
Visions and Realizations of a Computational eTextBook∗

Rubin H Landau
Department of Physics
Oregon State University

Corvallis, OR 97331
rubin@science.oregonstate.edu

Manuel J Páez
Department of Physics
University of Antioquia

Medellin, Colombia
mpaezenator@gmail.com

Cristian C Bordeianu
Faculty of Physics

University of Bucharest
Bucharest, Romania

cbord1@gmail.com

ABSTRACT
A series of implementations of a multisensory, interactive
eTextBook in Computational Physics with multiple executable
elements is described. Various ways to include text, compu-
tational laboratories, demonstrations and video–based lec-
ture modules are described. Advances and setbacks in the
realizations of our original vision, as well as modifications
instigated by changing Web technologies and mobile devices
are described. The happy ending of forthcoming realizations
in the form of commercial paper and electronic versions is
presented.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Python; D.4.6 [Operating Systems]: Security and
Protection; H.4 [Information Systems Applications]:
Miscellaneous; I.1 [Computing Methodologies]: Sym-
bolic and Algebraic Manipulations; J.2 [Computer Ap-
plications]: Physical Science and Engineering—Physics;
J.72 [Computer Applications]: Computers in Other Sys-
tems—Publishing ; K.3.1 [Computers and Education]:
Computer Uses in Education—Computer-assisted Instruc-
tion; K.3.1 [Computers and Education]: Computer Uses
in Education—Distance Learning

General Terms
Theory, Education

Keywords
eBooks, Computational Physics, Computational Science, Ex-
ecutable Paper, Multimedia, Sonification

∗Paper and “flat” digital versions of the text become avail-
able in summer 2015 from Wiley-VCH. The interactive
HTML5 eTextBook is presently in production. Alas, the
pdf draft we gave away for several years is no longer avail-
able. Work supported in part by several National Science
Foundation Grants.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
XSEDE15 2015 St. Louis, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. HOW THIS ALL STARTED
After two decades of basic research in computational, sub-

atomic, few-body physics, in 1986 one of us (RHL) organized
a group of Oregon State University faculty with the aim of
creating a program of study in the still-developing field of
“computational science”. After several years of discussions
and negotiations it became clear that it was too early for the
university decision makers to see the importance that com-
putation would play in science, and that our “bottom-up”
approach involving multiple departments, multiple colleges
and a collection of existing courses was leading to an impos-
sible lengthy program of study. And thus was born Landau’s
idea that he would instead work at introducing a new course
in Computational Physics [1], that in time blossomed into a
full degree program [2]. That course and its offsprings were
eventually approved by a series of committees and got going
when IBM gave us a single RT Unix workstation on which all
of the students could write and run their programs simul-
taneously. (As the internet started developing, that same
workstation was simultaneously used as the department’s
router and bridge.)

By the early 1990’s a series of lecture notes were being
written with the aim of eventually producing a computa-
tional physics textbook. Although there a few computa-
tional physics textbooks in existence then, they were not
appropriate for our students and for our viewpoint. In par-
ticular, they did not emphasize the computational science
point of view that the applied math (algorithm) and the
computer science (error, memory management and such)
were just as important as the physics. And so it seemed to
make sense for us to develop a Computational Physics text-
book with a computational science point of view and that
surveyed a larger number of topics in order to introduce a
broad range of computational science tools.

Manuel Páez joined the project in 1995 with his creation
of the chapters and codes on partial differential equations,
and then the collections of applets. He has since contributed
in multiple ways, most recently with discussion of GPU pro-
gramming. Cristian Bordeianu joined the project in 2002
with his creation of the Java versions of the codes as well as
the chapter on wavelets. Since then he too has contributed
in multiple ways. The paper textbook has now gone through
four editions, and in Table 1 we list the chapters in the forth-
coming edition [3].

Our realization of the great potential of an electronic text
began in November 1994 during an early meeting of the Un-
dergraduate Computational Engineering and Sciences pro-
gram [4]. There, individuals interested in computational

Table 1: Computational Physics Book Chapters
1. Introduction 15. Continuous Nonlinear Dynamics
2. Computing Software Basics 16. Fractals & Statistical Growth Models
3. Errors & Uncertainties in Computations 17. Thermodynamic Simulations, Feynman Path Integrals
4. Monte Carlo: Randomness, Walks & Decays 18. Molecular Dynamics Simulations
5. Differentiation & Integration 19. PDE Review, Electrostatics via Finite Differences
6. Matrix Computing 20. Heat Flow via Time Stepping
7. Trial-and-Error Searching & Data Fitting 21. Wave Equations I: Strings & Membranes
8. Differential Equations; Nonlinear Oscillations 22. Wave Equations II: Quantum Packets & E-M
9. ODE Apps; Eigenvalues, Scattering, Projectiles 23. Electrostatics via Finite Elements
10. High-Performance Hardware, Parallel Computers 24. Shock Waves and Solitons
11. Applied HPC: Optimization, Tuning, GPU Coding 25. Fluid Dynamics
12. Fourier Analysis; Signals & Filters 26. Integral Equations of Quantum Mechanics
13. Wavelet & Principal Components Analyses A. Codes, Applets & Animations
14. Nonlinear Population Dynamics B. Video Lecture Modules

