2.2 Planting Model 

Conditional on harvesting4, a landowner of plot n can choose to either plant a managed 

pine stand or regenerate natural hardwoods. We assume that the plot of land must remain in 

forest, eliminating the option of converting the land to other uses. Post-harvest, the landowner 

chooses the forest type j in time t that maximizes the net present value of their land. We choose 

spatially and temporally varying climate variables to test the relationship between climate and 

the planting decision and include other explanatory variables that we expect to affect the post-

harvest land value 𝑉𝑉𝑛𝑛𝑛𝑛𝑡𝑡
𝑝𝑝ℎ|ℎ. We specify the post-harvest land value 𝑉𝑉𝑛𝑛𝑛𝑛𝑡𝑡

𝑝𝑝ℎ|ℎ from Eq. (1) in random 

utility form as follows: 

𝑉𝑉𝑛𝑛𝑛𝑛𝑡𝑡
𝑝𝑝ℎ|ℎ = 𝛽𝛽0 + 𝛽𝛽1𝑛𝑛𝑤𝑤𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚���������𝑛𝑛𝑡𝑡 + 𝛽𝛽2𝑛𝑛𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑝𝑝𝑡𝑡���������𝑛𝑛𝑡𝑡 + 𝛽𝛽3𝑛𝑛𝑒𝑒𝑎𝑎𝑡𝑡𝑑𝑑𝑛𝑛 + 𝛽𝛽4𝑁𝑁𝑁𝑁𝑟𝑟(𝑛𝑛)𝑛𝑛𝑡𝑡 + 𝛽𝛽5𝑁𝑁𝑁𝑁𝑟𝑟(𝑛𝑛)𝑛𝑛𝑡𝑡 ∗

𝑤𝑤𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚���������𝑛𝑛𝑡𝑡 + 𝛽𝛽6𝑛𝑛𝑤𝑤𝑤𝑤𝑛𝑛𝑡𝑡 + 𝜑𝜑𝑛𝑛𝑛𝑛𝑡𝑡       

For 𝑡𝑡ℎ|ℎ = 𝑡𝑡𝑒𝑒𝑎𝑎𝑡𝑡𝑡𝑡|𝑐𝑐𝑒𝑒𝑡𝑡𝑎𝑎𝑃𝑃 − 𝑐𝑐𝑛𝑛𝑡𝑡         

               

Where 𝑤𝑤𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚���������𝑛𝑛𝑡𝑡 represents the average wintertime maximum temperature from the 20 years 

prior to t, 𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑝𝑝𝑡𝑡���������𝑛𝑛𝑡𝑡 represents average annual precipitation from the 20 years prior to t. The 

choice of these two variables was determined by the primary climatic factors affecting pine 

growth and survival, which are wintertime temperatures and precipitation. We represent long-

term weather variability (𝑤𝑤𝑤𝑤𝑛𝑛𝑡𝑡) with 𝑑𝑑𝑎𝑎𝑑𝑑𝑠𝑠 < 0𝑛𝑛𝑡𝑡 to capture exposure to freezing temperatures. 

                                                 
4 Given our focus on how weather variability affects the decision to plant pines over hardwoods, and that pines are 
predominantly established through planting on cleared land, we define harvest events as clear-cuts only. Partial-cut 
harvests imply that the landowner will not change the forest type on their plot and are embedded in the “no-harvest” 
nest. We do not separately estimate drivers of partial cut harvests. 

(5) 
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The weather variability measure 𝑑𝑑𝑎𝑎𝑑𝑑𝑠𝑠 < 0𝑛𝑛𝑡𝑡 is computed as a long-term measure of average 

number of days below 0°C during the 20 years preceding plot measurement. 

Other control variables include land quality (𝑒𝑒𝑎𝑎𝑡𝑡𝑑𝑑𝑛𝑛) measured with the FIA’s site class 

codes5, and a regional level measure of the net returns to forestry 𝑁𝑁𝑁𝑁𝑟𝑟(𝑛𝑛)𝑛𝑛𝑡𝑡which varies across 

time t, forest group j, and region r6. Due to the long timeframe between planting and harvest, 

forest owners do not know their profits from planting a given forest type with certainty. As such, 

we construct an expected annualized net returns variable for forest group j by taking an average 

of the region r average net returns from the five years preceding time t to approximate how a 

landowner may assess the economic tradeoffs of different replanting choices. The interaction 

𝑁𝑁𝑁𝑁𝑟𝑟(𝑛𝑛)𝑛𝑛𝑡𝑡 ∗ 𝑤𝑤𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚���������𝑛𝑛𝑡𝑡 scales the regional average net return based on plot-level variation in 

𝑤𝑤𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚���������𝑛𝑛𝑡𝑡. Notably, the net returns variable 𝑁𝑁𝑁𝑁𝑟𝑟(𝑛𝑛)𝑛𝑛𝑡𝑡 captures observed stumpage prices that vary 

across region r, forest type j, and time t. Finally, there are unobservable factors that drive 

management choice j (e.g. landowner capability) that are captured in 𝜀𝜀𝑛𝑛𝑛𝑛𝑡𝑡. The choice j specific 

parameters must be normalized to zero for one choice for identification.  

