What to Teach? Computational Science as an
Improved Model for Science Education

(Submitted 29 March 2008 to Microsoft Research RFP “Computational Education for Scientists — What to Teach?”)

Rubin H Landau

Director, Computational Physics for Undergraduates Program (CPUG)
Oregon State University, Corvallis, Oregon 97331
rubin@science.oregonstate.edu, http://www.physics.oregonstate.edu/~rubin

Abstract Itis evident that computation has fundamentally changed research and development in most every field of
science. This paper argues for concordant changes in science education that extend beyond using computers to teach
traditional science better. Results will be presented from surveys of existing computational science degree programs that
reveal a consensus of topics essential for the computational education of scientists. Detailed concept maps will be given,
showing how educators are combining computer science and applied mathematics with a traditional discipline in order to
teach how to solve realistic problems. It is proposed that teaching based on this research-like, problem-solving approach is
a more motivating and efficient technique than teaching the various disciplines separately. Because it may be difficult for a
single college or university to offer all of the essential topics, a number of early developers are placing eLearning modules
from their courses together as part of a national repository.

Figure 1. Computational Science &
Engineering (CSE) as a
multidisciplinary endeavor
connecting computer science with
mathematics and applications. In this
view CSE is more than just the
overlap of traditional disciplines.

Application
science

hard/software techniques

Changes in Science Drive What and How to Teach

The historically rapid adoption of computation as an essential element in all areas of science and engineering
has progressed faster than the concordant changes in education. Although many traditional science disciplines
are incorporating computers to enhance education in those disciplines, the education too often presents
computation as a “black box” whose inner workings need not be understood. (Some of the published evidence
of this comes from Winch’ survey’s finding that few classes that incorporate computation as a course element
actually examine the students about it [Winch].) Given the newfound and fundamental importance of

computation in so many disciplines, and the fact that many graduates of the traditional disciplines actually end
up employed as computational scientists (proof to follow), we propose that students and society as a whole
would be better served if the traditional science disciplines taught an understanding of computation as part of
their science.

In this paper we use the terms “computational science” or “CSE” to denote the multidisciplinary combination of
techniques, tools and knowledge developed in the 1970’s and 1980’s to solve scientific and engineering
problems through computer simulation. In terms of disciplines (Figure 1), it is a combination of mathematics and
computer science with a field such as physics, chemistry, automotive engineering, etc. In our view, there also
needs to be a central core (inner circle) based on a common toolset and mindset that draws the disciplines
together. Teaching CSE encompasses the integration of modern research tools and subjects into undergraduate
education, integration that US News & World Report considers a hallmark of a high quality education. Much of

this paper will detail those subjects and tools.

What's Important in 5-7 Years? (AIP)

Software developm ent

COmp. program ming

Produd design

M adeling ar sim lation M
Knowdedge of pheysics ‘h|

Scientific sotware

Lak or instrum entation skills #

Physics principles

Figure 2. Importance of knowledge
areas for physics bachelors, 5-7 years
after graduation. The light (blue) bars
are for graduates whose primary field
of employment is engineering,

| mathematics and science; the dark

‘ bars are for graduates employed in

‘ software.

Mathem stical skillz

Synthesizing info

Sciertific problem =olving

|
Vo

]
40

]
50

!
60

30

OE ngineering, M ath and Sdence BSoftware

The Need for Computational Education
It is wise to look in the cupboard before making up your shopping list. Likewise, it is prudent to look at what

subjects are currently taught and what subjects students need after they graduate, before deciding to change
your curriculum. We start by looking at the results of a survey of physics bachelors conducted by the American
Institute of Physics that determined which aspects of their education are most valuable in their current
employment five years after graduation [AIP]. The results, shown in Figure 2, indicate that for graduates whose

primary field of employment is engineering, mathematics and science, the three most important skills are
scientific problem solving, synthesizing information, and mathematical skills. These skills are also highly
important for graduates who find employment related to software. While it is to be expected that knowledge of
software and programming are most important for graduates in software development, notice how, otherwise,
synthesizing information is the most important skill for both groups, and that knowledge of physics is essentially

the least important. (And these numbers come from the AIP!).

© http://www.aip.org - Bachelor plus 5 Report, Figure 6 - Mozilla Firefox E@§|

AP Tables and graphs on ... AP Figure 9 AF Figure 8 AP Bachelor plus 5Re... @& |-

SEARCH AP
AMERICAN INSTITUTE £ PHYSICS D

Figwre 6. Time spent on or importance of activities compared to
rating of physics bachelors’ education.

B Time Sped/Importance
B Rating of Education

Working with Co-Workers r Figure 3. Time spent on

activities (top blue bar)

Lab Skills* compared to rating of
education (lower red bar).
Scientific Software® The categories are team work

skills, lab skills, scientific
software, and programming.

Programming+

I L L H
1] 20 40 60 80 100

* Engineering, math, and science jobs (but not teachers).
+ Boftware jobs.

These data reflect the percentage who chose 4 or 5 on a 5-pomt scale. Based on physics bachelors
with no additional degrees who are not primarily students, 5 to & years after graduation.