science education shared ideas, learned about HTML and
placed versions of their developments on the UCES com-
puter, which resided on this new thing called the World
Wide Web. It was clear from the start that HTML had
problems with mathematics that LATEX did not, and we will
discuss that later. It was also clear to us from the start that
there was a great potential in using hypermedia to enhance
education. Specifically, enhanced engagement and interac-
tivity provided by animations, sonification of data, simula-
tions, and computer visualizations seemed to be ideal ele-
ments for education. And thus began our project to both
develop computational physics educational materials and to
simultaneously include the multimedia and interactive as-
pects of the Web into the developed educational materials.

2. THE VISION
Learning is often hard and especially so for those who may

not learn in the most common way. Diagrams, equations,
multi-dimensional visualizations and sophisticated graphs
are often not accessible for learners with sensory impair-
ments or learning disabilities, and high-tech teaching seems
may only to be making it worse [5]. Regardless of how clear
we believe we are at explaining difficult concepts, it is im-
portant to realize that different learners learn in different
ways, and that a reader’s ability to form their own mental
models of abstract concepts, such as those in physics, is es-
sential for learning, and is improved by using multiple senses
to “view” a subject [6, 7]. Accordingly, we want learners to
be able to use multiple senses to interact with the materi-
als they study and thereby get more parts of the reader’s
brain to get activated in the “viewings” [8]. Thus making
materials more accessible for those with learning disabilities
also makes them more accessible for all learners. And yet,
as often seems to be the case in education, although we may
believe things to be true, there seems to be little, if any, ob-
jective proof that teaching to each student’s “learning style”
actually increases the effectiveness of education [9].

As faculty members at research universities we felt that
part of our jobs was to push explore and push the bound-
aries as to what future textbooks might be able to do. Yet as
researchers we knew that failures were more common than
successes. But also that writing and running simulations
often led to a greater understanding than just reading, and
that there seems to be no better way to learn the comput-
ing part of a computational science than by sitting down

Figure 1: A screenshot of an applet written by Hans
Kowallik that shows animations (top right) of two
nearly-identical pendula, their corresponding phase-
space diagrams (bottom right) and the control panel
(left) used to adjust the pendula’s parameters. Here
they are starting off looking much the same, but in
time they do diverge in behavior.

at a computer in a trial–and–error mode [10]. And so a
digital textbook seemed particularly appropriate for a com-
putational science course, and we started exploring ways in
which a textbook might contain various types of interactive
and executable elements that a reader can use without leav-
ing the text.

For example, the lab parts of our computational courses
involved programs. Accordingly, our Computational Physics
text is full of sample programs, and we wanted a reader to
be able to look at a program’s listing in the text and be able
to execute the code right there and then. The reader would
then be able to create their own versions of the figures in the
text or explore the effects of making changes in the program.
This type of interaction engagement with the text would be
a boom for learning. For example, running a simulation
and a visualization of how two identical realistic pendula
with minuscule differences in initial conditions eventually
leads to quite different behaviors (Figure 1), provides an
understanding of the“butterfly effect”and of abstract phase-
space diagrams (bottom part of Figure 1) that words alone
cannot provide.

But why stop with flat 2-D figures and animations within
a text? Why not include 3-D surface and volume realiza-
tions as well? Likewise, if animations can be included, why
not include actual videos of demonstrations, lectures and
physical events like soliton tsunamis? In fact, if we include
lectures and labs as part of the “book” then the book be-
comes more like an encapsulated entire course from which
a reader can read, watch, interact etc in whatever mix the
reader (or their instructor) prefers.

While we usually associate “reading” a text with sight,
the words and equations in a digital text can be converted to
speech, which clearly would be of value to readers with sight
impairment. Yet even beyond that, there might be value in
“visualizing” data with sound, a process known as sonifica-
tion[11]. For example, converting the numerical results of a
simulation of spontaneous decay (Figure 2) into sound pro-
duces the familiar sound pattern of a Geiger counter [12]. To
us this was a convincing demonstration of how the sense of
hearing convinces the reader to truly believe that the decay
simulation is a realistic description of nature. Likewise, be-
ing able to hear a linear, nonlinear and chaotic oscillations
(Figure 3) might deepen the understanding of what to many
students might be abstract concepts regarding nonlinearity
and Fourier decompositions.