We exploit the within-region climate variation to identify the relationship between 

climate and a landowner’s replanting decision. While the climate variables – including wv – vary 

across plots of land 𝑡𝑡, they do not vary over the choice of forest group j. As such, in the 

econometric specification, the coefficients on each of the three climate variables are indexed by 

choice in order to estimate differences in land value. Intuitively, we would also expect the 

relationship between climate and land value to be different across different forest groups. For 

example, if U.S. southern pine species are more suited to warmer temperatures, we would expect 

a positive relationship between temperature and land values for plots with those species planted. 

Because the planting model is estimated with a pooled cross-sectional of harvested plots, 

it is more susceptible to omitted variable bias compared to estimating the model with panel data 

and plot fixed-effects. While we expect some omitted variables in 𝜑𝜑𝑛𝑛𝑛𝑛𝑡𝑡 such as management 

                                                 
5 The site class code takes on discrete values from 1 to 7 where 1 indicates the highest land quality. A site class code 
of 1 indicates that the plot of land can potentially grow timber at a rate of 225+ cubic feet/acre/year, whereas a site 
class code of 7 indicates a growth rate of 0-19 cubic feet/acre per year. 
6 Regions are defined by the FIA survey units and are comprised of 18 counties on average. Each state has on 
average 5 regions. There are 50 regions in our study area. 
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experience, risk preferences, and reasons for owning land to affect the planting decision, it is 

unlikely that these characteristics are correlated with climate or weather variability. As such, 

their exclusion from the model would not bias our estimates of the coefficients on our variables 

of interest (𝑤𝑤𝑤𝑤𝑛𝑛𝑡𝑡,𝑤𝑤𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚���������𝑛𝑛𝑡𝑡, and  𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑝𝑝𝑡𝑡���������𝑛𝑛𝑡𝑡 ). As a robustness check, we estimate this model 

using spatial fixed effects at the ecological subregion level to control for spatially-varying but 

time-invariant climatic and geological unobserved variables likely to influence the planting 

decision. The results of this specification are presented in the supplementary index (SI) (Table 

A6, column 3). Additionally, to ensure that the planting model is robust to alternative ways of 

measuring climate, we also estimate the model with a double-selection Lasso logit method, 

which takes a machine learning approach to selecting the climate covariates from a set of 20 

different variables representing climate means from the growing and non-growing seasons. Key 

results from this estimation are presented in the SI (Figure A1).  

4.2.3 Harvest Model 

The harvest decision is estimated as the upper nest of the forest management decision, 

which embeds the solutions from the lower nest planting and disturbance models. Given a plot of 

forestland, the landowner can choose to harvest (h=clear-cut) or let their stand grow for another 

period (h=no clear cut). If the owner of plot n harvests the land, they receive the estimated 

volume-weighted revenue from harvesting all tree species that are currently growing on plot n in 

time t and represented as 𝑁𝑁𝑡𝑡𝑤𝑤𝑛𝑛𝑡𝑡. If the owner chooses not to clear cut harvest the land, the owner 

lets the stand grow another period and gains additional revenue from tree volume growth which 

is represented as ∆𝑁𝑁𝑡𝑡𝑤𝑤𝑛𝑛𝑡𝑡. Eq. (6) indicates these payoffs. 

𝑉𝑉𝑛𝑛𝑡𝑡ℎ = �𝛿𝛿0 + 𝛿𝛿1𝑁𝑁𝑡𝑡𝑤𝑤𝑛𝑛𝑡𝑡          𝑝𝑝𝑖𝑖 ℎ = 𝑐𝑐𝑒𝑒𝑡𝑡𝑎𝑎𝑃𝑃 𝑐𝑐𝑛𝑛𝑡𝑡
𝛿𝛿2∆𝑁𝑁𝑡𝑡𝑤𝑤𝑛𝑛𝑡𝑡           𝑝𝑝𝑖𝑖 ℎ = 𝑡𝑡𝑃𝑃 𝑐𝑐𝑒𝑒𝑡𝑡𝑎𝑎𝑃𝑃 𝑐𝑐𝑛𝑛𝑡𝑡                         (6) 

The intercept parameter 𝛿𝛿0 implicitly captures harvest costs. As shown in Eq. (1), the harvest 

decision is dependent on both 𝑉𝑉𝑛𝑛𝑡𝑡ℎ  and on the optimized post-harvest value function of the land, 

represented in the nested logit model by the inclusive values formed from the planting and 

natural disturbance nests [𝐼𝐼𝑛𝑛𝑡𝑡ℎ = 𝑒𝑒𝑡𝑡 ∑ 𝑡𝑡𝑚𝑚𝑡𝑡�𝑉𝑉𝑛𝑛𝑛𝑛𝑡𝑡
𝑝𝑝ℎ|ℎ 𝜆𝜆ℎ� �𝐽𝐽

𝑛𝑛=1 ]. The inclusive value is the optimized 

value of the respective lower nest model. The nested logit model embeds 𝐼𝐼𝑛𝑛𝑡𝑡ℎ  into the harvest 

model as a set of independent variables for each harvest decision h. If a generalized extreme 
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value captures unobservable drivers of harvest decisions, then the probability of the full set of 

management actions is defined with a nested logit representation (Train, 2009): 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑡𝑡 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑡𝑡ℎ ∙ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑡𝑡|ℎ
𝑝𝑝ℎ|ℎ = exp (𝑉𝑉𝑛𝑛𝑛𝑛