ATP Statistical Eesearch Center, 1995-99 Bachelors Plus Five Study.

close thiz window >3

Core

That same survey also examined (Figure 3) the importance graduates give to various activities as compared to
their education in these activities. We see that while physics departments appear to be spending a proper
amount of time on lab skills, their student might benefit if there was more time spent on scientific software,
programming, and team skills.

Although we have focused on physics here, there is evidence that similar observations hold in other fields. For
example, a National Science Board report [NSB] indicates that only 22% of physics and biology undergraduates
remain in the field from which they graduate, with the number rising to only 52% at the graduate level. To get
an idea of just where they go, look at Figure 4, which shows the fields of employment for the physics bachelors
of 2003 and 2004. Notice on the left that most bachelors (53%) are employed by the private sector, with only

12% going into colleges and university. Notice on the right that of those bachelors employed by the private
sector, about one third assume non-science, technology, engineering, or mathematics positions, about one third
do engineering work, and about one quarter do technology work. This leaves only 13% to do physics or some
other science. The conclusion we draw from these figures is that while a traditional disciplinary may provide

good preparation for a student’s career, overemphasizing the specific discipline tends to weaken the preparation.

< http://www.aip.org - Figure 8 - Mozilla Firefox

wF Tables and graphs on Em... ¥ Figure 9 W Figure 8

- Figure 9 - Mozilla Firefox
¥ Figure 9 [*]

SEARUH AT

SEARCI AT

homs | _contactus | _site mas
AMERICAN INSTITUTE & PHYSICS @ =

Figure 8. Initial employment sectors of physics N i
bachelor's, classes of 2003 & 2004, Figure 9. Field uf.emplo_\'mcnt for physics bachelors in the

private sector, class of 2004,

Other 5%

Civilian Gov't, FFRADC 6% o
- Math 1%
\\ Gther Science 6%
Active Mitary 7%
R Physics or Astronomy
N %
| Othar Techi
Collage & Univarsities | e nclogy

12% 1
Private Soctor |

% y Computer | Infarmation

y Systems
A Yy 14%
High School " //
1% -
AIP Statistical Research € f i Emp Rep

STEM: Science, Technology. Enginearing and Math

AlP Sunisiical Research Center, Initial Emplinvment Report.

Figure 4. Left: the initial employment sectors for the physics bachelors of 2003 and 2004. Right: The fields of
employment for those graduates employed in the private sector.

Now that we have documented the need for computation in science education, the next step is to determine if
that need is being met. Figure 5 shows the results of a survey of the curricula of undergraduate programs in
computer science (CS), physics (PH), computational science (CSE), and computational physics (CP) [Y&L]. The
survey made the, admittedly crude, categorization of courses as Computing, Mathematics, Applications, and
Other (whatever is left), and then displayed the results as the average percentage of the total curriculum
dedicated to each category. The left column in Figure 5 shows the strong Computing (black) but weak
Application (white) components in the Computer Science degree; the right column shows the strong Application
but weak Computing components in the Physics degree. The middle columns show that the Computational
Physics and Computational Science programs tend to provide a similar, uniform balance among Math,
Computing and Application. So while these computational degrees provide less physics than a physics degree
and less computing than a CS degree, the balance may be healthier. These numbers agree with our impression
(prejudice?) that regular physics undergraduates do not learn enough about computation, and that regular CS
undergraduates do not learn enough about math and science (there is of course much math in some CS classes).

In summary, there appears to be a demand for mathematics, computational, and problem-solving skills in the
work place, as well as for providing a science education that can be applied to a variety of fields of employment.

Whether individual disciplines, with the natural pressure to get students to understand subjects the way the
professors do (and thus teach even more of the discipline), can provide a proper computational education is
unclear. However, computational science is still a young and developing field with no set curriculum, and |
believe that it will take groups of interested parties to help decide what topics should be taught, and in which
courses they may be included.

Subject Balance (% Courses)
Figure 5. (Bottom up):
average % of classes
taken in Computation,
Math, Application, and
all Other subjects for
majors in (left to right)

. = Other
CS, CSE, Computational m Application
Physics, and Physics. O Math
O Comp
0 —
cs CSE cP PH
= Other 39 30 31 33
W Application 7 26 25 48
O Math 10 22 20 17
O Comp 44 22 23 3

Present Computational Education Programs

For the past 25 years, individual graduate students have combined courses in mathematics, computer science
and a traditional discipline in an ad hoc approach to obtaining a computational education. In that time,
computational science has continued to mature, as has the power and pervasiveness of computers in science.
This has led to formal degree programs at the graduate level, and more recently at the undergraduate level.
Nevertheless, a bachelor's degree in any of the computational sciences is rare, as we see in Table 1 which lists
the US and foreign undergraduate degree programs in all the computational sciences.

Table 1. Undergraduate degree programs in all computational sciences.

