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Abstract Itis evident that computation has fundamentally changed research and development in most every field of
science. This paper argues for concordant changes in science education that extend beyond using computers to teach
traditional science better. Results will be presented from surveys of existing computational science degree programs that
reveal a consensus of topics essential for the computational education of scientists. Detailed concept maps will be given,
showing how educators are combining computer science and applied mathematics with a traditional discipline in order to
teach how to solve realistic problems. It is proposed that teaching based on this research-like, problem-solving approach is
a more motivating and efficient technique than teaching the various disciplines separately. Because it may be difficult for a
single college or university to offer all of the essential topics, a number of early developers are placing eLearning modules
from their courses together as part of a national repository.

Figure 1. Computational Science &
Engineering (CSE) as a
multidisciplinary endeavor
connecting computer science with
mathematics and applications. In this
view CSE is more than just the
overlap of traditional disciplines.
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Changes in Science Drive What and How to Teach

The historically rapid adoption of computation as an essential element in all areas of science and engineering
has progressed faster than the concordant changes in education. Although many traditional science disciplines
are incorporating computers to enhance education in those disciplines, the education too often presents
computation as a “black box” whose inner workings need not be understood. (Some of the published evidence
of this comes from Winch’ survey’s finding that few classes that incorporate computation as a course element
actually examine the students about it [Winch].) Given the newfound and fundamental importance of



computation in so many disciplines, and the fact that many graduates of the traditional disciplines actually end
up employed as computational scientists (proof to follow), we propose that students and society as a whole
would be better served if the traditional science disciplines taught an understanding of computation as part of
their science.

In this paper we use the terms “computational science” or “CSE” to denote the multidisciplinary combination of
techniques, tools and knowledge developed in the 1970’s and 1980’s to solve scientific and engineering
problems through computer simulation. In terms of disciplines (Figure 1), it is a combination of mathematics and
computer science with a field such as physics, chemistry, automotive engineering, etc. In our view, there also
needs to be a central core (inner circle) based on a common toolset and mindset that draws the disciplines
together. Teaching CSE encompasses the integration of modern research tools and subjects into undergraduate
education, integration that US News & World Report considers a hallmark of a high quality education. Much of

this paper will detail those subjects and tools.
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The Need for Computational Education
It is wise to look in the cupboard before making up your shopping list. Likewise, it is prudent to look at what

subjects are currently taught and what subjects students need after they graduate, before deciding to change
your curriculum. We start by looking at the results of a survey of physics bachelors conducted by the American
Institute of Physics that determined which aspects of their education are most valuable in their current
employment five years after graduation [AIP]. The results, shown in Figure 2, indicate that for graduates whose



primary field of employment is engineering, mathematics and science, the three most important skills are
scientific problem solving, synthesizing information, and mathematical skills. These skills are also highly
important for graduates who find employment related to software. While it is to be expected that knowledge of
software and programming are most important for graduates in software development, notice how, otherwise,
synthesizing information is the most important skill for both groups, and that knowledge of physics is essentially

the least important. (And these numbers come from the AIP!).
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That same survey also examined (Figure 3) the importance graduates give to various activities as compared to
their education in these activities. We see that while physics departments appear to be spending a proper
amount of time on lab skills, their student might benefit if there was more time spent on scientific software,
programming, and team skills.

Although we have focused on physics here, there is evidence that similar observations hold in other fields. For
example, a National Science Board report [NSB] indicates that only 22% of physics and biology undergraduates
remain in the field from which they graduate, with the number rising to only 52% at the graduate level. To get
an idea of just where they go, look at Figure 4, which shows the fields of employment for the physics bachelors
of 2003 and 2004. Notice on the left that most bachelors (53%) are employed by the private sector, with only



12% going into colleges and university. Notice on the right that of those bachelors employed by the private
sector, about one third assume non-science, technology, engineering, or mathematics positions, about one third
do engineering work, and about one quarter do technology work. This leaves only 13% to do physics or some
other science. The conclusion we draw from these figures is that while a traditional disciplinary may provide

good preparation for a student’s career, overemphasizing the specific discipline tends to weaken the preparation.
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Figure 4. Left: the initial employment sectors for the physics bachelors of 2003 and 2004. Right: The fields of
employment for those graduates employed in the private sector.