ℎ +𝜆𝜆ℎ𝐼𝐼𝑛𝑛𝑛𝑛
ℎ )

∑ exp (𝑉𝑉𝑛𝑛𝑛𝑛
ℎ +𝜆𝜆ℎ𝐼𝐼𝑛𝑛𝑛𝑛

ℎ )2
ℎ=1

∙
exp (𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛

𝑝𝑝ℎ|ℎ/𝜆𝜆ℎ)

∑ exp (𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛
𝑝𝑝ℎ|ℎ/𝜆𝜆ℎ)𝐽𝐽

𝑛𝑛=1
             (7)   

The advantage of the nested logit model is that its structure reflects the theoretical nesting 

structure from Eq. (1) – the optimized post-harvest decision affects the harvest decision directly. 

We estimate the parameters of these models sequentially as described in Train (2009). While the 

sequential estimation is consistent, a consequence of it is that the standard errors of the upper 

nest model have a downward bias (Train, 2009). To deal with that we use a bootstrapping 

procedure to estimate the upper nest standard errors7. 

5. Data 

For a full list of data and sources, see Table A2 in the SI. We use plot-level panel data 

with 61,599 observations of forest management decisions across 30,962 plots measured by the 

USFS FIA from 2002 to 2014. The FIA conducts annual inventories of about 20% of all plots in 

each state in the southern U.S. so each plot in this region is measured approximately once every 

five years. Approximately 16% of plots are only observed once in the data, while the remaining 

84% of plots are observed at least twice. The FIA inventory measures various tree and land 

characteristics through both on-the-ground field crews and remote measurement techniques. For 

each observation, the FIA indicates the forest type, ownership, management decisions, 

disturbance events, site quality, tree volume and growth8, and other plot characteristics. We 

                                                 
7 We repeat the following procedure 1000 times to obtain standard error estimates for the harvest model parameters: 
1) Create a dataset by sampling with replacement from the original dataset. 2) Estimate the planting and disturbance 
models using the subset of harvested and non-harvested observations respectively. 3) Calculate inclusive values for 
the planting and disturbance models. 4) Estimate the harvest model using the inclusive values from (3).  
8 Volume is measured for a handful of site trees on a plot. To calculate the total volume on a plot, we multiply each 
recorded tree’s volume by its trees-per-acre (TPA) expansion factor and aggregate the volumes within each species 
group within each plot. This gets us the volume per acre for each species group within each condition. To calculate 
volume growth, we use net annual merchantable cubic-foot growth variable from the FIA and aggregate it in the 
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combine these data with downscaled daily weather data from the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) to construct our variability measures (Sec. 

4.1) and 5-year and 30-year means for the other climate variables in our econometric model. 

Annualized net returns to forestry come from a novel dataset developed by Mihiar and Lewis 

(2021)9.  Table 1 presents summary statistics for our key variables of interest. 

Variable Mean Std. Dev. Min Max 
Stand age (years) 42 27 0 184 
Elevation (feet) 639 669 -10 5620 
Proportion privately owned 0.88 0.33 0 1 
Proportion pines 0.42 0.49 0 1 
Proportion disturbed 0.0084 0.091 0 1 
Annual net return premium of pines ($/acre)  14 8.1 2.7 68 
Stand growth (mbf/acre/year) 0.5 0.86 -18 22 
Stand volume (mbf/acre) 16 15 0 191 
Annual mean temp. (°C) (30-year) 16 2.2 7 21 
Mean wintertime max temp. (°C) (30-year) 12 3.2 2.1 20 
Mean annual precip. (mm) (30-year) 1297 148 873 2503 
Mean wintertime precip. (mm) (30-year) 326 63 176 727 
Days<0 (20-year) 14 12 0.2 92 
Days<0 (5-year) 15 13 0 93 

 

Of the 61,599 observations of management decisions, 3,133 (5.1%) of those are clear-cut 

harvests and are used to estimate our planting model, Eq. (5). Due to the timespan of our sample, 

we only observe the planting decision once for any given harvested plot, leaving us with a 

pooled cross-sectional dataset to estimate Eq. (5). The remaining 58,466 observations are non-

harvests and are used to estimate the disturbance model (Eq. 2). All observations are used to 

estimate the upper nest harvest model (Eq. 6). Both the disturbance model and harvest model are 

estimated with unbalanced panel datasets as about 16% of the total observations have only been 

measured once.  

                                                 

same fashion to get the cubic foot annual growth for each species group on a given plot. These volume and growth 
measurements are then converted to thousand board feet (mbf). 
9 See Table A2 in the SI for a description of these data. 

