
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2014; 26:2316–2328
Published online 2 June 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3288
SPECIAL ISSUE PAPER

INSTANCES: incorporating computational scientific thinking
advances into education and science courses‡§
Rubin Landau1,*†, Greg Mulder2, Raquell Holmes3, Sofya Borinskaya4,
NamHwa Kang5 and Cristian Bordeianu6

1Physics Department, Oregon State University, Corvallis, OR, USA
2Physics Department, Linn-Benton Community College, Albany, OR, USA

3Improvscience, Boston, MA, USA
4Berlin Center for Cell Analysis and Modeling, UConn Health Center, Farmington, CT, USA

5Science and Math Education, Oregon State University, Corvallis, OR, USA
6Colegiul Militar Stefan cel Mare, Cimpulung Moldovenesc, Romania
SUMMARY

The conceptual framework and initial steps taken by a project that aims to incorporate computational scien-
tific thinking into the university-level classes taken by preservice and in-service teachers (education majors)
are described. The project is called INSTANCES, an almost-acronym for incorporating computational
scientific thinking advances into education and science courses, and is supported by National Science Foun-
dation as part of their Transforming Undergraduate Education in Science, Technology, Engineering, and
Mathematics program. The overall goal of the project is to provide an introduction to scientific thinking with
computation. Mathematics, programming, algorithmic thinking, and computing accuracy are explicit
elements of the science education curriculum, and they are included as integral elements in modules that
walk teachers through various examples of computational scientific thinking. Brief descriptions of the
modules and their use are presented. Copyright © 2014 John Wiley & Sons, Ltd.

Received 18 September 2013; Revised 23 March 2014; Accepted 24 March 2014

KEY WORDS: education; algorithms; measurement; documentation; experimentation; languages; theory
1. INTRODUCTION

The INSTANCES project strives to create science education materials that incorporate computation as
an essential element [1]. In the words of the National Science Foundations (NSF), ‘computation [has
been] accepted as the third pillar supporting innovation and discovery in science and engineering
and is central to NSF’s future vision of the Cyberinfrastructure Framework for 21st Century Science
*Correspondence to: Physics Department, Oregon State University, Corvallis, 1085 Victoria Falls Drive, Redmond, OR
97756, USA.
†E-mail: rubinhlandau@gmail.com
‡Categories and Subject Descriptors.
D.1 [Programming Techniques], D.1.7 [Visual Programming], D.2.4 [Program Verification, model checking], D.3.3.2
[Python], G.1 [Numerical Analysis], G.2 [Discrete Mathematics], G.3 [Probability & Statistics], H.4.1 [Excel], I.6 [Sim-
ulation & Modeling], J [Computer Applications] J.2 [Physical Science & Engineering], J.3 [Life & Medical Sciences],
K.3 [Computers & Education].
§Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the Owner/Author. Copyright is held by the owner/author(s). XSEDE ’13, Jul 22-25 2013, San Diego, CA, USA
ACM 978-1-4503-2170-9/13/07. 10.1145/2484762.2484769.

Copyright © 2014 John Wiley & Sons, Ltd.



INSTANCES 2317
and Engineering’ [2]. An image of how the authors incorporate this modern approach of scientific
problem solving is illustrated in Figure 1, which we use as a guide for our developments.

Although a decade ago the combination of computing, science, and applied mathematics known as
computational science was rarely known beyond a few research universities, today K-12 organizations
such as the Computer Science Teachers Association [3] and the National Science Teachers
Association [4] recommend that secondary school classrooms teach simulation as a cornerstone of
scientific inquiry.

In spite of these recommendations, and in spite of the fact that present-day science and engineering
research and development deal with realistic problems of practical importance that require
computation, college classes in traditional disciplines such as physics have yet to fully teach
computing as part of their science [5]. In our experiences, too often it is assumed that a third party
such as a computer science (CS) class will provide an understanding of how to use computers as
part of the scientific problem-solving process. Consequently, and unfortunately, science and math
preservice teachers (in addition to science students) are often not prepared properly for their work
with computers in K-12 classrooms. For instance, when used in science teaching, computing often
takes the form of using simulations in a classroom without learning to explain how the simulation
works. Thus, the computer and simulation are treated as the proverbial ‘black box’.