Now that we have documented the need for computation in science education, the next step is to determine if
that need is being met. Figure 5 shows the results of a survey of the curricula of undergraduate programs in
computer science (CS), physics (PH), computational science (CSE), and computational physics (CP) [Y&L]. The
survey made the, admittedly crude, categorization of courses as Computing, Mathematics, Applications, and
Other (whatever is left), and then displayed the results as the average percentage of the total curriculum
dedicated to each category. The left column in Figure 5 shows the strong Computing (black) but weak
Application (white) components in the Computer Science degree; the right column shows the strong Application
but weak Computing components in the Physics degree. The middle columns show that the Computational
Physics and Computational Science programs tend to provide a similar, uniform balance among Math,
Computing and Application. So while these computational degrees provide less physics than a physics degree
and less computing than a CS degree, the balance may be healthier. These numbers agree with our impression
(prejudice?) that regular physics undergraduates do not learn enough about computation, and that regular CS
undergraduates do not learn enough about math and science (there is of course much math in some CS classes).

In summary, there appears to be a demand for mathematics, computational, and problem-solving skills in the
work place, as well as for providing a science education that can be applied to a variety of fields of employment.



Whether individual disciplines, with the natural pressure to get students to understand subjects the way the
professors do (and thus teach even more of the discipline), can provide a proper computational education is
unclear. However, computational science is still a young and developing field with no set curriculum, and |
believe that it will take groups of interested parties to help decide what topics should be taught, and in which
courses they may be included.
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Present Computational Education Programs

For the past 25 years, individual graduate students have combined courses in mathematics, computer science
and a traditional discipline in an ad hoc approach to obtaining a computational education. In that time,
computational science has continued to mature, as has the power and pervasiveness of computers in science.
This has led to formal degree programs at the graduate level, and more recently at the undergraduate level.
Nevertheless, a bachelor's degree in any of the computational sciences is rare, as we see in Table 1 which lists
the US and foreign undergraduate degree programs in all the computational sciences.

Table 1. Undergraduate degree programs in all computational sciences.

Computational Math Comput Science Computational Phys = Foreign Programs

1. Arizona State

2. CUNY Brooklyn 1. Stanford (+Math) 1. Houghton C 1. Australian Nat

3. Michigan State 2. SUNY Brockport 2. lllinois State 2. Kanazawawa Japan (CSE)
4. Missouri So State 3. Stevins Inst Tech 3. Oregon State 3. National U Singapore (CSE)
5. Rice 4. UC Berkeley 4. SUNY Buffalo 4. Trinity C, Dublin (CP)

6. Rochester Inst Tech 5. Chris Newport 5. U Calgary (CSE)

7. Seattle Pacific 6. U Erlangen-Nurnberg (CSE)
8. Saginaw Valley State Computational Bio 7. U Waterloo (CSE)

9. San Jose State 8. Utrecht U (CSE)

10. U Chicago 1. Carnegie Mellon

11. U lllinois Chicago 2. U Pennsylvania



Yet a degree is not the only way to learn a subject, and so in Table 2 we list computational programs that are
not formal degrees, but may well provide an equivalent education.

Table 2. Minors, Concentrations, Tracks, Emphases, Options, Foci, etc.

Computational Biology Computational Science Computational Physics
1. Capital

1. UC Merced 2. Clark 1. Abilene Christian

2. Center CB (Colo) 3. Old Dominion 2. North Carolina State
4. RPI 3. Penn State Erie

Computational Mathematics 5. Salve Regina 4. U Arkansas
6. Syracuse

1. Princeton (App & CM) 7. U Wisconsin Eau Claire

2. San Diego State (App & CM) 8. U Wisconsin LaCrosse

3. U Central Florida 9. U Wisconsin Madison

4. U Nebraska-Lincoln 10. Wittenberg
11. Wofford C

These tables are updated versions of the surveys by Swanson [Swan] and Osman and Landau [Y&L]. These tables
may not be complete since we have tried to make them realistic by including only active undergraduate
programs, and have excluded some programs that appear to be dual-degree programs, without computational
bridge courses that draw the disciplines together. As you can see, the number of programs (51) is small, with
Computational Mathematics (which may or may not have a strong Application content) and Computational
Science being the most popular ones. While small, this number is about four times larger than the number we
found in 2001 when we assembled a similar list, and so the field is growing. Of course, there may well come a
time when computation is so integrated into the disciplines that the existence of programs such as these will be
viewed as a temporary, transitional trend. Time will tell.

