Computational Physics Contents
PART I GENERALITIES
(with Web Tutorial links)

Section
Topic
Page
Chapter 1
Introduction
3
1.1
The Nature of Computational Science
3
1.1.1
How Computational Scientists Do It (visualization)
4
1.2
Aims of This Book
5
1.3
Using this Book with the Disk and Web
6
Chapter 2
Computing Software Basics
9
2.1
Problem 1: Making Computers Obey (unix help)
9
2.2
Theory: Computer Languages
9
2.3
Implementation: Programming Concepts
11
2.4
Implementation: Fortran, area.f
12
2.5
Implementation: C, area.c
13
2.6
Implementation: Shells, Editors, and Programs
13
2.7
Theory: Program Design
14
2.8
Method: Structured Programming
16
2.9
Method: Programming Hints
17
2.10
Problem 2: Limited Range of Numbers
20
2.11
Theory: Number Representation
20
2.12
Method: Fixed and Floating
21
2.13
Implementation: Over- and Underflows, over.f (.c)
23
2.14
Model: Machine Precision
23
2.15
Implementation: Determining Your Precision, limit.f (.c)
25
2.16
Problem 3: Complex Numbers and Inverse Functions
25
2.17
Theory: Complex Numbers
25
2.18
Implementation: Complex Numbers, complex.c (.f )
27
2.19
Exploration: Complex energies in Quantum Mechanics
28
2.20
Problem 4: Summing Series
29
2.21
Method: Numeric
29
2.22
Implementation: Pseudocode
29
2.23
Implementation: Good Algorithm, exp-good.f (.c)
30
2.24
Implementation: Bad Algorithm, exp-bad.f (.c)
30
2.25
Assessment
30
Chapter 3
Errors and Uncertainties in Computations
31
3.1
Problem: Living with Errors
31
3.2
Theory: Types of Errors
32
3.3
Model: Subtractive Cancellation
33
3.4
Assessment: Subtractive Cancellation Experiment
34
3.5
Model: Multiplicative Error
36
3.6
Problem 1: Errors in Spherical Bessel Functions
37
3.7
Method: Numeric Recursion Relations
38
3.8
Implementation: Recursion Relations, bessel.f (.c)
40
3.9
Assessment
40
3.10
Problem 2: Error in Algorithms
40
3.11
Model: Errors in Algorithms
41
3.11.1
Total Error
41
3.12
Method: Optimizing with Known Error Behavior
42
3.13
Method: Empirical Error Analysis
43
3.14
Assessment: Experiment
44
Chapter 4
Integration
47
4.1
Problem: Integrating a Spectrum
47
4.2
Model: Quadrature, Summing Boxes
47
4.3
Method: Trapezoid Rule
50
4.4
Method: Simpson's Rule
51
4.5
Assessment: Integration Error, Analytic
52
4.6
Method: Gaussian Quadrature
55
4.6.1
Scaling with Integration Rules
56
4.7
Implementation: Integration, integ.f (.c)
58
4.8
Assessment: Empirical Error Estimate
58
4.9
Assessment: Experimentation
59
4.10
Method: Romberg Extrapolation
59
4.10.1
Other Closed Newton-Cotes Formulas
60