Our educational materials advocate what we call ‘computational scientific thinking’ (CST). This
view assumes that science is a process requiring continual evaluation via comparison of theoretical
predictions to data, visualization, and critical thought, with the computer being used in all of these
steps (lower part of Figure 1). All too often, science is taught only as a collection of knowledge,
without the requisite tools and process.

More explicitly, we view CST as meaning

• Using simulation, data processing, and visualizations to augment the scientific method’s search
for scientific truth.

• Using computation and abstractions to reveal relationships and mechanisms hidden within data.
• Appreciating how multiple disciplines are used to solve problems, and how these disciplines
become more understandable when placed in the context of solving a problem.

• Being sufficiently capable and confident to examine the commands that create a computer appli-
cation so as to assess, at least a general way, what it does.

• Understanding that there may be simplifying assumptions made in order to solve a problem in a
mathematically ‘exact’ manner, whereas the ‘approximate’ numerical solution may require fewer
assumptions and thus be a more accurate description of nature.

• Understanding how, with the proper tools, one may reveal simplicity underlying complex phenomena.
Figure 1. The computational scientific problem-solving model used as a basis for INSTANCES projects.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2316–2328
DOI: 10.1002/cpe



2318 R. LANDAU ET AL.
The materials being developed will teach computation as part of scientific problem solving, and thus
provide a contextual understanding of computation as well as concrete examples to use in the teachers’
classrooms. Teaching computing, math and science in the context of scientific problem solving
provides a more effective way for students to learn each subject, because the context makes the
relations among, and the importance of, the different disciplines clear from the start [6, 7]. It also
has been shown to increase the interest and motivation in science and computing of those students
who are underrepresented in these disciplines [8].

The developed materials incorporate discussion and exercises aimed at giving the teachers a basic
understanding of the scientific concepts and general numerical techniques used to solve problems.
For example, the fact that chance plays an important role in many scientific phenomena is an
important concept, while being able to use a computer to simulate probabilistic events provides a
method to simulate nature. With this understanding, simulation changes from a black box solution to
an essential element in science. Our approach contrasts with approaches that try to make science
more accessible by using the computer to hide the math and thereby eliminate an essential
component of problem solving. We want to provide materials that give teachers the capability to
explain all aspects of the simulations they use in their science classes (something often not provided
by a CS class).
2. THE MODULES

We are creating learning materials that can be used in undergraduate or graduate courses that include
CST. The courses are designed to be online or blended, that is, combining online and face-to-face
elements, in order for in-service teachers to take them while still teaching in schools. The materials
include software that operates within various computing environments (e.g., Python, Excel, and
Vensim), lesson plans, references, instructor’s guide and background materials. The materials focus
more on learning how to apply computing as part of the scientific process than on mastering a
programming language. Although CS topics are presented, they are presented as requisite tools for
the problem on hand.

Because we are not teaching programming from scratch, we provide simple source code for
simulations that can be executed and modified by students. In order to permit broad adoption and
portability of our materials in the absence of any standard scientific computing environment for
science, we present simulations within three different environments:

1. Python with the Visual packages (‘VPython’) [9]: A free, popular, and modern programming lan-
guage in which executable code is obtained by processing a source code.

2. Microsoft Excel: A commercial spread sheet package already familiar to most students [10], and
widely available.

3. Vensim PLE: A commercial agent-based modeling tool featuring visual programming [11]. The
PLE version is available free for academic use.

We recommend the Python language as the first choice because of its simplicity, universality,
scaling ability, built-in graphics, shallow learning curve, and ease of running. In addition, being able
to read the source code of a program helps the user make the connection between the algorithm and
the computation clearer.