Framework for Teaching Science with Computation

Figure 6 illustrates the scientific problem-solving paradigm that is at the core of computational research.
Although diagrams such as Figures 1 and 6 have been shown often enough to become visual clichés, they remain
relevant to the focus of this paper since they provide the general structure for computational education. In fact,
we believe that the commonality of tools across the computational sciences combined with the common
problem-solving mindset is a truly liberating and attractive aspect of computational science because it permits
its practitioners to understand and participate in a much wider set of problems than occurs otherwise in the sub
specialization of science.



el Madel Method jlmplementation Figure 6. The scientific problem-solving

science | discrete | numeric | Java, f90, C paradigm. A problem is set, the tools

‘continuous: symbolic from multiple disciplines are employed
' — 4 ' within context, and the continual
Asse'ssment assessment aides debugging and
steering.
visualization
exploration

In general, we recommend that computational educational materials be structured around the scientific
problem-solving paradigm in Figure 6. This demonstrates where the multiples disciplines are relevant, provides
concrete examples that assist in understanding the abstract concepts, and stresses the importance of
assessment of the various components through visualization. From a pedagogical perspective, we believe that a
Computational X education following the problem-solving paradigm is a more efficient approach to
undergraduate education than a pure X education (“X” refers to a specific discipline). Although students may
take fewer X classes, they tend to learn the X, CS, and math better when placed in context, and thus get more
out of their courses. So even if the number of X courses needs to be reduced to make room for teaching
computation, this is compensated for by the increased efficiency of the pedagogy. Furthermore, this approach
has been shown to be appealing to a more diverse group than those presently attracted to computer science or
physics [LEAD].

A key component of many computational programs is having students get actively engaged with projects as if
each were an original scientific investigation, and having projects in a large number of areas. In this way
students experience the excitement of their personal research, get familiar with a large number of approaches,
acquire confidence in making a complex system work for them, and continually build upon their
accomplishments. We have found the project approach to be flexible and to encourage students to take pride in
their work and their creativity. It also works well for independent study or distant learning. In order to teach a
projects-based course, we employ a combination of lectures and ““over the shoulder" labs. The students work
on and discuss their projects with an instructor, and then write them up as an “executive summary' containing
sections for

e Problem e Algorithm e Visualization

e Equations employed e Code ¢ Discussion & Critique
The emphasis is professional, much like reporting to manager in a workplace. Visualizations are important for all
the classes, and we teach the use of Maple/Mathematica, PtPlot, gnuplot, AceGr, and OpenDX for 2-D, 3-D, and
animated plots (long lists of resources available to a computation class can be found in [CP-2]). Taken together,
this approach produces significant learning, even though we may be ““teaching with our mouths shut" [Fink].

What to Teach

At present there is no professional organization of computational scientists or accreditation body to decide the
proper content for an education that can be called “computational". However, a number of interest groups
have been working on this, including the NSF-supported Computational Science Curriculum Virtual Institute
[CSCVI] and TerraGrid [Terra], the DOE-supported Krell Institute [Krell], the Computing in Science & Engineering



magazine, the Society for Industrial and Applied Mathematics [SIAM] and the American Association of Physics
Teachers [CPC].

The CSCVI (in which the author was a member) researched the existing CSE degree programs and confirmed
earlier findings [Y&L] of a consensus regarding the basic elements of computational science curriculum. We
tabulate the basic elements in Table 3, where “Computational X” refers to courses relevant to a specific
discipline (often the central bridge in Figure 1).

Table 3. Common basic elements in existing CSE programs.