Table 1: Summary statistics for key variables. 
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6. Econometric Estimation Results 

Parameter estimates for the full nested forest management model (disturbance, planting, and 

harvest nests) are presented in SI Table A3. We estimate two distinct models: the full model as 

presented in Section 4 (Table A3, column 1), and a model that excludes weather variability 

(Table A3, column 2). Given the non-linearity and interactions in the econometric model, we 

present estimated partial effects of climate and weather variability on natural disturbance along 

with the planting and harvest decisions. Using the average climate of the study area as a baseline, 

we estimate the partial effects of the average projected climate changes between 2020 and 2050 

for the region. These projections include a 2 °C increase in wintertime maximum temperatures, a 

3°C increase in mean annual temperatures, a 60 mm increase in annual precipitation, a 40 mm 

increase in wintertime precipitation, a 7-day decrease in short-term days<0, and a 12-day 

decrease in long-term days<0. 

We first present the results of the disturbance and growth models, which provide evidence 

for the two mechanisms through which weather variability affects the speed of adapting to pines. 

The key statistical test of the difference in the effect of days<0 on pines vs hardwoods is the 

interaction parameters of the two respective models, both of which are significantly different 

from zero (p<0.01). Section 6.2 presents the results of the two management decisions: planting 

and harvest. 

6.1 Partial effects of weather variability on disturbance and stand growth  

We highlight two key findings illustrated in Fig. 6 that confirm two key points from the 

theory in Sec. 3. First, a reduction in cold weather variability lowers the probability of natural 

disturbance for both pine and hardwood stands (p<0.01). A 7-day decrease in short-term days<0 

lowers the probability of disturbance for pines (hardwoods) by 0.3 percentage points (0.28 

percentage points), which equates to the 55% (26%) reduction in the mean disturbance rate for 

pines (hardwoods) that is depicted in Fig. 6. Based on the estimate of the interaction parameter 

𝛼𝛼7 from Eq. (2), a reduction in cold weather variability has a larger magnitude effect on 

disturbance for pines than for hardwoods (p<0.01). We present the full disturbance model 

coefficient estimates alongside those of our alternative model which uses the long-term measure 
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of weather variability in the SI (Table A5) and we confirm that the short-term days<0 fits the 

disturbance model best as indicated by McFadden’s pseudo R2.  

Second, we find that a reduction in cold weather variability increases the growth of actively 

growing pine and hardwood stands but has a much larger effect on pines than hardwoods. We 

estimate that a projected 7-day decrease in short-term days<0 increases the growth of actively 

growing pine stands by 21.94% (p<0.01), while it only increases the growth of actively growing 

hardwoods by about 7.39% (p<0.01). Thus, consistent with the theory in Sec. 3, reductions in 

cold weather variability both raise timber yields and lower the probability of natural disturbance, 

with larger magnitude effects for pines than hardwood forests. The full set of parameter 

estimates for the growth model is presented in SI Table A4. 

  

Figure 6: Estimated partial effects of a reduction in weather variability, which is represented here as the 
effect of a 7-day decrease in days<0 on the percentage change in stand growth (panel A) and on the 
percentage change in the probability of disturbance (panel B) for both hardwoods (green) and pines 
(orange). Note that the plotted change in the probability of disturbance is expressed as a proportion of 
each forest type’s mean probability of disturbance. 
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6.2 Partial effects of climate and weather variability on management decisions 

Examining the partial effects of weather variability on the planting and harvest decisions 

(Table 2), we find clear empirical evidence that lower weather variability, measured as fewer 

days<0, raises the probability of planting pines and the probability of harvesting (p<0.01). The 

projected 12-day decrease in long-term days<0 increases the probability of planting pines by 

19% on average, while increasing the probability of harvesting by about 4% on average. 

Additionally, we find that the projected increase in 𝑤𝑤𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚���������  lowers the probability of planting 

pines by about 4% and lowers the probability of harvest by about 0.4%. The projected increase in 

𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑝𝑝𝑡𝑡��������� increases the probability of planting pine by about 2% and the probability of harvest by 

about 0.3%. Comparing the partial effects of the projected change in days<0 to those of the 

projected changes in the climate means (𝑤𝑤𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚���������, 𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑝𝑝𝑡𝑡���������), we see that the effects of projected 

future changes in weather variability on the forest management decisions are much larger than 

the effects of future changes in mean climate. We can also compute the combined effects of 

these projected climate changes on forest management where all three elements (days<0, 

𝑤𝑤𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚��������� , and 𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑝𝑝𝑡𝑡���������) change together as expected in climate change projections (Table 2, rows 

4 and 8).  We estimate that the combined effect of the climate changes leads to an increase in the 

probability of planting pines by 17.4% and in the probability of harvest by 3.6%.  

We also estimate the partial effects of the projected changes in temperature and precipitation 

using the empirical model that omits weather variability (bottom half of Table 2). When weather 

variability is omitted, the sign of the partial effect for 𝑤𝑤𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚��������� turns from negative to positive, as 

the mean temperature variable picks up some of the omitted weather variability effects. 