Scientific texts tend to have many diagrams, some sim-
ple line drawing and, increasingly, multicolored 3–D visual-
izations. These diagrams are great learning aides for some
readers, but can be very difficult to visually–disabled read-
ers or for learners who have trouble “seeing” the point of
complicated diagrams. While simple line drawings can be
printed out on braille-like devices, that will not work for
complicated figures.

One solution to this problem might be the creation of fig-
ures in a format such as Scalar Vector Graphics (SVG) in
which the figures can have various visual and textual layers,
and in which these layers can be peeled away progressively
to provide simpler diagrams or explanations of the figures.
If we have a digital book that permits hypertext and multi-
media, there is no reason why the figures have to be static.

Game consoles are big business now and their force feed-
back joysticks permit both user input to the game as well as
a haptic response from the game. It would be great to have
a similar device, often called a “haptic mouse”, that would
permit a reader to feel a figure as well as the output of
simulations. For example, learning might well be enhanced
by being able to feel your way around a force field, feeling
the depths of holes or peaks, or to move and feel your way
around a macromolecule feeling for missing pieces. Of course
these types of figures would have to contain move than “flat
images”, but that does not seem much different from the
interactive 3-D images that users can rotate and resize.

One of the ways in which science has been able to ad-
vance through the years has been by creating mathemati-
cal descriptions of natural systems, and then manipulating
the mathematics. Many of us find that manipulating the
equations is much easier than trying to figure out the con-
sequences of a theory using just words and concepts. In
addition, once you learn how to view them, the equations
of mathematics are beautifully compact and meaningful ob-
jects that can be manipulated to provide new understanding.
Consequently we believed that a reader should be able to
see beautifully displayed equations and to work with them,
for example by using symbolic manipulation programs such

0 400 800 1200
t

0

2

4

100,00010,000
1,000
100

10

lo
g[

N
(t)

]

Figure 2: The output of a spontaneous decay sim-
ulation for five different numbers of initial nuclei.
Note how the decays look exponential when there
are a large number of nuclei still existing, but be-
comes stochastic when there is approximate 100 or
fewer nuclei. (In some sense, the bottom four curves
are just translated portions of the top–most curve.)

as Sage, Maple or Mathematica. However, right from the
start it was clear that there was a problem with including
mathematics in HTML Web documents. Early Web editors
and converters displayed equation as bit maps, which con-
tain no information regarding the equation’s meaning and
lost clarity if the page was scaled up in size. If the con-
tents of equations were retained in digital documents they
could be exported to manipulation programs or understood
by reader programs for learners with disabilities. For ex-
ample, the ASTER program [13] can read LATEX source and
generate a spoken equation with variations in pitch indicat-
ing sub- and superscripts. In addition, if one can extract a
meaningful representation of an equation from a document,
then it would be possible to search the document or the Web
for other uses of this same equation.

One solution to using math in digital documents is to
write the document in a “notebook” format appropriate to
a specific problem–solving environment such as Mathemat-
ica, Maple or Sage [14]. This of course restricts the com-
puter language that may be used, may require the reader
to run such an environment on their local computer, and
suffers from frequent obsolescence as upgrades are made to
the environment. A better solution seemed to be to write
the equations in MathML, a macro package for the Extensi-
ble Markup Language, XML. Being a markup language, like
LATEX the content of the equation is not lost, and being a
Web language, it is possible to display the equation properly
in Web documents and even to search on the equation.

3. REALIZATIONS
First Realization Our first experiments with eBooks were
in the late 90’s and were computational Physics and Unix
tutorials that attempted to illuminate both physics and com-
putation (examples at [15]). We tried everything we could
think of: sound files, animations (first gifs and then movies),
CGI-bin scripts, haptic feedback devices and even a Unix
terminal to our computer so users could run Unix from their
local browsers (this was before security was such a big issue).

Harmonic Oscillator Realistic Pendulum

Anharmonic Oscillator Particle Driven in Well

Figure 3: From upper left to lower right: The linear
oscillation of a harmonic oscillator, the nonlinear os-
cillations of a realistic pendulum and an anharmonic
oscillator, and the chaotic oscillations of a particle
in an anharmonic well driven by an external force.
The eBook contains different sounds associated with
each of these oscillations.

For example, Figure 2 shows the results from a simulation of
spontaneous decay of nuclei. Each of these graphs was con-
verted into a sound file (which are still on the Web at [12])
and, sure enough, when played the results of the simulation
do sound like a Geiger counter.

As part of developing understanding of nonlinear dynam-
ics and chaos, which were just then entering the physics
curriculum, and of learning how to solve ordinary differen-
tial equations, extensive discussions of oscillations were pre-
pared with the oscillations converted into visualizations and
sound files. For example, in Figure 3 we show the graphical
representations of the output of four simulations of linear
and nonlinear oscillations, and in the Web document [11]
we have each oscillation coupled to a corresponding sound
files. Although the linear oscillation sounds rather simple
and boring, the nonlinear oscillations have overtones and
sound more interesting, while the chaotic oscillation sounds
like noise. In this way we are using an additional sense to
understand some abstract ideas.