After realizing how big a step it is to create or teach an entire course from scratch in one step, we
have developed a collection of modules that could be used in already-existing Teacher Technology
classes or be put together to form an entire class. This approach also permitted a formative
evaluation in which we developed, assessed, and improved two modules and then used those
modules as templates for further development.

2.1. Module format

A table of contents for all modules is maintained on the project’s Web page [1]. A sample page for an
individual module is given in Figure 2. Note that the left-hand side of the page contains a list of the
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2316–2328
DOI: 10.1002/cpe



Figure 2. A sample Web page for a module.

INSTANCES 2319
resources available for teachers, including the simulations as well as background materials that may, or
may not, be provided to the students (instructor’s choice). Aside from the source codes, the materials
are all PDF files. As shown in Figure 2, there are often some sample visualizations, some of the
mathematical equations used in the model, and some sample coding.

2.2. Relation to national standards

A full course assembled from the modules would address several Science Teaching Standards in the
National Science Standards [12] and in the National Council of Teachers of Mathematics [13]. The
first and foremost teaching standard in science is for teachers to ‘plan an inquiry-based science
program for their students’ ([12], p.30). This standard can best be achieved by having teachers
understand the scientific inquiry method, which, as indicated in Figure 1, is the template used for
the modules. The aim is to engage students in inquiry and to develop an understanding of scientific
concepts, an appreciation of ‘how we know’ what we know in science, an understanding of the nature
of science, some skills necessary to become independent inquirers about the natural world, and the
dispositions to use the skills, abilities, and attitudes associated with science ([12], pp. 104–107). The
developed materials address these teaching and content standards for K-12 students by including:

• The nature of scientific inquiry as shown in the use of experiment, theory, mathematics, and
simulations.

• How a natural system is viewed as the integration of data, theory, algorithms, and software.
• How simulation, visualization, data analysis, and abstraction serve the search for mechanisms,
relationships, and scientific principles hidden within data.

• The meaning and importance of accuracy, precision, reproducibility, verification, and validation.
• Why a scientifically ‘correct’ answer may contain uncertainties and indeterminacies.
• The value of understanding how simulations work rather than viewing them as black boxes.
• How CST promotes deeper thinking.
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2316–2328
DOI: 10.1002/cpe



2320 R. LANDAU ET AL.
A specific K-12 mathematics standard we address is to ‘Understand numbers, ways of representing
numbers, relationships among numbers, and number systems; understand patterns, relations, and
functions; use mathematical models to represent and understand quantitative relationships; use
visualization, spatial reasoning, and geometric modeling to solve problems’ [12]. The developed
materials address this standard by teaching:

• The basics of doing finite precision mathematical operations on a computer; division, subtraction,
rate of change, differentiation, and integration.

• The experimental determination of machine precision.
• Understanding how computers can do algebra or attain ‘infinite’ precision.
• Why a mathematically ‘exact’ solution may not be as ‘correct’ as an approximate solution.
• The key problem-solving skill of decomposing a complex problem into tractable parts.

Basic CS concepts that will let the teachers look inside the black box include the following:

• Computing concepts such as logic, iteration, and abstraction.
• The basics of programming and how equations and algorithms differ.
• Trial and error searching; solvable problems without analytic solutions.

In order for teachers to be able to use these topics in a classroom (service related issues), we try to
cover the following:

• How each concept relates directly to classroom teaching.
• How CST is related to practical applications such as population dynamics, lifetimes of radioactive
wastes, and diffusion.

• How multiple disciplines enter into the solutions of realistic problems.

2.3. Module topics

The following modules are available (although not finalized):

1. Computer Precision
2. Spontaneous Decay
3. Biological Growth
4. Bug Population Dynamics
5. Random Numbers
6. Random Walks
7. Stone Throwing
8. Predator-Prey Models
9. Projectiles with Drag (TBA)
10. Trial and Error search

In the sections to follow, we present samples from each of the modules (Figures 3–12).