However, the combined effects of projected climate change (Table 2, bottom row) best illustrates 

the significant bias that arises when ignoring weather variability. When weather variability is 

omitted, we estimate that the projected combined change in climate only leads to a 6.4% increase 

in the probability of planting pine and a 1.1% increase in the probability of harvesting. The 

magnitude of climate change effects on harvest and planting probabilities is much smaller when 

weather variability is omitted. 
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6.3 Alternative planting model specifications. 

The SI presents results of three alternative planting model specifications: a planting 

model estimated with spatial fixed effects (Table A6, column 3), one estimated with the short-

term weather variability measure instead of the long-term measures (Table A6, column 2), and a 

planting model estimated using a double-selection Lasso logit method (Figure A1). Results are 

consistent across the three specifications confirming that the preferred planting model (presented 

here) is robust to regional-level omitted variable bias and alternative climate measures. However, 

as expected, in the spatial fixed-effects planting model, there is less climate variation within 

regions, highlighted by the fact that the coefficient estimate on days<0 is only significant at the 

Full Model that includes weather variability 

 Δ prob(plant pine) Δ prob(harvest) 

Days < 0°C -12 days 0.194*** 
(0.045) 

0.044** 
(0.017) 

𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘����������  +2°C -0.042* 
(0.020) 

-0.004* 
(0.002) 

𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑����������  +60mm 0.023*** 
(0.004) 

0.003*** 
(0.001) 

Combined climate impacts 0.174*** 
(0.028) 

0.036*** 
(0.008) 

Model that ignores weather variability 

 Δ prob(plant pine) Δ prob(harvest) 

𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘����������  +2°C 0.044*** 
(0.0085) 

0.007*** 
(0.001) 

𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑����������  +60mm 0.020*** 
(0.004) 

0.003*** 
(0.001) 

Combined climate impacts 0.064*** 
(0.008) 

0.011*** 
(0.002) 

Significance level: ***0.10%,  **1%,  *5% 

Table 2: Estimated mean partial effects of projected climate changes between 2020 and 2070 on the 
probability of planting pines (column 1) and the probability of harvest (column 2). This table presents 
partial effects for individual elements of weather variability (Days<0), mean seasonal temperature 
(𝑤𝑤𝑡𝑡𝑚𝑚𝑎𝑎𝑚𝑚���������), and total annual precipitation (𝑡𝑡𝑃𝑃𝑡𝑡𝑐𝑐𝑝𝑝𝑡𝑡���������), holding other measures fixed. We also present the 
combined climate impacts where we change all individual elements together. 
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10% level. Furthermore, we confirm that the long-term weather variability measure fits the 

planting model best (indicated by McFadden’s pseudo R2).  

7. Future climate bio-economic simulation  

The marginal effects from the econometric model provide insight into how climate and 

weather variability affect the probabilities of harvesting and planting pine forests, but they do not 

elucidate how weather variability affects the timing of those decisions. The fact that harvests and 

subsequent plantings happen infrequently does not get captured in the econometric results. 

However, because we have explicitly included weather variability in our econometric model, we 

are able to simulate how changes in weather variability alter the time path of adaptation under 

future climate change. The bio-economic simulation allows us to model the dynamics of forest 

growth and the timing of harvest and planting decisions while accounting for the stochastic 

nature of the econometric model.  

7.1 Simulation methodology 

The simulation starts with a given plot n in time t=0 with the following characteristics: a 

standing hardwood forest,10 an observed climate (𝑐𝑐0) including means and weather variability, 

and an observed growing stock volume that generates either i) an expected revenue upon harvest 

(𝑃𝑃𝑡𝑡𝑤𝑤𝑛𝑛𝑛𝑛𝑡𝑡), or ii) an expected revenue growth if not harvested (∆𝑃𝑃𝑡𝑡𝑤𝑤𝑛𝑛𝑛𝑛𝑡𝑡). We estimate the nested 

probabilities of harvest choice k (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑛𝑛𝑛𝑛𝑡𝑡
ℎ ), disturbance i (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�

𝑛𝑛𝑛𝑛𝑡𝑡
𝑝𝑝ℎ|𝑛𝑛ℎ) and post-harvest 

management choice j (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�
𝑛𝑛𝑛𝑛𝑡𝑡
𝑝𝑝ℎ|ℎ) using the parameters from econometric models. Since these 

estimated timber management probabilities are functions of climate, we use climate projections 

to determine how they evolve over time. The simulation follows the nested structure of the 

econometric model (Fig. 5) and begins by drawing a uniformly distributed random number r 

between 0 and 1. One of two possible outcomes follows: 

                                                 
10 Specifically, we choose plots with standing oak-hickory forests as this is the most abundant and 

widespread hardwood forest type across the eastern US. 
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1. 𝑃𝑃 ≥ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑛𝑛𝑛𝑛𝑡𝑡
ℎ : the plot is not harvested. The stand now faces the probability of 

disturbance. We draw a different random number rd from which there are two possible 

outcomes: 

i. 𝑃𝑃𝑑𝑑 < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�
𝑛𝑛𝑛𝑛𝑡𝑡
𝑝𝑝ℎ|ℎ: the stand is naturally disturbed and the revenue from harvesting 

for all subsequent periods is reduced by an amount equal to the average revenue 

loss of all disturbed plots in our sample. 

ii. 𝑃𝑃𝑑𝑑 ≥ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�
𝑛𝑛𝑛𝑛𝑡𝑡
𝑝𝑝ℎ|ℎ the stand continues to grow according to timber yield functions 

from Mihiar and Lewis (2021) until the next period when the harvest decision is 

considered again under a new climate (𝑐𝑐𝑡𝑡+1).  