Computer architecture Computer simulation

Scientific computing systems Numerical algorithms and analysis
Parallel processing Combinatorial algorithms
Programming / Parallel programming Design and analysis of algorithms
Software engineering Computational X

Scientific visualization Applied mathematics

Design and implementation of database systems

The CSCVI project initiated the task of providing a repository of key curriculum subjects using the internet-based
Visual Understanding Environment [VUE]. This technology is designed for managing and integrating digital
resources in support of learning, and was used to create the concept maps that we will soon show. These maps
are graphical representations of subjects or concepts that demonstrate how the concepts relate to one another,
and can be used to outline a recommended path to be followed through the materials for mastering them. The
maps below present our major suggestions as to what should be taught when combining science with
computation. We recommend that the maps be read at least as carefully as a text.

Generic CSE Student Learning Outcomes

S
Learning high-level computer Obtaining knowledge of database systems Obtaining knowledge of applied
laguages and high-performance and design, implementation and mathematics and computational
computing management of large database systems methods
| Hardware ‘Parallel Computing & Programming ‘ Software Engineering | Numerical Algorithms ‘ | Combinational algorithms |

Computer Architecture [Scientific computing Data mining ‘ Interpre_ting and analyz_ing Design and_analysis StatisticalMethods
Systems data visually both during of Algorithms

and after computation

Figure 7. A concept map
of the generic student

|App|ication

Applying acquired computing skills Learning basics of Iearmng outcomes fOI’
to at least one application area simulation and modeling computational

Computational X |ComputationaIThinking ‘

solution methods and

Learning to communicate education.
results effectively




An important prerequisite for the establishment of any course or educational program is the determination of
student learning outcomes (SLO’s). This is especially true for CSE where it is (all too) easy to expect an individual
course to teach students everything they need to know about computation [Yas]. Historically, SLO's have been
guided by research needs, that is, in a “top-down' fashion in which a graduate student’s program committee
prescribed what areas need to be studied for an individual thesis project. In Figure 7 we present, in concept map
form, some generic SLO’s for computation classes and their relations to the basic elements above. As you can
see, the SLO’s are separated by disciplines, although there is much overlap (as there should be for a
multidisciplinary program). Note that in Figure 7 and the maps below we do not try to list all elements in a
student’s curriculum, but rather just those related to computation. For example, the Math subjects are all
applied, while a student would also take some general or pure math classes. Likewise, we do not list traditional
subjects for the Application areas.

In Figure 8 we present a generic concept map of the type we would distribute to teachers to help them design a

| Computational X Concepts |

o

General  Applied X Specific Courses | | Problem Solving, Modeling
s "—"‘“—H__
I r— [ Statistics & Prohablity | [ Computer Simuiations |
[ Computer Architectur_e; 1 [:_guftware Engineering: 2] = - — —
e S — @ar nlgeh@ @ata Analysjsj
[_§_c_igr_|tiﬁc Computing Systerns. ol [ Data Structur;;:] i
e —— s e e
=== B sl [” Communication Skills |
. @ta Mining | w . szl
@allel Cumputin_g’_j B
E[iétahase System?] Eﬁumerical Analyv;ihsh_j
i L b
i pe— |Custnmize
Flgure 8. A generic [ﬂi_]grammigg_j

ConCEpt ma p USEd [—"" ) R Your Major Blocks
_Algorithm Design ]

to design a course

n Com p utati Onal X gr;liainaturial Algurit_hrrhlhs::] —Hmple shecine stiae

hi
i

—
glsualizatiun N
= g

Computational X course. The basic elements of Computational X are suggested, and there are blank blocks
included for instructor customization. The VUE software makes it very easy to create and modify maps, as well
as to add connecting arrows indicating relations or ordering among the concepts, with further information
placed on the arrows if desired. While multiply-connected maps are useful for visualizing a subject, they tend to
be overwhelming for a paper such as this and so we have removed most.