2.3.1. Computer precision. This foundational module examines and experiments with the manner in
which computers store numbers. CST concepts here include the following: (1) understanding that
computers are finite and therefore have limits; (2) being cognizant that uncertainties in floating-point
calculations are unavoidable; (3) understanding how it is possible to work within the limits of a
computer to obtain meaningful results; and (4) developing a feel for the range of numbers that may
be used to describe natural phenomena.

2.3.2. Spontaneous decay. This module aims to give students understanding of some key aspects of
spontaneous decay of radioactive nuclei as well as an example of how to simulate it. The meaning of and
the mathematics of exponential decay and growth are discussed. Emphasized is the meaning of
‘spontaneous’ decay and that the simulation, being a probabilistic process, is a more accurate description
of nature than the traditional exponential function.

Computational scientific thinking concepts here include the following: (1) eliminating some of
simplifying assumptions that ignore the probabilistic aspect of the process but are necessary to
obtain an analytic solution; (2) use of the computer and its random number generator to truly
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2316–2328
DOI: 10.1002/cpe



Figure 3. Top: A schematic (not to scale) representing the cause of the different types of errors that may occur in
floating-point calculations. Bottom: A Vensim model that determines machine precision experimentally.

INSTANCES 2321
simulate the natural process; and (3) the use of a recursion relation that repeats until no nuclei are left in
contrast to the convention direct solution in one step.

2.3.3. Biological growth. This module extends the spontaneous decay module by examining the
predictions of exponential growth for populations and applies it to Wolffia plant growth. This allows
us to take the same concept into two domain applications: physics and biology. Our goal is to have
science teachers, whose backgrounds in scientific disciplines vary, be able to see the relationship of
the mathematical models to their own or multiple areas of expertise.

2.3.4. Bug population dynamics. This module extends the discussions of growth and decay to systems
that exhibit nonlinear behaviors. We aim to have students understand some key properties of nonlinear
systems, discrete mappings, and displaying data, in particular, how to identify bifurcations and chaos.

Computational scientific thinking concepts include the following: (1) developing abstract
representations of growth properties rather than focusing on individual members; (2) devising and
exploring a model whose only solution is numerical; (3) learning that the computer can be used as
an experimental lab to see what is happening in nature; and (4) discovering that simple
mathematical models can explain very complicated behaviors.

2.3.5. Random numbers. This module addresses the meaning of chance and randomness and the
technique that computers use to generate pseudorandom numbers. Although this may seem like just
mathematics, many processes in nature and all scientific measurements contain elements of chance.
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2316–2328
DOI: 10.1002/cpe



Figure 4. The output from a Python simulation of radioactive decay. Note that the decays look exponential at
the small times when the number of nuclei is large, but then exhibits its inherently stochastic nature (the

bumps) as the number gets smaller at larger times.

Figure 5. Three projections of the world’s population growth to the year 2100. Although often called ‘expo-
nential’ growth, they may not be.

2322 R. LANDAU ET AL.
CST concepts here include using a deterministic computer to generate chance, developing an intuition
about what randomness looks like, and then testing for randomness.
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2316–2328
DOI: 10.1002/cpe



Figure 6. The Excel worksheet for the logistic map.

Figure 7. A Vensim simulation that produces random numbers and produces a scatter plot of random (x,y)
values. Although the plot does not prove ‘randomness’, a discernible pattern or clustering in the plot would

disprove randomness.

INSTANCES 2323
2.3.6. Random walks. This module explores how to use random numbers to simulate a random walk.
Such walks are used as models for phenomena such as the path traced by a molecule as it travels in a
liquid or a gas, the variations in the market price of a stock, the trail followed by a grazing animal, or
the accumulation of numerical uncertainty in a many-step calculation. This is another example of how
a computer can simulate nature and thereby permit it to be used as a virtual experimental laboratory.
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2316–2328
DOI: 10.1002/cpe



Figure 8. Views from two different viewing angles of the same three-dimensional randomwalk (Python output).

