CUNMHR(l) LAPACK routine (version 1.1) CUNMHR(l)
NAME
CUNMHR - overwrite the general complex M-by-N matrix C with SIDE = 'L'
SIDE = 'R' TRANS = 'N'
SYNOPSIS
SUBROUTINE CUNMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO )
CHARACTER SIDE, TRANS
INTEGER IHI, ILO, INFO, LDA, LDC, LWORK, M, N
COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( LWORK )
PURPOSE
CUNMHR overwrites the general complex M-by-N matrix C with TRANS = 'C':
Q**H * C C * Q**H
where Q is a complex unitary matrix of order nq, with nq = m if SIDE = 'L'
and nq = n if SIDE = 'R'. Q is defined as the product of IHI-ILO elementary
reflectors, as returned by CGEHRD:
Q = H(ilo) H(ilo+1) . . . H(ihi-1).
ARGUMENTS
SIDE (input) CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'C': apply Q**H (Conjugate transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER ILO and IHI must have the same values as in
the previous call of CGEHRD. Q is equal to the unit matrix except
in the submatrix Q(ilo+1:ihi,ilo+1:ihi). If SIDE = 'L', 1 <= ILO
<= IHI <= max(1,M); if SIDE = 'R', 1 <= ILO <= IHI <= max(1,N);
A (input) COMPLEX array, dimension
(LDA,M) if SIDE = 'L' (LDA,N) if SIDE = 'R' The vectors which
define the elementary reflectors, as returned by CGEHRD.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M) if SIDE =
'L'; LDA >= max(1,N) if SIDE = 'R'.
TAU (input) COMPLEX array, dimension
(M-1) if SIDE = 'L' (N-1) if SIDE = 'R' TAU(i) must contain the
scalar factor of the elementary reflector H(i), as returned by
CGEHRD.
C (input/output) COMPLEX array, dimension (LDC,N)
On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or
Q**H*C or C*Q**H or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) COMPLEX array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >=
N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is
the optimal blocksize.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
Back to the listing of computational routines for eigenvalue problems