Computational Math Comput Science Computational Phys = Foreign Programs

1. Arizona State

2. CUNY Brooklyn 1. Stanford (+Math) 1. Houghton C 1. Australian Nat

3. Michigan State 2. SUNY Brockport 2. lllinois State 2. Kanazawawa Japan (CSE)
4. Missouri So State 3. Stevins Inst Tech 3. Oregon State 3. National U Singapore (CSE)
5. Rice 4. UC Berkeley 4. SUNY Buffalo 4. Trinity C, Dublin (CP)

6. Rochester Inst Tech 5. Chris Newport 5. U Calgary (CSE)

7. Seattle Pacific 6. U Erlangen-Nurnberg (CSE)
8. Saginaw Valley State Computational Bio 7. U Waterloo (CSE)

9. San Jose State 8. Utrecht U (CSE)

10. U Chicago 1. Carnegie Mellon

11. U lllinois Chicago 2. U Pennsylvania

Yet a degree is not the only way to learn a subject, and so in Table 2 we list computational programs that are
not formal degrees, but may well provide an equivalent education.

Table 2. Minors, Concentrations, Tracks, Emphases, Options, Foci, etc.

Computational Biology Computational Science Computational Physics
1. Capital

1. UC Merced 2. Clark 1. Abilene Christian

2. Center CB (Colo) 3. Old Dominion 2. North Carolina State
4. RPI 3. Penn State Erie

Computational Mathematics 5. Salve Regina 4. U Arkansas
6. Syracuse

1. Princeton (App & CM) 7. U Wisconsin Eau Claire

2. San Diego State (App & CM) 8. U Wisconsin LaCrosse

3. U Central Florida 9. U Wisconsin Madison

4. U Nebraska-Lincoln 10. Wittenberg
11. Wofford C

These tables are updated versions of the surveys by Swanson [Swan] and Osman and Landau [Y&L]. These tables
may not be complete since we have tried to make them realistic by including only active undergraduate
programs, and have excluded some programs that appear to be dual-degree programs, without computational
bridge courses that draw the disciplines together. As you can see, the number of programs (51) is small, with
Computational Mathematics (which may or may not have a strong Application content) and Computational
Science being the most popular ones. While small, this number is about four times larger than the number we
found in 2001 when we assembled a similar list, and so the field is growing. Of course, there may well come a
time when computation is so integrated into the disciplines that the existence of programs such as these will be
viewed as a temporary, transitional trend. Time will tell.

Framework for Teaching Science with Computation

Figure 6 illustrates the scientific problem-solving paradigm that is at the core of computational research.
Although diagrams such as Figures 1 and 6 have been shown often enough to become visual clichés, they remain
relevant to the focus of this paper since they provide the general structure for computational education. In fact,
we believe that the commonality of tools across the computational sciences combined with the common
problem-solving mindset is a truly liberating and attractive aspect of computational science because it permits
its practitioners to understand and participate in a much wider set of problems than occurs otherwise in the sub
specialization of science.

el Madel Method jlmplementation Figure 6. The scientific problem-solving

science | discrete | numeric | Java, f90, C paradigm. A problem is set, the tools

‘continuous: symbolic from multiple disciplines are employed
' — 4 ' within context, and the continual
Asse'ssment assessment aides debugging and
steering.
visualization
exploration

In general, we recommend that computational educational materials be structured around the scientific
problem-solving paradigm in Figure 6. This demonstrates where the multiples disciplines are relevant, provides
concrete examples that assist in understanding the abstract concepts, and stresses the importance of
assessment of the various components through visualization. From a pedagogical perspective, we believe that a
Computational X education following the problem-solving paradigm is a more efficient approach to
undergraduate education than a pure X education (“X” refers to a specific discipline). Although students may
take fewer X classes, they tend to learn the X, CS, and math better when placed in context, and thus get more
out of their courses. So even if the number of X courses needs to be reduced to make room for teaching
computation, this is compensated for by the increased efficiency of the pedagogy. Furthermore, this approach
has been shown to be appealing to a more diverse group than those presently attracted to computer science or
physics [LEAD].

A key component of many computational programs is having students get actively engaged with projects as if
each were an original scientific investigation, and having projects in a large number of areas. In this way
students experience the excitement of their personal research, get familiar with a large number of approaches,
acquire confidence in making a complex system work for them, and continually build upon their
accomplishments. We have found the project approach to be flexible and to encourage students to take pride in
their work and their creativity. It also works well for independent study or distant learning. In order to teach a
projects-based course, we employ a combination of lectures and ““over the shoulder" labs. The students work
on and discuss their projects with an instructor, and then write them up as an “executive summary' containing
sections for

e Problem e Algorithm e Visualization

e Equations employed e Code ¢ Discussion & Critique
The emphasis is professional, much like reporting to manager in a workplace. Visualizations are important for all
the classes, and we teach the use of Maple/Mathematica, PtPlot, gnuplot, AceGr, and OpenDX for 2-D, 3-D, and
animated plots (long lists of resources available to a computation class can be found in [CP-2]). Taken together,
this approach produces significant learning, even though we may be ““teaching with our mouths shut" [Fink].