Since computational science is very much about develop-
ing and running programs to do science and engineering, we
have developed many sample codes (first in Fortran, then
in C, then in Java and most recently in Python). Yet run-
ning codes within an electronic document has its challenges
(more on that soon). Accordingly, soon after the 1995 in-
troduction of Java applets that ran within a browser on a
user’s computer, our group developed collections of applets
based on our codes. The emphasis was on user engagement
and interactivity, important elements for education. While
this is more secure for us than having users run code on
our machines, the programming of graphics and interactive
features all designed to operate within a browser was highly
labor intensive, and there is a security risk for the user. An
sample applet has already been shown in Figure 1 where the
user controls the parameters of the simulation and can chose

several means to view the system.

Second Realization Our second effort to produce an eText-
Book came in 2007, right after Princeton University Press
published (in paper) our text A Survey of Computational
Physics [16]. Although that book used Java for it example
programs, by the time the book was published we had al-
ready moved to the Python ecosystem [17] as our preferred
environment for teaching computational science, and so we
wanted to develop a Python version of our text as well. After
our editor explained how the economics of book publishing
would not permit another version of our text until after it
was proven to be a universal best seller, we decided that this
might be the perfect time to create a Python version as an
eTextBook. With the business model for electronic publish-
ing even less clear then than it is now, the publisher agreed
to our posting a free online version our book on Merlot and
Compadre [18]. Yet as two of us moved closer to retirement,
we still wanted to see a commercial eTextBook that would
represent an acceptance and an institutionalization of our
vision.

Even though the most senior of the coauthors had his
heart set on a MathML/XML document, his coauthors were
successful at convincing him that the eBook format should
use Adobe’s portable document format, pdf. First, the pdf
format was essentially universal, whereas a MathML for-
mat would be accessible to only a few. Secondly, our text
was already written in LATEX and there existed the hyperref
LATEX macro package [19] that automatically created inter-
nal hyperlinks for all equations, figures, book sections etc
as well as internal and external hyperlinks to multimedia.
The hyperref package also permitted the execution of code
within the created pdf final document, which in the pro-
cess could produce interactive 3–D visualizations of a type
available only at supercomputer centers when we started
this project. And so we created pdf versions of our Compu-
tational Physics text with links to sound files, animations,
applets, video lecture modules, executable codes, a dynamic
table of contents and external sites. As a partial realization
of our vision for executable equations, many of the text’s
equations were linked to corresponding MathML versions
which were ported over to and executed within symbolic
manipulation programs such as Maple or Mathematica.

A two-page spread from the pdf eBook is shown in Fig-
ure 4, where you can note the icons in the margins that are
actually links: a professor’s head to a video lecture mod-
ule, an “Applet” tag to a Java-based applet, a “CODE” tag
that links to a text version of the sample code that could be
pasted into a file for execution (copying the pdf version of
the code may not preserve Python’s essential indentations),
a snake head that will execute a Python code, and an “xml”
tag that brings up a MathML version of the equation, which
can be imported into a symbol manipulation program. Al-
though the text did not have an automatically-linked dictio-
nary, it did link many specialized words to both a Glossary
and to a sound files that read out the word’s meaning with-
out the reader having to take his or her eye off the text.

If all of this sounds too good to be true, well it was.
Shortly after we posted free copies of our text on Com-
padre, Merlot, CSERD and the OSU science server, Adobe
decided that executable code within a pdf document is a se-
curity risk and modified their pdf readers so as to block the
code’s execution. The reader could still copy the code from

c? Princeton Univ Press; c? Landau, Paez, Bordeianu, 2010. For personal use only. Supported by the National Science Foundation.

CHAPTER 1

1.2 USING THE FEATURES OF THIS EBOOK

You can read this book just as you might a paper one. However, we recommend that you take
advantage of its multimedia features as an assist to your learning. Although studies show
that different people learn in different ways, many learners benefit from experiencing multiple
approaches to a subject.

As in Web documents, this eBook containslinks to objects signified by words in blue.
For example, clicking on 1.1 in Figure 1.1, will jump you to the specified figure (actually to
the caption, which is above the figure). Equations, tables, listings, pages and chapter sections
have similar links throughout the text and in the table of Contents and Index. To get back to the
page from whence you came, the easiest thing is to have Acrobat’sPrevious View (backarrow)
button activated (View/Toolbars/More Tools/Previous View or Page Navigation Toolbar), and then to
use it. Alternatively, on Windows you canAlt plus ? , or right click on the page you are viewing
with your mouse and selectPrevious View . In either case, you should be duly transported1. If
you are usingAcrobat Pro, an additional two useful options when you right click your mouse
is Add Sticky Notes and Add Bookmark , both useful for personalizing the text. Although links
to other parts of this document should not illicit any complaints from Acrobat, if a link takes
you outside of pdf pages, say to a Web page or to a movie file, then Acrobat may ask your
permission before proceeding. Furthermore, you may need to modify some of the Preferences

in Acrobat relating toTrust so that it will be easier to open external links.