2. 𝑃𝑃 < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑛𝑛𝑛𝑛𝑡𝑡
ℎ : the plot is harvested, and the simulation moves to the planting decision. We 

draw a different random number 𝑃𝑃𝑝𝑝ℎ from which there are two possible outcomes: 

i. 𝑃𝑃𝑝𝑝ℎ < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�
𝑛𝑛𝑛𝑛𝑡𝑡
𝑝𝑝ℎ|ℎ: pines are planted. In this case, we assume that the plot will 

remain in pine and the simulation stops11. 

ii. 𝑃𝑃𝑝𝑝ℎ ≥ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�
𝑛𝑛𝑛𝑛𝑡𝑡
𝑝𝑝ℎ|ℎ: hardwoods are regenerated. Again, we use the timber yield 

functions to determine how the stand grows until the next period when the 

harvesting decision is revisited under a new climate (𝑐𝑐𝑡𝑡+1).  

Repeating this process over multiple time periods and with many different random draws 

generates a simulated distribution of outcomes. For each sample plot, we simulate future 

scenarios with and without climate change in 5-year time steps starting in 2020 and ending in 

2100. Our Monte Carlo simulation is repeated 1000 times, generating 1000 different adaptation 

paths. We then calculate the proportion of times that the plot switches to pine within a given 

number of years (from 10 to 80) relative to the no climate change scenario and graph the results 

(Fig. 7, 8).  

                                                 
11 By stopping the simulation when the plot converts to pines (step 2.i), we are implicitly examining the time until 
first adaptation from hardwoods to pines. In principle, land could convert from pines back to hardwoods at some 
point, but we ignore this possibility to better isolate the timing of the first adaptation. 
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7.2 Sample Plots 

We simulate the forest management decisions for three sample plots in three states 

reflecting the average climate of their state: Kentucky, Tennessee, and Virginia. Kentucky and 

Tennessee are states currently dominated by hardwoods and on the adaptive margin where forest 

transitions are most likely to occur. The plots in Virginia were chosen as a point of comparison – 

it is the northernmost state in our sample, and a region where we expect many areas to have 

temperatures too cool for landowners to plant pines even under climate change. Simulation 

results for six additional sample plots are found in SI Sec. A2. Key climate measures and 

projections for all nine plots are in Table A7.  

7.3 Future Climate Projections:  

We use downscaled Multivariate Adaptive Constructed Analogs (MACA) future climate 

projections assuming the RCP 8.5 scenario to create the future yearly climate measures for our 

sample plots. All plots are expected to become warmer and wetter. The top row of Figure 7 

shows how the days<0 metric evolves over time for the three climate models we use: the 

Canadian Fourth Generation Global Climate Model (CESM), the Community Climate System 

Model version 4 (CCSM), and the Hadley Centre Global Environment Model version 2 

(Hadley). There is a clear downward trend across all climate models, among which, the Hadley 

model exhibits the most warming and consistently fewer days<0.  

7.4 Results 

All results represent the probability of planting pines under a climate change scenario 

minus the probability of planting pines under the no climate change scenario. Key findings are 

summarized below: 

7.4.1 All else equal, increased weather variability slows adaptation. 

The first goal of the bio-economic simulations is to isolate the effects of weather 

variability on the time-path of adaptation from hardwoods to pine forests, where we would 

expect that a greater number of days<0 (higher variability) would slow adaptation. This is the 

first hypothesis we test with our simulation. To do so, we simulate the adaptation path of each of 
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our sample plots using the climate variables projected by the Hadley model. Because the other 

two climate models (CCSM and CESM) consistently project more days<0, we then simulate the 

adaptation path of each of these plots using the Hadley temperature and precipitation projections 

while substituting the days<0 projected by the other two models (Fig. 7, bottom row).  

 

 

The main finding from this simulation is that all else equal, increased weather variability 

slows climate adaptation. These results are consistent across the three sample plots (as well as 

the six plots in SI Sec. A2). When more days<0 are substituted (Fig. 7, bottom row, blue and 

green lines), the speed of adaptation diminishes relative to the Hadley scenario (orange line). 

Under the Hadley projections, the probability of climate adaptation to pine forests by 2100 is 

11.4%, 7.8% and 14.6% for the Kentucky, Tennessee, and Virginia sample plots respectively. 

