SSYGST(l) LAPACK routine (version 1.1) SSYGST(l)
NAME
SSYGST - reduce a real symmetric-definite generalized eigenproblem to stan-
dard form
SYNOPSIS
SUBROUTINE SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
CHARACTER UPLO
INTEGER INFO, ITYPE, LDA, LDB, N
REAL A( LDA, * ), B( LDB, * )
PURPOSE
SSYGST reduces a real symmetric-definite generalized eigenproblem to stan-
dard form.
If ITYPE = 1, the problem is A*x = lambda*B*x,
and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
B must have been previously factorized as U**T*U or L*L**T by SPOTRF.
ARGUMENTS
ITYPE (input) INTEGER
= 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
= 2 or 3: compute U*A*U**T or L**T*A*L.
UPLO (input) CHARACTER
Specifies whether the upper or lower triangular part of the sym-
metric matrix A is stored, and how B has been factorized. = 'U':
Upper triangle of A is stored and B is factored as U**T*U; = 'L':
Lower triangle of A is stored and B is factored as L*L**T.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) REAL array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading N-
by-N upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A is not
referenced. If UPLO = 'L', the leading N-by-N lower triangular
part of A contains the lower triangular part of the matrix A, and
the strictly upper triangular part of A is not referenced.
On exit, if INFO = 0, the transformed matrix, stored in the same
format as A.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) REAL array, dimension (LDB,N)
The triangular factor from the Cholesky factorization of B, as
returned by SPOTRF.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Back to the listing of computational routines for eigenvalue problems