DGBSV(l) LAPACK driver routine (version 1.1) DGBSV(l)
NAME
DGBSV - compute the solution to a real system of linear equations A * X =
B, where A is a band matrix of order N with KL subdiagonals and KU superdi-
agonals, and X and B are N-by-NRHS matrices
SYNOPSIS
SUBROUTINE DGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
INTEGER IPIV( * )
DOUBLE PRECISION AB( LDAB, * ), B( LDB, * )
PURPOSE
DGBSV computes the solution to a real system of linear equations A * X = B,
where A is a band matrix of order N with KL subdiagonals and KU superdiago-
nals, and X and B are N-by-NRHS matrices.
The LU decomposition with partial pivoting and row interchanges is used to
factor A as A = L * U, where L is a product of permutation and unit lower
triangular matrices with KL subdiagonals, and U is upper triangular with
KL+KU superdiagonals. The factored form of A is then used to solve the
system of equations A * X = B.
ARGUMENTS
N (input) INTEGER
The number of linear equations, i.e., the order of the matrix A. N
>= 0.
KL (input) INTEGER
The number of subdiagonals within the band of A. KL >= 0.
KU (input) INTEGER
The number of superdiagonals within the band of A. KU >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns of the
matrix B. NRHS >= 0.
AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
On entry, the matrix A in band storage, in rows KL+1 to 2*KL+KU+1;
rows 1 to KL of the array need not be set. The j-th column of A is
stored in the j-th column of the array AB as follows:
AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL) On exit,
details of the factorization: U is stored as an upper triangular
band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the
multipliers used during the factorization are stored in rows
KL+KU+2 to 2*KL+KU+1. See below for further details.
LDAB (input) INTEGER
The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
IPIV (output) INTEGER array, dimension (N)
The pivot indices that define the permutation matrix P; row i of
the matrix was interchanged with row IPIV(i).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO
= 0, the N-by-NRHS solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, U(i,i) is exactly zero. The factorization has
been completed, but the factor U is exactly singular, and the solu-
tion has not been computed.
FURTHER DETAILS
The band storage scheme is illustrated by the following example, when M = N
= 6, KL = 2, KU = 1:
On entry: On exit:
* * * + + + * * * u14 u25 u36
* * + + + + * * u13 u24 u35 u46
* a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 *
a31 a42 a53 a64 * * m31 m42 m53 m64 * *
Array elements marked * are not used by the routine; elements marked + need
not be set on entry, but are required by the routine to store elements of U
because of fill-in resulting from the row interchanges.
Back to the listing of simple driver routines