CUNMHR(l)		LAPACK routine (version	1.1)		    CUNMHR(l)

NAME
  CUNMHR - overwrite the general complex M-by-N	matrix C with	SIDE = 'L'
  SIDE = 'R' TRANS = 'N'

SYNOPSIS

  SUBROUTINE CUNMHR( SIDE, TRANS, M, N,	ILO, IHI, A, LDA, TAU, C, LDC, WORK,
		     LWORK, INFO )

      CHARACTER	     SIDE, TRANS

      INTEGER	     IHI, ILO, INFO, LDA, LDC, LWORK, M, N

      COMPLEX	     A(	LDA, * ), C( LDC, * ), TAU( * ), WORK( LWORK )

PURPOSE
  CUNMHR overwrites the	general	complex	M-by-N matrix C	with TRANS = 'C':
  Q**H * C	 C * Q**H

  where	Q is a complex unitary matrix of order nq, with	nq = m if SIDE = 'L'
  and nq = n if	SIDE = 'R'. Q is defined as the	product	of IHI-ILO elementary
  reflectors, as returned by CGEHRD:

  Q = H(ilo) H(ilo+1) .	. . H(ihi-1).

ARGUMENTS

  SIDE	  (input) CHARACTER*1
	  = 'L': apply Q or Q**H from the Left;
	  = 'R': apply Q or Q**H from the Right.

  TRANS	  (input) CHARACTER*1
	  = 'N': apply Q  (No transpose)
	  = 'C': apply Q**H (Conjugate transpose)

  M	  (input) INTEGER
	  The number of	rows of	the matrix C. M	>= 0.

  N	  (input) INTEGER
	  The number of	columns	of the matrix C. N >= 0.

  ILO	  (input) INTEGER
	  IHI	  (input) INTEGER ILO and IHI must have	the same values	as in
	  the previous call of CGEHRD. Q is equal to the unit matrix except
	  in the submatrix Q(ilo+1:ihi,ilo+1:ihi).  If SIDE = 'L', 1 <=	ILO
	  <= IHI <= max(1,M); if SIDE =	'R', 1 <= ILO <= IHI <=	max(1,N);

  A	  (input) COMPLEX array, dimension
	  (LDA,M) if SIDE = 'L'	(LDA,N)	if SIDE	= 'R' The vectors which
	  define the elementary	reflectors, as returned	by CGEHRD.

  LDA	  (input) INTEGER
	  The leading dimension	of the array A.	 LDA >=	max(1,M) if SIDE =
	  'L'; LDA >= max(1,N) if SIDE = 'R'.

  TAU	  (input) COMPLEX array, dimension
	  (M-1)	if SIDE	= 'L' (N-1) if SIDE = 'R' TAU(i) must contain the
	  scalar factor	of the elementary reflector H(i), as returned by
	  CGEHRD.

  C	  (input/output) COMPLEX array,	dimension (LDC,N)
	  On entry, the	M-by-N matrix C.  On exit, C is	overwritten by Q*C or
	  Q**H*C or C*Q**H or C*Q.

  LDC	  (input) INTEGER
	  The leading dimension	of the array C.	LDC >= max(1,M).

  WORK	  (workspace) COMPLEX array, dimension (LWORK)
	  On exit, if INFO = 0,	WORK(1)	returns	the optimal LWORK.

  LWORK	  (input) INTEGER
	  The dimension	of the array WORK.  If SIDE = 'L', LWORK >= max(1,N);
	  if SIDE = 'R', LWORK >= max(1,M).  For optimum performance LWORK >=
	  N*NB if SIDE = 'L', and LWORK	>= M*NB	if SIDE	= 'R', where NB	is
	  the optimal blocksize.

  INFO	  (output) INTEGER
	  = 0:	successful exit
	  < 0:	if INFO	= -i, the i-th argument	had an illegal value


Back to the listing of computational routines for eigenvalue problems