Figure 9. A pond of odd shape whose area is to be determined. A box of known area is drawn around the
pond, and the ground within the box is cleared of stones. Then handfuls of stones are thrown randomly
and uniformly up into the air, and the number of splashes in the pond is counted, as well as the number

of stones that have landed on the ground within the box.

Figure 10. The time dependences of the populations of prey p(t) (solid curve) and of predator P(t) (dashed
curve). Here, one population continually lags the other (Python output).

2324 R. LANDAU ET AL.
2.3.7. Integration by stone throwing. This module explores a computational approach that determines
the area of an arbitrary shape (integration) by simulating a physical experiment in which stones are
thrown randomly at a pond. The CST concepts here include the following: (1) using random
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2316–2328
DOI: 10.1002/cpe



Figure 11. The trajectories of a projectile without (upper curve) and with (lower) air resistance. Drag is seen
to reduce the range R and to produce a non-parabolic trajectory with a vertical drop at the end.

Figure 12. Preservice teacher perceptions after module use. The graph illustrates the number of people who
stated that a given software environment was useful for learning computational science (‘Useful’) whether
they would be willing to learn more about an application (‘Willingness’) and whether they believe that
the software would be useful in future classrooms (‘Future’). All but one student had no prior experience

with VPython or Vensim.

INSTANCES 2325
numbers to do nonstatistical mathematics like evaluating areas; (2) how using a very simple algorithm
is sometimes balanced by requiring a very large amount of computer time (3) testing a new method first
by using it on a problem whose answer is known; (4) how, in determining an area, the ratio of two
statistical counts can predict a value for a universal constant of nature, namely π; (5) how sometimes
an indirect technique is the best or only way to calculate a quantity; (6) seeing the relation between
computer-generated random numbers and physical events; and (7) how experiments including
chance can be conducted on a computer.

2.3.8. Predator-prey models. This module extends the module on bug population dynamics to
include a second population that interacts with (‘eats’) the first population. CST concepts here
include (1) new behaviors occurring when there are two species interacting with each other beyond
that modeled by the logistics map and (2) that once we understand the one-variable problem, the
two-variable problem becomes easier to attack.

2.3.9. Projectiles with drag. By including air resistance, this module adds realism to the analytic
treatment of projectile motion traditionally studied in physics classes and shows how to solve
numerically equations of motion. CST concepts here include (1) the ease with which the
effect of realistic friction, which is very difficult to include analytically, can be included
simply in the numerical treatment; and (2) how the more realistic treatment that includes
friction resembles the actual observation of projectiles so much more than the idealized,
parabolic trajectory.
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2316–2328
DOI: 10.1002/cpe



2326 R. LANDAU ET AL.
3. FORMATIVE EVALUATION

We tested and assessed the Exponential Decay and Growth and Bug Population Dynamicsmodules [1]
in a preservice teacher education class, Science and Math Ed 413, at Oregon State University. This was
a week-long test and was followed by a student survey. We describe here the survey, the initial
findings, and the subsequent revisions.

3.1. Course context

Science and Math Ed 413, The Nature of Science and Science Education is an undergraduate course for
preservice teachers (PTs) that typically includes computational modeling as part of the course. Through
collaboration with the instructor, Ron Gray, we were able to integrate the modules into the class and
survey the students afterwards. Approximately 20 PTs were enrolled in the class, and because the
course had already covered some computational modeling, the PTs could compare the INSTANCES
approach to what they had already experienced.

We employed a qualitative survey with open-ended questions designed to obtain as much
information as possible from the PTs. The questions, given in the succeeding text, focused on their
experience using the modules in learning about the use of computational tools for solving scientific
problems, and the value of the provided resources (materials, tools).