What to Teach

At present there is no professional organization of computational scientists or accreditation body to decide the
proper content for an education that can be called “computational". However, a number of interest groups
have been working on this, including the NSF-supported Computational Science Curriculum Virtual Institute
[CSCVI] and TerraGrid [Terra], the DOE-supported Krell Institute [Krell], the Computing in Science & Engineering

magazine, the Society for Industrial and Applied Mathematics [SIAM] and the American Association of Physics
Teachers [CPC].

The CSCVI (in which the author was a member) researched the existing CSE degree programs and confirmed
earlier findings [Y&L] of a consensus regarding the basic elements of computational science curriculum. We
tabulate the basic elements in Table 3, where “Computational X” refers to courses relevant to a specific
discipline (often the central bridge in Figure 1).

Table 3. Common basic elements in existing CSE programs.

Computer architecture Computer simulation

Scientific computing systems Numerical algorithms and analysis
Parallel processing Combinatorial algorithms
Programming / Parallel programming Design and analysis of algorithms
Software engineering Computational X

Scientific visualization Applied mathematics

Design and implementation of database systems

The CSCVI project initiated the task of providing a repository of key curriculum subjects using the internet-based
Visual Understanding Environment [VUE]. This technology is designed for managing and integrating digital
resources in support of learning, and was used to create the concept maps that we will soon show. These maps
are graphical representations of subjects or concepts that demonstrate how the concepts relate to one another,
and can be used to outline a recommended path to be followed through the materials for mastering them. The
maps below present our major suggestions as to what should be taught when combining science with
computation. We recommend that the maps be read at least as carefully as a text.

Generic CSE Student Learning Outcomes

S
Learning high-level computer Obtaining knowledge of database systems Obtaining knowledge of applied
laguages and high-performance and design, implementation and mathematics and computational
computing management of large database systems methods
| Hardware ‘Parallel Computing & Programming ‘ Software Engineering | Numerical Algorithms ‘ | Combinational algorithms |

Computer Architecture [Scientific computing Data mining ‘ Interpre_ting and analyz_ing Design and_analysis StatisticalMethods
Systems data visually both during of Algorithms

and after computation

Figure 7. A concept map
of the generic student

|App|ication

Applying acquired computing skills Learning basics of Iearmng outcomes fOI’
to at least one application area simulation and modeling computational

Computational X |ComputationaIThinking ‘

solution methods and

Learning to communicate education.
results effectively

An important prerequisite for the establishment of any course or educational program is the determination of
student learning outcomes (SLO’s). This is especially true for CSE where it is (all too) easy to expect an individual
course to teach students everything they need to know about computation [Yas]. Historically, SLO's have been
guided by research needs, that is, in a “top-down' fashion in which a graduate student’s program committee
prescribed what areas need to be studied for an individual thesis project. In Figure 7 we present, in concept map
form, some generic SLO’s for computation classes and their relations to the basic elements above. As you can
see, the SLO’s are separated by disciplines, although there is much overlap (as there should be for a
multidisciplinary program). Note that in Figure 7 and the maps below we do not try to list all elements in a
student’s curriculum, but rather just those related to computation. For example, the Math subjects are all
applied, while a student would also take some general or pure math classes. Likewise, we do not list traditional
subjects for the Application areas.

In Figure 8 we present a generic concept map of the type we would distribute to teachers to help them design a

| Computational X Concepts |

o

General Applied X Specific Courses | | Problem Solving, Modeling
s "—"‘“—H__
I r— [Statistics & Prohablity | [Computer Simuiations |
[Computer Architectur_e; 1 [:_guftware Engineering: 2] = - — —
e S — @ar nlgeh@ @ata Analysjsj
[_§_c_igr_|tiﬁc Computing Systerns. ol [Data Structur;;:] i
e —— s e e
=== B sl [” Communication Skills |
. @ta Mining | w . szl
@allel Cumputin_g’_j B
E[iétahase System?] Eﬁumerical Analyv;ihsh_j
i L b
i pe— |Custnmize
Flgure 8. A generic [ﬂi_]grammigg_j

ConCEpt ma p USEd [—"") R Your Major Blocks
_Algorithm Design]

to design a course

n Com p utati Onal X gr;liainaturial Algurit_hrrhlhs::] —Hmple shecine stiae

hi
i

—
glsualizatiun N
= g

Computational X course. The basic elements of Computational X are suggested, and there are blank blocks
included for instructor customization. The VUE software makes it very easy to create and modify maps, as well
as to add connecting arrows indicating relations or ordering among the concepts, with further information
placed on the arrows if desired. While multiply-connected maps are useful for visualizing a subject, they tend to
be overwhelming for a paper such as this and so we have removed most.

In Figure 9 we present a concept map for our Computational Physics course and text [Survey]. In Figure 10 we
present a concept map for a Computational Finance created independently [CSCVI]. These maps are valuable in
that they indicate what two computational science teachers are now teaching in two very different courses, and
how they are organizing the materials. It is illuminating to contrast these maps. Superficially, we notice that the
physics map is laid out in a columnar, top-down style, which makes it easier to read the entries than the radial
style used in the finance map; however, it may be easier and clearer to see the relations among concepts in the
finance map. We cannot say which is more effective.