At the beginning of each chapter there is a table indicating which video lectures, applets
and animations are available for that chapter (we have delayed that table in this chapter so
we can explain it first). The names of the video lectures are links, for example, Introduction
to Computational Physics, where the small image of the lecturer in the margin indicates a
lecture. These links open a Web page within a browser with all the lecture components. There
is a window showing the lecturer sitting for an office hour, another window with annotated
slides synchronized to the lecture, a linked table of contents to that lecture, and video controls
that let you stop and jump around. Go ahead and try it! We suggest that you first read the text
before attending lecture, but feel free to find whatever combination works best for you. At the
moment, lectures are available for more than half of the text and we are working at finishing
the rest (see RHL’s Web pages for latest lectures).

Applets are small application programs written in Java that run through a Java-enabled
Web browser. The user does not deal with the code directly, but rather interacts with it via
buttons and sliders on the screen. This means that the reader does not have to know anything
at all about Java to run the applet (in fact, visual programming of applets is so complicated
that we do not recommend looking at the source unless you want to learn how to write applets.
We use the applets to illustrate the results to be expected for projects in the book, or to help
in understanding some concepts. Usually we just give the name of the Applet as a link, such
as Chaotic Scattering, although sometimes we place the link in a marginal icon, such as here.
Click on the link or the “Applet” icon to initiate the applet, noting that it may take some time
to load a browser and start the applet.

Code listings are presented with the codes formatted within a shaded box. Key words are
in italics and comments on the right, for example, Listing1.1 (where 1.1 is a link). Note that
we have structured the codes so that a line is skipped before major elements like functions, and
that indentations indicate structures essential in Python. However, in order to conserve space,
sometimes we do not insert as many blank lines as we should, and sometimes we place several

1On a Mac right clicking is accomplished by Control + click.

COMPUTATIONAL SCIENCE BASICS

Listing 1.1 A sample code, LaplaceLine.py .? ?
""" LaplaceLine.py: Solution of Laplace’s eqtn with 3D matplot """

from numpy i m p o r t ? ; i m p o r t p y l a b a s p ; i m p o r t m a t p l o t l i b . a x e s 3 d a s p3

p r i n t ("Initializing")
Nmax = 1 0 0 ; N i t e r = 7 0 ; V = z e r o s ((Nmax , Nmax) , f l o a t) # f l o a t maybe F l o a t

p r i n t "Working hard, wait for the figure while I count to 60"
f o r k i n r a n g e (0 , Nmax− 1) : V[k , 0] = 1 0 0 . 0 # l i n e a t 100V

f o r i t e r i n r a n g e (N i t e r) : # i t e r a t i o n s o v e r a l g o r i t h m
i f i t e r %10 == 0 : p r i n t i t e r
f o r i i n r a n g e (1 , Nmax− 2) :

f o r j i n r a n g e (1 , Nmax− 2) : V[i , j] = 0 . 2 5 ? (V[i +1 , j]+V[i − 1, j]+V[i , j +1]+V[i , j − 1])
x = r a n g e (0 , Nmax− 1, 2) ; y = r a n g e (0 , 5 0 , 2) # p l o t e v e r y o t h e r p o i n t
X, Y = p . m e s h g r i d (x , y)

d e f f u n c t z (V) : # F u n c t i o n r e t u r n s V(x , y)
z = V[X, Y]
r e t u r n z

Z = f u n c t z (V)
f i g = p . f i g u r e () # C r e a t e f i g u r e
ax = p3 . Axes3D (f i g) # p l o t a x e s
ax . p l o t w i r e f r a m e (X, Y, Z , c o l o r = ’r’) # r e d w i r e f r a m e
ax . s e t x l a b e l (’X’) # l a b e l a x e s
ax . s e t y l a b e l (’Y’)
ax . s e t z l a b e l (’Potential’)
p . show () # d i s p l a y f i g , c l o s e s h e l l t o q u i t

?

While these listings may look great, their formatting makes them inappropriate for cutting and
pasting. If you want to cut and paste a code, you can go to theCodes directory and copy it from
there, or you can take note of the icon in the margin next to the code. If you click on this
icon, you will open up an HTML (Web) page in a browser containing the code in a form that
you can copy and paste. You can then run or modify the code.