(1) In what ways do you think the computational tools we’ve been examining in these classes are useful
to you or generally worthy of learning about? What did you know about computations in science
before you had the series of classes? What are the new ideas you gained from the series of classes?

(2) Of the options presented, circle the one(s) that you want to learn about more if covered in a course.
(3) Of the options presented, which do you see as being most likely to be used in teaching science, and
why do you see it as most useful?

(4) Can you tell us why you didn’t choose the others in question 3?
(5) Can you think of a topic or two from your science or math area that would be appropriate for the use
of computational tools in a classroom? Please explain why you think the tool(s) would work.

(6) From a science point of view, how well did the computational technology elucidate the science of
the situation for

(i) Excel for exponential decay; (ii) VPython for exponential growth; and (iii) Vensim for predator-prey?

(7) Did you read the INSTANCES background material?
(7a) If the answer to (7) is ‘yes’, then (i) How easy was the reading? (ii) How useful was the reading?
(iii) Include any suggestions you have to making the reading either easier to read or more useful.
(7b) If the answer to (7) is ‘no’, then please give your reason for not doing the reading. Also, please
provide some feedback on what would make you do the reading.
3.1.1. Initial feedback findings. Fourteen of the PTs completed and returned the survey. Of the 14
respondents, only one reported having taken a Computer Science course and only one reported
having taken a class in programming for the biological sciences. The remainder had some
experience using Excel, but not Python or Vensim. Thus, the majority of PTs did not have
significant experience with the type of classroom computing that the modules assume. A major issue
stated by the participants was that the amount of time needed to learn a given application was too
long (the instructor gave the students the entire module and not a reduced student version). It is not
surprising that, of the three tools we use in the modules, the PTs’ preference was for the more
familiar Excel, and not new software.

Preservice teachers provided explicit feedback on ways of improving the modules. This included an
increased focus on hands-on activities for the PTs and their students, a decrease in the amount of
reading materials needed before beginning the modules (the students were given the full, instructor’s
package rather than just the student version). The PTs noted the extra work involved in learning
both the scientific topics and the computational approaches. Both were new for some of the PTs.
Learning how to present examples in their own classrooms was yet a further challenge.
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2316–2328
DOI: 10.1002/cpe



INSTANCES 2327
3.1.2. Module evolution. Based on the feedback of the PTs, we modified the modules. In addition to a
single linear narrative encompassing all elements of the curricula, we added sections that are tailored
for different activities or audiences. Teacher materials are designed for the teacher who would take
the materials to their classroom. It is a single narrative containing all elements. Exercises that may
be found throughout the narrative are aggregated into activities that can be accessed independently
of the reading materials. Student readings provide the basic information required to understand the
scientific problem, the mathematics, and the computation. We also added some sections to help the
PTs learn about the computing environments.
4. CONCLUSIONS

The main challenge we faced within the INSTANCES group was to agree upon a level of mathematics
that might be accessible to many users without shortchanging the math as an essential element in CST.
Our attempt to address this challenge was to provide background materials for the teachers containing
the math and then leave it up to the teachers to decide what to present to their students.

Conclusions regarding the effectiveness of the developed materials for the intended audience are
somewhat premature because the first class derived from the materials was not to be taught until the
summer of 2013. However, this class was canceled when a co-PI scheduled to teach it unexpectedly
left the country. We are still looking for someone to test our modules in an actual class and
welcome contacts. In any case, we plan to incorporate them into collections of similar materials.

From the qualitative feedback provided by teachers in the first course in which we piloted the Bugs
and Decay modules, we know that a focus on computation in the scientific process and content is
important to the students. The main challenges faced by the preservice teachers were (1) the need to
balance the amount of information conveyed in reading materials with hands-on investigations and
(2) dealing with the disparity of computing experience that both teachers and students bring to class.