10

When we look at the actual concepts in the two maps, we notice that the Math and Applications elements are
very similar in the two, with the finance map giving more application specifics, but fewer CS concepts. Although
not shown here, my design of the physics map is to keep the concepts general (which is why they are called
“concepts”), but then link individual elements to specific topics. In turn, when the specific topics are linked to
the digital content that we have developed, which converts the concept map into a content map (a research
project of the author). The detailed topics are:

Physics 465-6/565-6 Computational Physics (Computational Physics, Wiley)

Realistic, Double Pendula* Quantum Path Integration®

Fourier & Wavelet Analyses Fluid Dynamics

Predators & Prey: Nonlinear Mappings* Electrostatic Potentials

Chaotic Pendulum/Scattering* Parallel Computing (MPI), Heat Flow
Fractals, Aggregation, Trees, Coastlines®* Waves on a String

Bound States via Integral Eqtns Shock Waves & Solitons

Quantum Scattering, Integral Equations Molecular Dynamics Simulations
Thermodynamics: The Ising Model Electronic Wave Packets

Physics 467/567 Advanced Computational Laboratory

Radar Maps of Archaeological Tells Density Functional Theory
Molecular Dynamics Simulations Gamow States of Exotic Atoms
Meson-Nuclei p-Space Scattering Pion Form Factor Data Analysis
Wavepacket-Wavepacket Interactions Particle Hydrodynamics

Serious Scientic Visualization Brain Waves Principal Components
Earthquake Analysis Quantum Chromodyanmaics

‘ Computational Physics Concept Map ‘

Figure 9. A Computational Physics

concept map.
El Math Physics

- . [
e data solutions

5 _—
Operating Systems ! T i
Differentiation Data Analysis | Simulation
IEEE Floating Puih Interpretation Problem Solving

Errors & Limits Integration
interpolation ©
— Communication
Scientific Libraries [/Tﬁ_& Error Searching |

!
|

Architecture
Memory
Hierarchy

linear Ngeha Eigenvalue Problems

Matrix Computing
Performance Tuning

4

1
il
il

statistical fitting
Molecular
[ymamics (MD)

data structures .

Fourier Analyses
Monte Carlo
Simulations

Wavelet Analyses

Ordinary Differential
glsualizatiun Equations

Parallel Computing

High Level Languages & parabolic PDE 3 ;
Compiled Languages heat equation Metropolis algorithm

i finite differences
@ 1 elements

procedural

Monlinear Systems

hyperbolic PDE
wave equation

object oriented | Integral Equations T :
] ’j elliptic PDE Computational

Poisson's equation Fluid Dymamics

11

The Advanced Computational Laboratory is the equivalent of the classic advanced experimental lab using dusty
old graduate theses setups. In the computational version, seniors run dusty deck simulations that were once
M.S. and Ph.D. thesis projects. The students get the codes running, investigate some suggested problems, make
modifications of the codes themselves, and compare the results to those published in the literature. For many
students this is their first experience with truly large and legacy programs, and with reading an article in the
scientific literature.

COMPUTATIONAL FINANCE CONCEPT MAP Figure 10. A

Computational Finance

" Ito and Wiener concept map.
T] Processes
- Black-choles
' “|wWeak-Path Dependence |~ | Model Euler Method
Mumerical Integration

and Stochastic
Diff. Eqgns.

Runga-Kutta Methods

Madeliing of _
~ Dynamics Stochastic
" Processses

' B — LU Factorization
- 4 “ Boundary Caondiians Finite Difference
Exotic Options for Options Methods Cholesky Factorization

, . Tridigonal Matrices
Barrier Dynamic Asset | Nurmerical
Options ~ Pricing . M?thOdS- | Linear Equations Systems

£ Functional Approximation &
] Interpolation

Options

Depepnding | |Pricing Methods M-Pb@‘ri;; :
on Several ssets BTN : Error Propagation,
Unconstrained Instability & Convergence
Genetic
: Algorithms |+ g = i . Crank-Nicolson
Lookback 3 Opti | Optimizalion | ginjte Element Methods |
Options el Models
i‘;’;g:ﬁid 5 _ Galorkin Connection-Diffusion
=_. g ethod Problems
Asian Options Linear Programming van Neumann
Stability
| Maonlinear Programming
Wonte Carlo 5 Upwind
Path-Dependent Simulation Mixed Programming Discretization
Options
Multi-stage Stochastic Lane Windroff i
Programming Method

In Figures 11 and 12 we present CSCVI concept maps for individual courses in the Design of Databases and in
Numerical and Error Analysis. Again, one developer chose a radial style and the other a columnar style. The
database map is seen to be specialized to just this one particular subject, and thus without the blending of
disciplines and with little in common to the other maps show. The numerical analysis class map in Figure 12,
while still for just one course, is seen to have a great deal of overlap with the computational X classes, with this
map naturally giving more detail than those covering a broader field. Whether all of these numerical analysis
topics are best taught in one course or taught in context in Computational X classes, is probably best decided by

12

local conditions. In my experience, the Computational X classes may teach one or two versions of these methods
as needed in some application, but not give a detailed investigation of issues such as convergence and stability.
In that case, there would be good reason to teach both classes. As always, one can argue about the best
methods and techniques, but these maps are specific examples of what is being taught.