In Figure 9 we present a concept map for our Computational Physics course and text [Survey]. In Figure 10 we
present a concept map for a Computational Finance created independently [CSCVI]. These maps are valuable in
that they indicate what two computational science teachers are now teaching in two very different courses, and
how they are organizing the materials. It is illuminating to contrast these maps. Superficially, we notice that the
physics map is laid out in a columnar, top-down style, which makes it easier to read the entries than the radial
style used in the finance map; however, it may be easier and clearer to see the relations among concepts in the
finance map. We cannot say which is more effective.
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When we look at the actual concepts in the two maps, we notice that the Math and Applications elements are
very similar in the two, with the finance map giving more application specifics, but fewer CS concepts. Although
not shown here, my design of the physics map is to keep the concepts general (which is why they are called
“concepts”), but then link individual elements to specific topics. In turn, when the specific topics are linked to
the digital content that we have developed, which converts the concept map into a content map (a research
project of the author). The detailed topics are:

Physics 465-6/565-6 Computational Physics (Computational Physics, Wiley)

Realistic, Double Pendula* Quantum Path Integration®

Fourier & Wavelet Analyses Fluid Dynamics

Predators & Prey: Nonlinear Mappings*  Electrostatic Potentials

Chaotic Pendulum/Scattering* Parallel Computing (MPI), Heat Flow
Fractals, Aggregation, Trees, Coastlines®* Waves on a String

Bound States via Integral Eqtns Shock Waves & Solitons

Quantum Scattering, Integral Equations  Molecular Dynamics Simulations
Thermodynamics: The Ising Model Electronic Wave Packets

Physics 467/567 Advanced Computational Laboratory

Radar Maps of Archaeological Tells Density Functional Theory
Molecular Dynamics Simulations Gamow States of Exotic Atoms
Meson-Nuclei p-Space Scattering Pion Form Factor Data Analysis
Wavepacket-Wavepacket Interactions Particle Hydrodynamics

Serious Scientic Visualization Brain Waves Principal Components
Earthquake Analysis Quantum Chromodyanmaics

‘ Computational Physics Concept Map ‘

Figure 9. A Computational Physics
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The Advanced Computational Laboratory is the equivalent of the classic advanced experimental lab using dusty
old graduate theses setups. In the computational version, seniors run dusty deck simulations that were once
M.S. and Ph.D. thesis projects. The students get the codes running, investigate some suggested problems, make
modifications of the codes themselves, and compare the results to those published in the literature. For many
students this is their first experience with truly large and legacy programs, and with reading an article in the
scientific literature.

COMPUTATIONAL FINANCE CONCEPT MAP Figure 10. A
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In Figures 11 and 12 we present CSCVI concept maps for individual courses in the Design of Databases and in
Numerical and Error Analysis. Again, one developer chose a radial style and the other a columnar style. The
database map is seen to be specialized to just this one particular subject, and thus without the blending of
disciplines and with little in common to the other maps show. The numerical analysis class map in Figure 12,
while still for just one course, is seen to have a great deal of overlap with the computational X classes, with this
map naturally giving more detail than those covering a broader field. Whether all of these numerical analysis
topics are best taught in one course or taught in context in Computational X classes, is probably best decided by
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local conditions. In my experience, the Computational X classes may teach one or two versions of these methods
as needed in some application, but not give a detailed investigation of issues such as convergence and stability.
In that case, there would be good reason to teach both classes. As always, one can argue about the best
methods and techniques, but these maps are specific examples of what is being taught.

( Mormal Forms: 1st, 2nd, 3rd, dth and &Sth; Boyce-Codd Normal form; domain-key Mormal Form ]
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Figure 11. A concept map for a course in
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Numerical and Error Analysis.
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Putting Pieces Together: A Sample Computational Curriculum

After two years in administrative processing, in October 2001 the Oregon State Board of Higher Education
approved a Bachelor degree in Computational Physics [CPUG]. The first students entered in fall 2002, the first
graduate left in June 2003, and 3-5 students typically graduate each year. Although these numbers are small, the
classes are well attended by physics majors, graduate students, and engineering students. A sample of the
Computational Physics curriculum is given in Table 6. It is an example of how a complete package of
computation classes can be fit into a four-year curriculum that is still strong in its mother discipline.