Clearly, we cannot just give examples in Python and Vensim without preparing the students in these
languages. The inclusion of Excel examples in the materials is important in order not to exclude those
students who are uncomfortable with Python or Vensim, yet an effort should be made to go beyond
Excel in the actual practice of science. Our hope is that those students not experienced with Python
and Vensim may yet use these tools as the course progresses. In any case, the exact tools used are
not as important as having teachers learn how to incorporate mathematical modeling and computing
concepts in their science classes, and thereby answer the NSF’s challenge to teach science as it is
currently being performed: a unity of theory, experimentation, and simulation.
ACKNOWLEDGEMENTS

This work has been supported predominantly by the National Science Foundation TUES Award 1043298-
DUE as part of their Transforming Undergraduate Education in Science, Technology, Engineering, and
Mathematics program. We thank them.

REFERENCES

1. Incorporating computational scientific thinking advances into education & science courses. Web page, (Available
from: http://science.oregonstate.edu/INSTANCES/) [Accessed on May 21, 2014].

2. NSF 10-015, dear colleague letter: cyberinfrastructure framework for 21st century science and engineering (CF21).
(Available from: http://www.nsf.gov/pubs/2010/nsf10015/nsf10015.jsp) [Accessed on May 21, 2014].

3. Phillips P. Computer Science Teachers Association (CSTA), Association for Computing Machinery, “Highlighted
Resources”, Computational Thinking: A Problem-Solving Tool for Every Classroom, 2008. (Available from: http://
csta.acm.org/Resources/sub/HighlightedResources.html) [Accessed on May 21, 2014].

4. Bell LR, Gess-Newsome J, Luft J. Technology in the Secondary Science Classroom, Washington, DC: NSTA Press,
2008. Free electronic copies are available to the members of the National Science Teachers Association at http://
www.nsta.org [Accessed on May 21, 2014].

5. Graduate education in physics, A Conference to Discuss the Status and Future of Graduate Education, American
Center for Physics, College park, MD, (Available from: http://www.aps.org/programs/education/graduate/upload/
2008-APS-Graduate-Education-Conference-Report_v0213.pdf) [Accessed on May 21, 2014].
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2316–2328
DOI: 10.1002/cpe



2328 R. LANDAU ET AL.
6. Yasar O. Computational science education: standards, learning outcomes and assessment, Computational Science-
ICCS 2001, Int. Conf., V.N. Alexandrov et al., eds., Lecture Notes in Comput. Sci 2073, Springer-Verlag, Berlin,
2001; 1159–1169.

7. Yasar O, Landau R. Elements of computational science education. SIAM Review 2003; 45:787–805. (Available from:
http://www.physics.oregonstate.edu/~rubin/) [Accessed on May 21, 2014].

8. aLearning through evaluation, adaptation and dissemination (LEAD) center, University of Wisconsin, (Available
from: http://www.ntlf.com/html/lib/suppmat/72lead.htm); bCuny J, Aspray W. Recruitment and retention of women
graduate students in computer science and engineering, Computing Research Association’s Committee on the Status
of Women in Computing Research, 2001. (Available from: http://www.cra.org/Activities/craw/projects/
best_practices.php; http://www.cra.org/reports/r&rwomen.pdf); cRosser SV. Teaching the Majority. Teachers
College Press: New York, NY, 1995.

9. VPython (downloads include packages). (Available from: http://www.vpython.org/) [Accessed on May 21, 2014].
10. Microsoft Excel. (Available from: http://office.microsoft.com/en-us/excel/) [Accessed on May 21, 2014].
11. Vensim. (Available from: http://vensim.com/) [Accessed on May 21, 2014].
12. Principles and Standards for School Mathematics, National Council of Teachers of Mathematics, 2000. (Available

from: http://www.nctm.org/standards/content.aspx?id=16909) [Accessed on May 21, 2014].
13. National Science Education Standards, NRC, National Academy Press, 1996. (Available from: http://www.nap.edu/

openbook.php?record_id=4962) [Accessed on May 21, 2014].
Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2014; 26:2316–2328
DOI: 10.1002/cpe