When the days<0 projected by the CESM model are substituted into the Hadley projections, the 

probability of climate adaptation to pine decreases for all three sample plots to 5.0%, 5.4%, and 

8.3% respectively. And when the days<0 projected by the CCSM model (the model which 

Figure 7: The simulation results highlight that higher levels of weather variability slow the time path of 
adaptation Top row: projected days<0 for each of our three sample plots using the three different 
climate models. Bottom row: Simulation results from Section 7.4.1. The orange line is the simulated 
adaptation path using the Hadley (HAD) climate model. The blue (green) line is the simulated path of the 
Hadley model, but with the days<0 projected by the CESM (CCSM) model.  
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projects the most days<0 by 2100) are substituted, the probability of climate adaptation to pine is 

even lower at 2.9%, 1.8%, and 6.7% respectively. Given the fact that non-market ecosystem 

services and biodiversity are significantly lower in pine plantations relative to natural forests 

(Haskell et al., 2006; Hua et al., 2022), our results imply uncertain conservation outcomes that 

are driven by economic uncertainties in adaptation behavior of forest landowners that critically 

depend on how weather variability evolves with climate change. 

7.4.2 Ignoring weather variability leads to a smaller range of adaptation paths and underestimates 

adaptation speed. 

A second goal of this simulation is to illustrate how ignoring weather variability may bias 

predictions of adaptation behavior. While the empirical results in Section 6.2 highlight how 

ignoring weather variability can greatly alter estimations of the impact on climate changes on 

forest management behavior at a particular point in time, the simulation illustrates the key 

dynamics involved in infrequent forest management decisions. To do this, we estimate a forest 

management model that excludes weather variability12 from the planting and disturbance nests 

(Table A3, column 2), and then simulate adaptation paths using projections from each of the 

climate models. We plot these results (Fig. 8 blue band) next to the range of adaptation paths that 

result from the simulation that uses the model presented in Section 4 (Fig. 8 orange band).  

 

 

 

 

 

 

 

 

                                                 
12 Note that excluding weather variability is not the same as setting days<0 = 0.   
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The key takeaway from this approach is that adaptation paths i) are sensitive to the range of 

climate in the MACA projections, and ii) are significantly underestimated when weather 

variability is omitted from the econometric model and therefore ignored in the bio-economic 

simulation. These results are consistent across the three sample plots and four of the six 

additional sample plots in the SI (see Sec. A2 for details). Using the empirical model that 

includes weather variability, we find that the range in projected future climate generates a range 

in the probability of switching to pines by 2100 of 3.1 (8.3% to 11.4%), 4.9 (7.8% to 12.7%), and 

4.6 (10.0% to 14.6%) percentage points for the Kentucky, Tennessee, and Virginia sample plots 

respectively. When weather variability is ignored, the estimated range of future adaptation 

probabilities are consistently biased downward. In this case, the range in probability of switching 

to pines by 2100 is 3.3% to 5.3% for Kentucky, 4.5% to 6.0% for Tennessee, and 4.0% to 6.0% 

for Virginia. Ignoring weather variability results in a downward bias on the adaptation 

Figure 8: Simulation Results. The orange (blue) band shows the range of adaptation paths generated by 
the range of projected future climate across three climate models for the bio-economic simulation that 
includes weather variability (ignores weather variability).  
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probability. The fact that ignoring weather variability leads to an underestimate of the magnitude 

of adaptation behavior highlights the importance of considering weather variability in 

understanding adaptation in forest management. Given that the adaptation behavior of converting 

natural hardwood forests to pine plantations may reduce biodiversity (Hua et al. 2022; Haskell et 

al. 2006), underestimating how quickly landowners adapt to pine could have serious 

consequences for conservation planners who may make conservation decisions based on risk of 

conversion (Costello and Polasky 2004).  

8. Discussion  

In an application to forest management in the southeastern U.S., we study how weather 

variability affects the timing of adapting natural resources to climate change. In the forestry 

setting where tree species have different sensitivities to climate extremes, weather variability is a 

key component of climate that can alter the rate of adaptation from one forest type to another 

through its differential effects on the risks associated with growing each type of forest. Focusing 

on the decision to adapt natural hardwood forests to planted pine forests, we empirically test and 

confirm the hypothesis that increased weather variability in cold temperatures reduces tree yields 

and creates more risk in the adapting land use (pines) than in the current land use (hardwoods). 

We then test and confirm the hypothesis that increased weather variability in cold temperatures 

slows the rate of adaptation to pines by 1) estimating an econometric model of forest 

management decisions as a function of weather variability and climate means, and 2) examining 

how changes in projected weather variability alter adaptation timing with a bioeconomic 

simulation of forest growth and management under future climate scenarios.  

The simulation highlights the large differences in projected adaptation that arise from 

differences in projected future weather variability across climate models. Thus, uncertain future 

weather variability in cold temperatures creates significant uncertainty in the future composition 

of eastern U.S. forestland. Such uncertainty in projections of future weather variability could also 

induce a second mechanism that would reinforce weather variability’s effect on slowing 

adaptation from hardwoods to pines – an option value from climate uncertainty. Since harvesting 

and replanting trees are costly to reverse (Plantinga, 1998), and since there is significant 

uncertainty in future weather variability (Fig. 7) that we have shown can greatly alter the 
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incentives to plant pines, then landowners may also hold an option value of waiting for 

information on how future weather variability will evolve before adapting hardwood forests to 

pines. Option values from price uncertainty have been shown to explain friction in other land-use 

decisions (Schatzki, 2003), and our results suggest that uncertainty in future weather variability 

may also create frictions that slow climate adaptation of eastern U.S. hardwoods to plantation 

pines. Our empirical evidence supports prior theoretical literature which indicates how uncertain 

future environmental conditions can delay adaptation in water management and agriculture due 

to an option value (Fisher and Rubio, 1997; Wright and Erickson, 2004; Narita and Quaas, 

2014), and that adaptation delays in agriculture can arise from the potential for maladaptation 

(Sims et al., 2021).  