(Mormal Forms: 1st, 2nd, 3rd, dth and &Sth; Boyce-Codd Normal form; domain-key Mormal Form]

Multi-valued &
: [Data Dependencies F-
:
- UML Model + «+ Data Modelling - Relational Model ||
|Datanase _implementation | SI0rED proceoLie
IS — : e data data definition
{ER & EER concepts § Design and Implementation definition .
i of Databases Database Access | o8
L data
Wy Database? manipulation

good design

non-yWeh hased

fooeC and AsP § EIDBC and JSP 3

fdependency preserving 3

Figure 11. A concept map for a course in

the Design of Databases.

Numerical & Error Analysis |

Root Finding @nterpolationj [Function Approximation j [Numerical Linear Algebra j[Numerical ODE'sj [Numerical PDE'SJ

[Fixed Point for Single Equation) Taylor Series [Linear Algebra, NO"‘"SJ [Linear Multistep Mthds) [Finite Differencej
Bisection Method Chebyshev | Minimax and Runge Kutta Methods Finite Element Methods
Secant Method Divided Differences pleanMITmer Direct Methods Predictor Corrector | Spectral Methods
JiEuians Metiiod Orthogonal Polynomials Adaptive Methods -

Mullers Method LU Factorizaiton s Adaptive Methods
2 - : east Squares - ability —
ﬁ-lyl_)rid Methods (Brent's, etc.) j QR Factorizaiton Stability
Convergence Rate Trigonometic) . [SVD Factorizaiton
Extrapolation | o Iterative Methods
Fixed Point for Systems
Newton's Method P . - [Fixed Point Methods J [Krylov Subspace Methods) [Precondiiioning)
s : [Floatlng Point Computation J
Polynommial Roots | e Newton-Cotes (GMRES
STkt R Gauss Seidel | Approxmiate Inverse |
Steepest Descent Machine Parameters -
Broyden's Method Stability Extrapolation h T T

[Davidson—Fle_tch.er-F’-owteII)

Figure 12. A concept map for a course in
Numerical and Error Analysis.

13

Putting Pieces Together: A Sample Computational Curriculum

After two years in administrative processing, in October 2001 the Oregon State Board of Higher Education
approved a Bachelor degree in Computational Physics [CPUG]. The first students entered in fall 2002, the first
graduate left in June 2003, and 3-5 students typically graduate each year. Although these numbers are small, the
classes are well attended by physics majors, graduate students, and engineering students. A sample of the
Computational Physics curriculum is given in Table 6. It is an example of how a complete package of
computation classes can be fit into a four-year curriculum that is still strong in its mother discipline.

Table 6. A sample CPUG (CP for UnderGraduates) curriculum. Computation classes in bold.
Year Fall Winter Spring
Fresh Differential Calculus I. Scientific Computing 1 CP Seminar
(MTH 251, 4) (Ph/MTH 265, 3) (PH 405, 1)
Writing |, 3 Integral Calculus Vector Calculus |
Gen Chemistry (MTH 252, 4) (MTH 254, 4)
(CH 221, 5) Perspective, 3 Gen Physics + Calc
Perspective, 3 Gen Chemistry (Ph211,5)
(CH 222, 5) Gen Chemistry
(CH 222, 5)
Soph 1I. Scientific Computing 2 Infinite Series & | Applied Differential Egs
(PH 464, 3) Sequences (MTH 256, 4)
Vector Calculus Il (MTH 253, 4) Intro Modern Phys
(MTH 255, 4) Gen Physics + Calc (PH 314, 4)
Gen Physics + Calc (PH 213, 5) Writing lll, 3
(PH 212, 5) Perspective, 3 Fitness, 3
Perspective, 3 Writing Il, 3 Linear Algebra
(MTH 341, 3)
Jr CS Elective, 3 Perspective, 3 Computer Science Elective,
Harmonic Oscillations Waves in 1D 3
(PH 321, 2) (PH 424, 2) CP Seminar
Static Vector Fields Quant Measurements (PH 405, 1)
(PH 322, 2) (PH 425, 2) Periodic Systems
Energy & Entropy Central Forces (PH 427, 2)
(PH 323, 2) (PH 426, 2) Classical Mechanics
Biology, 4 Synthesis, 3 (PH 435, 3)
Elective, 3 Elective, 3 Electives, 6
Sr l.CP1 IV.CP2 V. Adv Computational Lab
(PH 465, 3) (PH 466, 3) Thesis
Electromagnetism Physical Optics (PH 467, 401; 3, 3)
(PH 431, 3) (PH 481, 4) CP Seminar
Quantum Mechanics Computer Science | (PH 405, 1)
(PH 451, 3) Elective, 3 Synthesis, 3
Math Methods Elective, 3 Electives, 4
(PH 461, 3) Interactive Multimedia
Electives, 3 (CS 395, 4)

14

This curriculum has been built up course-by-course since 1989 as we proposed, developed, taught, and modified
new courses. The computer classes (bold) are seen to be distributed throughout all years of study. In total, the
curriculum is a mix of existing applied math and CS classes, with the new computation classes acting as the glue
that holds it together.

