SSTERF(l)		LAPACK routine (version	1.1)		    SSTERF(l)

NAME
  SSTERF - compute all eigenvalues of a	symmetric tridiagonal matrix using
  the Pal-Walker-Kahan variant of the QL or QR algorithm

SYNOPSIS

  SUBROUTINE SSTERF( N,	D, E, INFO )

      INTEGER	     INFO, N

      REAL	     D(	* ), E(	* )

PURPOSE
  SSTERF computes all eigenvalues of a symmetric tridiagonal matrix using the
  Pal-Walker-Kahan variant of the QL or	QR algorithm.

ARGUMENTS

  N	  (input) INTEGER
	  The order of the matrix.  N >= 0.

  D	  (input/output) REAL array, dimension (N)
	  On entry, the	n diagonal elements of the tridiagonal matrix.	On
	  exit,	if INFO	= 0, the eigenvalues in	ascending order.

  E	  (input/output) REAL array, dimension (N-1)
	  On entry, the	(n-1) subdiagonal elements of the tridiagonal matrix.
	  On exit, E has been destroyed.

  INFO	  (output) INTEGER
	  = 0:	successful exit
	  < 0:	if INFO	= -i, the i-th argument	had an illegal value
	  > 0:	the algorithm failed to	find all of the	eigenvalues in a
	  total	of 30*N	iterations; if INFO = i, then i	elements of E have
	  not converged	to zero.


Back to the listing of computational routines for eigenvalue problems