If you go back to this same code listing, you will notice an image of a python in the
margin. On Windows computers, and if you have Python installed, clicking on the python icon
will execute the Python source code and present the output on your screen. (Before trying it,
please note that this may take some time the first time you try it as Python gets loaded and
linked in, however, it will be faster after that.) Why not try it now? Doing this on Macs and
Linux machines may load the code but may not execute it, in which case you can do that with
IDLE. For the LaplaceLine.py code given here, a surface plot of the electric potentialV (x, y)
will appear. Grabbing this plot with yourleftmouse button will rotate it in 3-D space. Grabbing
this plot with yourright mouse button will zoom it in or out. The buttons on the bottom of the
window present further options for viewing and saving the plot. As is true for the listing, the
equations in this document may look great, but the pdf formatting interferes with the ability
to communicate their content to software and people. For instance, it may be very helpful to
be able to take an equation from the text and process it in a symbolic manipulation program
such as Maple, Mathematica or Sage, or feed it to a reader that can speak the equation for
the visually impaired. Having a MathML or xml version of the entire text (our original plan)
would permit this, but very few people would have the software set up to read it. So our present
compromise is to link in xml versions of many key equations to the equations presented in this
pdf document. For example, clicking on the xml icon to the right of the equation below opens
up a browser (which should be Mozilla Firefox for a proper view) which displays the same
equation based on an xml source file. (On some Acrobat readers, you may need to left-click on
the icon and tell Acrobat to open a browser rather than just try to read the xml directly.) Try it.

xmlxml
N fix = sign × (? n 2n + ? n− 12n− 1 + · · · + ? 020 + · · · + ? − m 2− m) .

Figure 4: A two-page spread from the pdf version of the eTextBook with marginal icons indicating hyperlinks
to lectures, codes, code execution, applets and MathML equations.

the text and run it separately, but this took them away
from the text. Indeed, the problem of code execution is
not our’s alone; for example, Elsevier Publishers would also
like to see more flexibility with electronic documents and
so sponsor an annual Executable Paper Challenge [20]. At
present the concept seems best fulfilled with Mathematica
and Maple players that contain their own execution kernel
[14]. In addition, while the use of applets has served us
well for approximately 15 years, the extra security require-
ments on present-day browsers keep making existing applets
so difficult to run or so obsolete that it seems impractical to
include them in an eBook.

The second and present realizations of our eTextBook con-
tain some 60 video-based lecture modules that cover
most every topic in the printed book and that took some
five years to complete production. (In addition to problems
within the text, there are also quizzes on the lectures to
encourage their viewing before attempting the problems.)
These modules can be used as a replacement for lectures
so that instructors can interact with students in the com-
puter lab, as a way to stimulate new courses, or for online
education. As seen in Figure 5, each module opens a Web
page containing a video picture–in–picture of a professor dis-
cussing and demonstrating the material in his office, coor-
dinated dynamic slides (sometimes with red scribbling on
them), a dynamic table of contents, and links to codes and
applets. Having the lectures produced in a studio setting
with controlled sound, lighting, movement and video moni-
tors is a great improvement in quality compared to that of
“live” lectures where the subject moves and often faces away
from the viewer and the sound-level varies too much.

After viewing a number of online lectures including some
from the Great Lectures Collection [21], we concluded that
a scripted “lecture”, while sounding polished with its few
speaking errors, is rarely as engaging as a professor speak-
ing informally from slides with all the imperfections that oc-
cur when a knowledgeable person thinks and speaks about
a subject they obviously care about. There is, however, a
price to be paid for many high-quality videos, namely, they
take up a lot of space, in our case over 14 GB. Although
this presented a problem when we imagined including the
lectures on a DVD, the development of cloud computing
has provided a solution.

Third Realization Technology does not stand still, and
while we waited for Princeton Press to decide if they could
publish an eTextBook, eBook readers and mobile computing
devices became very popular. And so we started to try out
different formats for eReaders, tablets and smart phones.
First we tried converting our book to the native Kindle for-
mat ePub. Although the text converted well, we could not
get the formatting of the equations and tables to be accept-
able.

We next explored alternative pdf versions of the book with
different margin and page sizes. These could be made to
look good, but there were issues with hyperlinks and the
use of Flash within the lecture modules on both Android and
Applet devices (recently Android devices appear able to run
Flash within some browsers). And of course we could get
neither the Python codes with their ecosystem libraries nor
the Java-based applets to execute. Finally, in a multistep
and cumbersome process we produced an Applet iBook. As
read on an iPad, this realization had some interactivity and

hyperlinks, but was overly restrictive in what was permitted
and was still far from what we would view as acceptable
for a computational text book. Clearly, the PC was needed
for full interactivity, while mobile devices were useful for
reading, but not executing.