The simulation also illustrates how ignoring weather variability creates a large downward 

bias in estimating future adaptation paths in forestry. We find that adaptation probabilities that 

do not account for weather variability are roughly one-half the size of adaptation probabilities 

that do account for weather variability. Whereas previous studies on climate adaptation in 

forestry have identified the effects of climate means on land-use decisions and the economic 

benefits of adaptation, none have addressed how weather variability affects the timing of, or any 

potential barriers to, adaptation. Considering the large bias that arises when weather variability is 

ignored, it is imperative that the design and implementation of climate and conservation policy 

accounts for how natural resource managers react to this component of climate.   

Understanding the dynamics of how climate adaptation in forestry occurs is crucial for 

assessing the non-market damages arising from private adaptation to climate change, and for 

informing conservation priorities in the face of potentially large-scale conversion of natural 

forests to plantation stands.  From the perspective of a conservation planner, knowing the timing 

of land-use change – such as the conversion of hardwood forests to pine forests – greatly impacts 

the timing of optimal conservation decisions (Costello and Polasky, 2004). In particular, 

conservation actions that conserve natural hardwood forests increase in urgency with an 

increased speed of private management decisions that adapt land use to pine plantations. Our 

results show that the speed of adaptive conversion between hardwoods and pine forests is highly 

sensitive to how variation in wintertime low temperatures actually evolve, highlighting the 

importance of accounting for such weather variability when assessing the urgency of 
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conservation actions. Furthermore, given the wide range of outcomes in the time-path of forest 

composition between pines and hardwoods that our simulation illustrates and the difference in 

non-market ecosystem service provision between natural and plantation forests (Haskell et al., 

2006; Hua et al., 2022), our results suggest that an important source of future conservation 

uncertainty arises from the economic response of private forest landowners to weather variability 

in making adaptation decisions. 

The literature has made clear that adaptation must be accounted for in climate change impact 

studies because while adaptation induced by private incentives can reduce climate damages (Guo 

and Costello, 2013; Auffhammer, 2018; Kolstad and Moore, 2020), adaptation decisions, have 

significant consequences for the provision of ecosystem services and produce social costs (Fezzi 

et al., 2015). In the context of forestry, privately optimal adaptation decisions generate 

externalities due to the wide range of public benefits that forests provide and that are not 

internalized by private landowners (Hashida et al., 2020). While this is beyond the scope of our 

paper to quantify, our results indicate that while weather variability affects the private benefits 

from adaptation, there are potentially many social costs arising from these adaptive behaviors.  

There are numerous other climate adaptations where we would expect weather variability to 

affect the speed of adaptation. These decisions can include managed retreat in coastal and 

freshwater floodplains, forestry adaptation in other regions, and agricultural decisions that 

require land-use or systems changes, to name a few. These are all adaptation decisions where 

weather variability may have varying impacts on different decisions, e.g. higher weather 

variability may create more costly flood risks to houses than natural wetlands, or more costly 

risks to drought-sensitive crops and trees. Our paper shows how to include weather variability in 

models of private landowner adaptation decisions. 

There are several limitations to our analysis that are worth mentioning. First, our simulation 

does not account for any future changes in timber prices that may arise from supply shifts in the 

timber market. While this does not negate the fact that we are able to isolate and illustrate the 

effect of changes in future weather variability, which is the goal of this paper, future work could 

include simulations of future timber prices and provide a clearer picture of other important 

drivers of these adaptation decisions. Second, the assumptions underlying the definition of our 

planting choice groups could be reconsidered in future work. We frame our planting choice as a 
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binary decision between one of two broad forest groups (pines vs hardwoods) rather than the 

decision to plant a plantation forest. Anyone interested in examining the latter decision using this 

framework may define their choice groups accordingly. Additionally, our planting decision 

excludes the choice to convert land to other uses and should be considered in future work but is 

outside the scope of this paper. To accomplish this, an understanding of the effects of climate on 

returns to other land uses is needed. The assumption that landowners cannot convert their land to 

other uses may mean that our results do not show how the area of forestland changes as relative 

profits of various land uses change, but even without this aspect, our results still provide valuable 

insights into the tradeoffs between forest types and how climate affects those tradeoffs. Finally, 

our model assumes that landowners make management decisions in response to the current 

climate they face rather than the future climate they expect, and thus our simulation should be 

viewed as representing how landowners react to climate change that occurs rather than 

anticipating how it will evolve. While one recent study has attempted to test whether farmland 

prices anticipate future climate change (Severen et al., 2018), there is no evidence yet on how 

timberland owners use forecasts of climate change in their management decisions. Future work 

that tests how climate forecasts affect timber management would be a fruitful extension of this 

work. 
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