There is another way to answer the questions “what to teach?” and “How to teach it?” That way is to provide
computation-based textbooks that help define which topics constitute proper computational education, and
provide a coherent presentation of the subject. The OSU CP Education group has been trying to do that for the
last 15 years. Lists of more than 50 texts and other resources (predominantly not from us!) are to be found in a
recent resource letter [CP-2]. Although most of those resources and most of this paper focus on more
specialized computational topics, there is still very much an open question on what and how to teach
computation to beginning college science students, and who should be doing the teaching [SIGCE]. Our attempt
takes the form of an Introductory Scientific Computing course designed to provide first and second-year students
with the computational tools needed throughout their undergraduate careers, and its associated text, A First
Course in Scientific Computing (Princeton University Press, 2005). In recognition of the widespread
disagreement over which computing tools lower-division college students should learn, the paper text covers
Maple and Java, while the accompanying CD contained essentially identical texts in Mathematica and Fortran90,
as well as the associated notebooks, worksheets, programs, and data sets. The combination of A First Course in
Scientific Computing and A Survey of Computational Physics (Princeton University Press, 2008) pave a continuous
computational path throughout the undergraduate curriculum. Here are the topics covered in the first two
courses:

Physics/Math/CS 265, Scientic Computing | (A First Course, Princeton)

OS, Basic Maple, Number Types Logical control, plotting

Maple Functions, Number types, Symbolics Visualization, Loops, Integration
Calculus, Equation Solving Objects, Complex Arithmetic
Introductory Java Web Computing: Applets
Limits, Methods (functions) Arrays, File I/O

Physics 464/564, Intro Computational Science (Computational Physics, Wiley)

Unix Editing and Running* Monte Carlo Techniques

Floating Point Errors & Uncertainties Random Walk, Decay Simulation*
Limits: precision, under/overo ws Interpolation, cubic spline

Matrix Computing with JAMA libe Least-squares t, Quadrature

Differentiation, ODEs, ODE Eigenvalues Hardware: Memory, CPU, Tuning

Online Courses and Digital Books

In addition to publishing text books, another way of encouraging the inclusion of more computation into
curricula is to make at least the basic elements of computation courses available to faculty. As part of a
demonstration project for establishing a national repository of computational science courses [EPIC,CSCVI], we

15

have produced video-based modules for our Introductory Computational Science course (Ph 464) [Video]. We
already used them with good results in our teaching, while we are told that faculty and students at other schools
are also finding them useful. In light of the previously-documented large overlap among different computational
classes, the plan is to have modules cover individual topics which then can be assembled and used in a variety of
classes and in a variety of schools. (A full course would require problem sets, quizzes, assessment exercises, and
possibly supplementary materials in a specific discipline.)

Although we do not view the web as a good teaching medium for general education, or for students with weak
self-discipline or limited motivation, it is appropriate for computational science where the best way to learn it is
while sitting at a computer in a trial-and-error mode [Cornell]. Actually, the web is essentially ideal for
computational science (it was invented for particle physics analysis): projects are always in a centralized place
for students and faculty to observe, codes and data are there to run or modify, and interactive visualizations can
be striking with 3-D, color, sound, and animation.

|- [Created by Camtasia Studio 3 - Mozilla Firefox

Figure 13. Two
Screen dumps
from a video
module. The left
one shows an
animated slide
with a speaker,
the right one
shows a physical

Dynamic demonstration.

Table of Contents Links to programs, Web
Here

Weights on a String; Roots of
Simultaneous Nonlinear Equations

1. Problem (6 unknowns):

With Annotated PowerPoint With Live Demonstration

In Figure 13 we show two screen dumps from a module on search methods for the solutions of simultaneous
nonlinear equations. On the left is a discussion of the physics and algorithms needed, and on the right is an
experimental demonstration of a statics problem that is simple, yet has no analytic solution. The module is
viewed on a flash-enabled Web browser, and contains an “office hour” in which the professor gives an informal
discussion of the material, a frame with animated PowerPoint slides, various Web links, and a dynamic table of
contents.

The next step in this project is to combine our text books, web enhancements, programs, and video modules
into eBooks. The MathML equations can be ported into and manipulated by a problem-solving environment
such as Maple or Mathematica, or entered into search engines to find other documents with similar equations.
Likewise, the figures, in Scalar Vector Graphics or Vector Markup Language, can be can be annotated to
demonstrate their meaning for different types of learners, or can have their elements viewed at different levels
of abstraction. Not only would this benefit disabled persons, but it would also permit any reader to use a variety
of senses to understand the materials.