3.1 Present Realizations
After spending six years trying unsuccessfully to get Prince-

ton University Press to distribute what might have been the
most complete eTextBook available at that time, in late 2013
we reached an agreement with John Wiley & Sons, an in-
ternational scientific, technical, medical, and scholarly pub-
lishing house, to publish a Python-based Third Edition of
our Computational Physics text in paper, in a “flat” online
edition as well as in an interactive, multimedia eTextBook
version [3] that will appear in the Wiley Online Library [22].
The paper and flat versions are scheduled to be published in
the summer of 2015, while the multimedia version is being
prepared simultaneously with the writing of this paper.

This latest version of our eTextBook starts with our LATEX
source file and then uses LaTeXml and LaTeXmlPost to cre-
ate XML and to xhtml/HTML5 versions of the text [23].
This software is free and has been developed by the US Na-
tional Institute of Science and Technology as part of their
development of the Digital Library of Mathematical Func-
tions. Although going from one markup language to an-
other should be straightforward, it takes some effort to get
the software to work properly, and especially so because La-
TeXml does not understand all of the LATEX style (.sty) files
that are used in creating a book with a particular publisher’s
look and style. As one might expect, there is much hand
work needed to convert the included multimedia to modern
HTML5 standards: animations as mp4’s, figures as SVG’s,
applets to animations, sound files as mp3 (MPEG-1 and
MPEG-2 Audio Layer III), etc. Furthermore, we still need
to determine whether the equations will be in Presentation
MathML, or, given the current state of various browsers,
whether we will use the“polyfill”library MathJax [24], which
ends up rendering the equations with LATEX.

4. EVALUATION AND ASSESSMENT
Evaluating cyber-enabled learning is a grand challenge

problem, with multiple variables involved as well as a so-
ciety in which the role of computers and communications is
seeing a historically rapid change. For example, we are just
now working with students who view electronic engagement
and interactions as completely normal, who read news on-
line more than from paper, and who buy, and presumably
read, more electronic books from Amazon than paper ones.

Our eTextBook evolved from our paper textbooks, which
in turn evolved from over a decade’s worth of class notes
for our Computational Physics courses. A number of pro-
fessors have taught the courses, and the texts have been
used throughout the world at some 50 schools that we know
of. The courses and lecture modules have had formative
and summative assessment via student evaluations, pre- and
post-course student inter-views and surveys conducted by
an external evaluator. The texts have had pre- and post-
publication reviews, market surveys conducted by several
publishers, feedback from faculty and students using the ma-
terials at other schools, and multiple discussions with col-
laborators.

The instructors for the blended course both had the im-

Figure 5: A screenshot of a video lecture module. On the left under the talking prof is a dynamic table of
contents, and on the right is a slide getting scribbled on.

pression that the students were better prepared for lab than
when we had live lectures, although this may be due in part
to our requirement that the students view the lectures before
the lab. The instructors also concluded that the students’
projects were at least of the same quality as before, with
student questions and discussion of higher quality. In recent
times Landau has taught workshops at various schools and
at the SuperComputing conferences using and distributing
the eTextBook. A number of schools have used the devel-
oping forms of the eText and have provided feedback.

The detailed external assessment surveyed how much use
each of the different features of the book received and how
helpful was each. Here are some of the results: 1) The stu-
dents used the free eTextBook about 80% of the time and
the paper one about 20%. All students used the eText some
of the time. 2) About 40% of the students did not read the
instruction on how to use the text. 3) Hyperlinks to figures,
equations and codes were used about 50% of the time, with
technical problems rare. 4) There was a rather even distri-
bution in all ranking categories as to the usefulness of the
applets. 5) None of the students bothered printing pages
from the eTextBook, although code listings were printed
some 10% of the time. 6) 100% of the students thought
the written pages of the text were essential or fairly essen-
tial. 7) 90% of the students thought the lecture modules
were essential or fairly essential. 10) The code listings were
considered essential. 11) Running and seeing the results of
simulations were considered essential or fairly essential by
90% of the students. 12) The eTextbook was rated 4 stars
out of 5.

5. SUMMARY AND CONCLUSIONS
We have traced the history that produced our vision of an

eTextBook, as well as the history of the various practical re-
alizations of that vision and how those realizations changed
as the technology advanced in unexpected ways. Part of our
motivation has been to support the advancement of com-
putational science by ensuring that there are commercially–
supported textbooks. This may encourage others to intro-

duce computational science courses, or to improve existing
courses. While it seems like a PC is at present the best
way to interact with an eTextBook including its multimedia
and executable content, mobile devices would still be fine for
reading the text. However, the latest commercial version of
our text is in HTML5, and we are waiting to see how that
version works on the increasingly popular mobile device

6. REFERENCES
[1] Scientific Computing and Computational Physics

Courses, "/COURSES/. Here and below we use ” to
abbreviate http://physics.oregonstate.edu/ rubin.

