DORMRQ(l)		LAPACK routine (version	1.1)		    DORMRQ(l)

NAME
  DORMRQ - overwrite the general real M-by-N matrix C with   SIDE = 'L'	SIDE
  = 'R'	TRANS =	'N'

SYNOPSIS

  SUBROUTINE DORMRQ( SIDE, TRANS, M, N,	K, A, LDA, TAU,	C, LDC,	WORK, LWORK,
		     INFO )

      CHARACTER	     SIDE, TRANS

      INTEGER	     INFO, K, LDA, LDC,	LWORK, M, N

      DOUBLE	     PRECISION A( LDA, * ), C( LDC, * ), TAU( *	), WORK(
		     LWORK )

PURPOSE
  DORMRQ overwrites the	general	real M-by-N matrix C with TRANS	= 'T':
  Q**T * C	 C * Q**T

  where	Q is a real orthogonal matrix defined as the product of	k elementary
  reflectors

	Q = H(1) H(2) .	. . H(k)

  as returned by DGERQF. Q is of order M if SIDE = 'L' and of order N if SIDE
  = 'R'.

ARGUMENTS

  SIDE	  (input) CHARACTER*1
	  = 'L': apply Q or Q**T from the Left;
	  = 'R': apply Q or Q**T from the Right.

  TRANS	  (input) CHARACTER*1
	  = 'N':  No transpose,	apply Q;
	  = 'T':  Transpose, apply Q**T.

  M	  (input) INTEGER
	  The number of	rows of	the matrix C. M	>= 0.

  N	  (input) INTEGER
	  The number of	columns	of the matrix C. N >= 0.

  K	  (input) INTEGER
	  The number of	elementary reflectors whose product defines the
	  matrix Q.  If	SIDE = 'L', M >= K >= 0; if SIDE = 'R',	N >= K >= 0.

  A	  (input) DOUBLE PRECISION array, dimension
	  (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th	row must con-
	  tain the vector which	defines	the elementary reflector H(i), for i
	  = 1,2,...,k, as returned by DGERQF in	the last k rows	of its array
	  argument A.  A is modified by	the routine but	restored on exit.

  LDA	  (input) INTEGER
	  The leading dimension	of the array A.	LDA >= max(1,K).

  TAU	  (input) DOUBLE PRECISION array, dimension (K)
	  TAU(i) must contain the scalar factor	of the elementary reflector
	  H(i),	as returned by DGERQF.

  C	  (input/output) DOUBLE	PRECISION array, dimension (LDC,N)
	  On entry, the	M-by-N matrix C.  On exit, C is	overwritten by Q*C or
	  Q**T*C or C*Q**T or C*Q.

  LDC	  (input) INTEGER
	  The leading dimension	of the array C.	LDC >= max(1,M).

  WORK	  (workspace) DOUBLE PRECISION array, dimension	(LWORK)
	  On exit, if INFO = 0,	WORK(1)	returns	the optimal LWORK.

  LWORK	  (input) INTEGER
	  The dimension	of the array WORK.  If SIDE = 'L', LWORK >= max(1,N);
	  if SIDE = 'R', LWORK >= max(1,M).  For optimum performance LWORK >=
	  N*NB if SIDE = 'L', and LWORK	>= M*NB	if SIDE	= 'R', where NB	is
	  the optimal blocksize.

  INFO	  (output) INTEGER
	  = 0:	successful exit
	  < 0:	if INFO	= -i, the i-th argument	had an illegal value


Back to the listing of computational routines for orthogonal factorization and singular value decomposition