Table 6. A sample CPUG (CP for UnderGraduates) curriculum. Computation classes in bold.
Year Fall Winter Spring
Fresh Differential Calculus I. Scientific Computing 1 CP Seminar
(MTH 251, 4) (Ph/MTH 265, 3) (PH 405, 1)
Writing |, 3 Integral Calculus Vector Calculus |
Gen Chemistry (MTH 252, 4) (MTH 254, 4)
(CH 221, 5) Perspective, 3 Gen Physics + Calc
Perspective, 3 Gen Chemistry (Ph211,5)
(CH 222, 5) Gen Chemistry
(CH 222, 5)
Soph 1I. Scientific Computing 2 Infinite Series & | Applied Differential Egs
(PH 464, 3) Sequences (MTH 256, 4)
Vector Calculus Il (MTH 253, 4) Intro Modern Phys
(MTH 255, 4) Gen Physics + Calc (PH 314, 4)
Gen Physics + Calc (PH 213, 5) Writing lll, 3
(PH 212, 5) Perspective, 3 Fitness, 3
Perspective, 3 Writing Il, 3 Linear Algebra
(MTH 341, 3)
Jr CS Elective, 3 Perspective, 3 Computer Science Elective,
Harmonic Oscillations Waves in 1D 3
(PH 321, 2) (PH 424, 2) CP Seminar
Static Vector Fields Quant Measurements (PH 405, 1)
(PH 322, 2) (PH 425, 2) Periodic Systems
Energy & Entropy Central Forces (PH 427, 2)
(PH 323, 2) (PH 426, 2) Classical Mechanics
Biology, 4 Synthesis, 3 (PH 435, 3)
Elective, 3 Elective, 3 Electives, 6
Sr l.CP1 IV.CP2 V. Adv Computational Lab
(PH 465, 3) (PH 466, 3) Thesis
Electromagnetism Physical Optics (PH 467, 401; 3, 3)
(PH 431, 3) (PH 481, 4) CP Seminar
Quantum Mechanics Computer Science | (PH 405, 1)
(PH 451, 3) Elective, 3 Synthesis, 3
Math Methods Elective, 3 Electives, 4
(PH 461, 3) Interactive Multimedia
Electives, 3 (CS 395, 4)
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This curriculum has been built up course-by-course since 1989 as we proposed, developed, taught, and modified
new courses. The computer classes (bold) are seen to be distributed throughout all years of study. In total, the
curriculum is a mix of existing applied math and CS classes, with the new computation classes acting as the glue
that holds it together.

There is another way to answer the questions “what to teach?” and “How to teach it?” That way is to provide
computation-based textbooks that help define which topics constitute proper computational education, and
provide a coherent presentation of the subject. The OSU CP Education group has been trying to do that for the
last 15 years. Lists of more than 50 texts and other resources (predominantly not from us!) are to be found in a
recent resource letter [CP-2]. Although most of those resources and most of this paper focus on more
specialized computational topics, there is still very much an open question on what and how to teach
computation to beginning college science students, and who should be doing the teaching [SIGCE]. Our attempt
takes the form of an Introductory Scientific Computing course designed to provide first and second-year students
with the computational tools needed throughout their undergraduate careers, and its associated text, A First
Course in Scientific Computing (Princeton University Press, 2005). In recognition of the widespread
disagreement over which computing tools lower-division college students should learn, the paper text covers
Maple and Java, while the accompanying CD contained essentially identical texts in Mathematica and Fortran90,
as well as the associated notebooks, worksheets, programs, and data sets. The combination of A First Course in
Scientific Computing and A Survey of Computational Physics (Princeton University Press, 2008) pave a continuous
computational path throughout the undergraduate curriculum. Here are the topics covered in the first two
courses:

Physics/Math/CS 265, Scientic Computing | (A First Course, Princeton)

OS, Basic Maple, Number Types Logical control, plotting

Maple Functions, Number types, Symbolics Visualization, Loops, Integration
Calculus, Equation Solving Objects, Complex Arithmetic
Introductory Java Web Computing: Applets
Limits, Methods (functions) Arrays, File I/O

Physics 464/564, Intro Computational Science (Computational Physics, Wiley)