16

Summary and Conclusions

The work place has demonstrated the need to provide scientists and engineers with a better computational
education. But beginnings are hard. We have seen a growing number of individuals and departments
throughout the world begin to teach classes and assemble curricula in the various computational sciences.
Although there is no computational science accreditation body to decide the proper content for an
computational education, in practice there does appear to be a consensus regarding the basic elements of a
computational science curriculum. Those elements have been tabulated and examples have been given of how
they can be incorporated into courses in various disciplines.

We conclude that teaching the combination of a common computational toolset across the sciences, along with
the common problem-solving mindset, is a truly liberating and attractive aspect of computational science since
it permits computational scientists to understand and participate in a wider set of problems than is normal in
this age of sub specialization. In addition, we conclude that an undergraduate education in Computational X
based on projects and the problem-solving paradigm is more efficient and effective than a pure X education.
Although students may take fewer X classes, they tend to learn the X, CS, and math better when placed in
context, and thus get more out of their courses. So even if the number of X courses needs to be reduced to
make room for teaching computation, this is compensated for by the increased efficiency of the pedagogy and
by a more balanced view. And the motivation when students know that their education is preparing them for
fruitful employment does not hurt.

Acknowledgements
We wish to thank the National Science Foundation (CCLI, EPIC and NPACI), the Oregon State University College
of Science and OSU Research Office, and the Krell Institute (DOE) for support of the work presented here.

Bibliography

[AIP] Skills Used Frequently by Physics Bachelors in Selected Employment Sectors, American Institute of Physics
Education and Employment Statistics Division, (1995); R. Ivie and K. Stowe, Physics Trends Flyer: What's
Important?, College Park, MD: American Institute of Physics (Fall 1999).

[Cornell] P. Davis, How Undergraduates Learn Computer Skills: Results of a Survey and Focus Group, T.H.E
Journal, 26, 69, April, 1999.

[CP-2] R. H. Landau, Resource Letter CP-2: Computational Physics, Amer. Journ. Phys. 76, 296-306 (2008).

[CPC] Computational Physics for Upper Level Courses, AAPT Topical Conference, Davidson College, July 2007,
Amer. J. of Phys. 76, Issues 4 & 5, pp. 293-504; www.opensourcephysics.org/CPC/.

[CPUG] Computational Physics for UnderGraduates, www. physics.oregonstate.edu/CPUG/; Landau, R. H,,
Computational Physics for Undergraduates, the CPUG Degree Program at Oregon State University, Computing in
Sci & Engr, 6, March/April 2004;

17

[EPIC] Engaging People in Cyberinfrastructure, www.eotepic.org.

[Fink] D. L. Finkel, Teaching with Your Mouth Shut, Boynton/Cook, Heinemann, Portsmouth, 2000.

[Krell] The Krell Institute, http://www.krellinst.org/index.cgi.

[LEAD] Learning through Evaluation, Adaptation and Dissemination Center, University of Wisconsin,
homepages.cae.wisc.edu/~lead/pages/projects; for reports on minorities and women, see

homepages.cae.wisc.edu/~lead/pages/internal.html.

[NSB] National Science Board, Science and Engineering Indicators, Chapters 3-2 (1996).

[SIAM] Society for Industrial and Applied Mathematics, www.siam.org/meetings/cse07/.

[SIGCI] The ACM Special Interest Group on Computer Science Education, www.sigcse.org/conferences/.

[Survey] R. H. Landau, M. J. Paez, and C. C. Bordeianu, A Survey of Computational Physics, Princeton University
Press, Princeton, 2008, press.princeton.edu/titles/8704.html.

[Swan] C.D. Swanson, Computational Science Education Survey, Krell Institute,
www.krellinst.org/services/technology/CSE_survey/, (Nov. 2003).

[Terra] TerraGrid, open combinations of leadership class resources at nine partner sites, with links to other
grids, http://www.teragrid.org/eot/.

[Video] Video Lectures in Intro Computational Science,
www.physics.oregonstate.edu/~rubin/COURSES/Videolecs/.

[VUE] The Visual Understanding Environment project at Tufts, UIT Academic Technology, vue.uit.tufts.edu/.

[Winch] D. Winch, Guest Editor's Introduction: Computation in Physics Courses, Computing in Sci. & Engr. 8, No.
5, 22-30 (2006).

[Yas] O. Yasar, Computational Science Education: Standards, Learning Outcomes and Assessment,
Computational Science-ICCS 2001 Int. Conf., Editors: V. N. Alexandrov, et al., 1159, Springer, Berlin (2001); O.
Yasar, J. Maliekal, L. J. Little, and D. Jones, A Computational Technology Approach to Education, Computing in
Science & Engineering, 8, 76-81, (2006).

[Y&L] Yaser, O. and R. Landau, Elements of Computational Science Education, SIAM Review, 45, 787-805,
(2003); epubs.siam.org/sam-bin/dbg/article/40807.