[2] R.H. Landau, Computational Physics for
Undergraduates, the CPUG Degree Program at
Oregon State University. IEEE Computing in Sci &
Engr, 6, 68-75, (2004); "/CPUG/.

[3] R. H. Landau, M. J. Paez, & C.C. Bordeianu,
"/Books/CPbook/; http://www.wiley-

vch.de/publish/en/books/ISBN3-527-41315-4/.

[4] The Department of Energy Undergraduate
Computational Engineering and Science (UCES)
program,
http://www.krellinst.org/collaborations/project-archives.

[5] C. Fabis, As High-Tech Teaching Catches On,
Students With Disabilities Can Be Left Behind,
Chronicle of Higher Education, 25 February 2015.

[6] J. M. Carroll, and J. R. Olson. Mental Models in
Human—Computer Interaction. M. Helander, Ed.,
Handbook of Human Computer Interaction,
Amsterdam, North Holland, 1988;
C. Dede, M. Salzman, R.B. Loftin and D. Sprague.
Multisensory Immersion as a Modeling Environnment
for Learning Complex Scientific Concepts, Computer
Modeling and Simulation in Science Education, eds.
N. Roberts, W. Feurzeig, W. and B. Hunter, New
York, Springer–Verlag, 1999;
M.J. Farah, K.M. Hammond, D.N. Levine and R.
Calvanio. Visual and spatial mental imagery, Cognitive
Psychology, 20, 439-462, 1988.

[7] National Research Council. How People Learn. M. S.
Donovan, J. D. Bransford and J. W. Pellegrino Eds.,
National Academy Press, Washington DC, 1991.

[8] M.C. Salzman, C. Dede, R.B. Loftin and J. Chen. A
Model for Understanding How Virtual Reality Aids
Complex Conceptual Learning, Presence, 8(3)
293-316, 1999.

[9] A. North, Are ‘Learning Styles’ a Symptom of
Education’s Ills?, New York Times, 25 February 2015.

[10] P. Davis, How Undergraduates Learn Computer Skills,
T.H.E Journal, 26, 69, 1999,
http://ywww.thejournal.com/articles/14120;
O. Hazzan and J.E. Tomayko. Reflection and
Abstraction in Learning Software Engineering’s
Human Aspects, IEEE Computer, 39-46, 2005;
National Science Foundation. Shaping the Future:
New Expectations for Undergraduate Education in
Science, Mathematics, Engineering, and Technolgy.
http://ywww.nsf.gov/publications/pub_summ.jsp?ods_key=nsf96139,
1996;
J.Larkin. The role of problem representation in
physics, 75-98, Mental Models, D. Gentner and A.
Stevens Eds. Lawrence Earlbaum Associates,
Hillsdale, NJ, 1993.

[11] Visualizing Physics With Sound, Direct
Transformation, "/nacphy/ComPhys/SOUND/.

[12] Spontaneous Decay Simulation,
"/nacphy/ComPhys/SOUND/geiger.html.

[13] T.V. Raman. AsTeR: Audio System for Technical
Readings.
http://yeasi.cc/itd/volume1/number4/article2.html.

[14] See, for example, Mathematica’s Computabale
Document Format, http://www.wolfram.com/cdf/; The
Maple Player,
http://http://www.maplesoft.com/products/maple/mapleplayer/.

[15] Northwest Alliance for Computational Science,
Landau’s Nacphy Research Group,
http://physics.oregonstate.edu/ rubin/nacphy/.

[16] R. H. Landau, M. J. Paez, & C.C. Bordeianu, A
Survey of Computational Physics, Introductory
Computational Science, Princeton Univ Press,
Princeton, NJ, 2008.

[17] The Python Ecosystem, March/April 2011 and
May/June 2007 issues of Computing in Science &
Engineering,
http://www.computer.org/portal/web/cise/home.

[18] Merlot, Multimedia Educational Resource for
Learning and Online Teaching,
http://ywww.merlot.org/merlot/viewMaterial.htm?id=604391;
Compadre, Physical Science Resource Center,
http://ywww.compadre.org/psrc/items/detail.cfm?ID=11578.

[19] The LATEX hyperref package,
http://yen.wikibooks.org/wiki/LaTeX/Hyperlinks, 2012.

[20] The Executable Paper Grand Challenge,
http://http://www.executablepapers.com/.

[21] The Teaching Company, The Great Courses.
http://ywww.teach12.com.

[22] Wiley Online Library, http://onlinelibrary.wiley.com/.

[23] LaTeXML A LaTeX to XML/HTML/MathML
Converter, http://dlmf.nist.gov/LaTeXML/.

[24] MathJax, A JavaScript display engine for mathematics

that works in all browsers, http://www.mathjax.org/.