Unix Editing and Running* Monte Carlo Techniques

Floating Point Errors & Uncertainties Random Walk, Decay Simulation*
Limits: precision, under/overo ws Interpolation, cubic spline

Matrix Computing with JAMA libe Least-squares t, Quadrature

Differentiation, ODEs, ODE Eigenvalues Hardware: Memory, CPU, Tuning

Online Courses and Digital Books

In addition to publishing text books, another way of encouraging the inclusion of more computation into
curricula is to make at least the basic elements of computation courses available to faculty. As part of a
demonstration project for establishing a national repository of computational science courses [EPIC,CSCVI], we
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have produced video-based modules for our Introductory Computational Science course (Ph 464) [Video]. We
already used them with good results in our teaching, while we are told that faculty and students at other schools
are also finding them useful. In light of the previously-documented large overlap among different computational
classes, the plan is to have modules cover individual topics which then can be assembled and used in a variety of
classes and in a variety of schools. (A full course would require problem sets, quizzes, assessment exercises, and
possibly supplementary materials in a specific discipline.)

Although we do not view the web as a good teaching medium for general education, or for students with weak
self-discipline or limited motivation, it is appropriate for computational science where the best way to learn it is
while sitting at a computer in a trial-and-error mode [Cornell]. Actually, the web is essentially ideal for
computational science (it was invented for particle physics analysis): projects are always in a centralized place
for students and faculty to observe, codes and data are there to run or modify, and interactive visualizations can
be striking with 3-D, color, sound, and animation.

|- [ Created by Camtasia Studio 3 - Mozilla Firefox

Figure 13. Two
Screen dumps
from a video
module. The left
one shows an
animated slide
with a speaker,
the right one
shows a physical

Dynamic demonstration.

Table of Contents Links to programs, Web
Here

Weights on a String; Roots of
Simultaneous Nonlinear Equations

1. Problem (6 unknowns):

With Annotated PowerPoint With Live Demonstration

In Figure 13 we show two screen dumps from a module on search methods for the solutions of simultaneous
nonlinear equations. On the left is a discussion of the physics and algorithms needed, and on the right is an
experimental demonstration of a statics problem that is simple, yet has no analytic solution. The module is
viewed on a flash-enabled Web browser, and contains an “office hour” in which the professor gives an informal
discussion of the material, a frame with animated PowerPoint slides, various Web links, and a dynamic table of
contents.

The next step in this project is to combine our text books, web enhancements, programs, and video modules
into eBooks. The MathML equations can be ported into and manipulated by a problem-solving environment
such as Maple or Mathematica, or entered into search engines to find other documents with similar equations.
Likewise, the figures, in Scalar Vector Graphics or Vector Markup Language, can be can be annotated to
demonstrate their meaning for different types of learners, or can have their elements viewed at different levels
of abstraction. Not only would this benefit disabled persons, but it would also permit any reader to use a variety
of senses to understand the materials.
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Summary and Conclusions

The work place has demonstrated the need to provide scientists and engineers with a better computational
education. But beginnings are hard. We have seen a growing number of individuals and departments
throughout the world begin to teach classes and assemble curricula in the various computational sciences.
Although there is no computational science accreditation body to decide the proper content for an
computational education, in practice there does appear to be a consensus regarding the basic elements of a
computational science curriculum. Those elements have been tabulated and examples have been given of how
they can be incorporated into courses in various disciplines.

We conclude that teaching the combination of a common computational toolset across the sciences, along with
the common problem-solving mindset, is a truly liberating and attractive aspect of computational science since
it permits computational scientists to understand and participate in a wider set of problems than is normal in
this age of sub specialization. In addition, we conclude that an undergraduate education in Computational X
based on projects and the problem-solving paradigm is more efficient and effective than a pure X education.
Although students may take fewer X classes, they tend to learn the X, CS, and math better when placed in
context, and thus get more out of their courses. So even if the number of X courses needs to be reduced to
make room for teaching computation, this is compensated for by the increased efficiency of the pedagogy and
by a more balanced view. And the motivation when students know that their education is preparing them for
fruitful employment does not hurt.
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