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 Computer Numbers and their Precision, I Number Storage 
 

Learning goal:  To understand how the ways computers store numbers lead to limited precision and 
how that introduces errors into calculations.   

Learning objective         

Computational and mathematical objectives: 

• To understand that exact or whole numbers can be stored as integers. 
• To understand that the division of two integers is always rounded down to a smaller integer. 
• To understand that numbers can also be stored in scientific or engineering notation (floating 

point numbers). 
• To understand the advantages and disadvantages of floating point numbers. 
• To understand that computer errors occur when an integer becomes too large, or too negative.  
• To understand that computer errors known as overflow occur when the exponent of a floating 

point number becomes too large. 
• To understand that computer errors known as underflow occur when the exponent of a floating 

point number becomes too negative. 
• To understand that truncation or roundoff occurs when the mantissa of a floating point number 

becomes too long. 
• To understand some of the consequences of the roundoff of floating point numbers. 

Science model/computation objectives: 

• We present a model in which the complexities of the computer storage of floating point 
numbers are reduced to knowing a single number called the machine precision, which the 
student is asked to determine empirically.. 

• To understand that just as laboratory experiments always have limits on the precision of their 
measurements, so too do computer simulations have limits on the precision of their numbers. 

• To understand the difference between “precision” and “accuracy”.  
• Students will practice the following scientific skills:  

o Doing numerical experiments on the computer. 

Activities 

In this lesson, students will: 

• Perform calculations on the computer as experiments to determine the computer’s limits in 
regard to the storage of numbers.   

• Perform numerical calculations to see how the rules of mathematics are implemented. 
• Sum the series for the sine function to see the effect of error accumulation. 
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Products 

? 

Where’s Computational Scientific Thinking and Intuition Development 

• Understanding that computers are finite and therefore have limits that affect calculations. 
• Being cognizant that uncertainties in numerical calculations are unavoidable. 
• Understanding how to obtain meaningful results even with a computer’s limited precision. 
• Understanding the range of numbers that may be necessary to describe a natural phenomenon. 

Background 
It is expected students understand some basic aspects of numbers and their properties. In particular, 
they should be familiar with the real number systems, integers, rational numbers and irrational 
numbers, as well as the scientific representation of numbers. A review of these aspects can be found at 
[UNChem], where there is short Mathematics Review as well as some a useful Calculator Review. 

Landau’s Rules of Education:  Much of the educational philosophy applied in these modules is 
summarized by these three rules:  

1. Most of education is learning what the words mean; the concepts are usually quite simple once 
you understand what you are being told. 

2. Confusion is the first step to understanding. 
3. Traumatic experiences tend to be the most educational ones. 

 

In colloquial usage, the terms accurate and precise are often used interchangeably. In computational 
science and engineering, precision usually indicates the number of significant figures or meaningful 
decimal places there are in a measurement or a calculation. In contrast, accuracy is more of a measure 
of how close a measurement of some quantity is to its true value. Likewise, accuracy sometimes refers 
to how close a theoretical description or model of some phenomena is to what might actually be 
happening in nature. 

You may think of precision as relating to the quality or capability of an “instrument”, but not necessarily 
as to whether the measured value is close to the true value. For example, we may have a watch that 
always reads exactly 11:00.00 AM when the sun is at its zenith, and does this year after year. Since there 
are approximately  𝜋 × 107 seconds in a year, this means that the watch has a precision of better than 
one part in a million, which is quite precise as it is quite repeatable. However, since the true time should 
be noon, the watch cannot be said to be an accurate measure of “the time”, although it would be 
accurate for measuring time differences. 

Computer Number Representations (Theory) 
 Regardless of how powerful a computer may be, it is still finite. This means that the computer takes a 
finite time to complete an operation and that it has only a finite amount of space in which to store 

http://www.shodor.org/unchem/math/index.html�
http://www.shodor.org/unchem/math/calc/index.html�
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things . Of course as computers and communication networks get faster, and as the available storage 
gets to be very large, a computer’s response may seem to be instantaneous and its memory may seem 
to be endless, but if you try to do something like predict the weather from first principles or make a 
copy of a high-definition DVD, the computer’s finiteness becomes evident.  

In this module we explore one aspect of the finiteness of computers, namely, how they store numbers. 
And because the basic scheme is used on computers of all sizes, the limitations related to this storage is 
universal and is often an essential element in learning to think computationally. 

The problem faced by computer designers is how to represent an arbitrary number using a finite 
amount of memory. Most computer memories contain magnetic materials in which elementary magnets 
are aligned to face either up or down. As a consequence, the most elementary units of computer 
memory are the two binary integers 0 and 1 that form the basis of the binary number system 
(representing all numbers with just two symbols).  The phrase “binary integer” is usually abbreviated as 
the word bit. This in turn means that, ultimately, everything stored in a computer memory is just a long 
strings of zeros and ones, with each bit representing the number of times a power of 2 is to be added in. 
For example, the decimal 10 is the binary 1010, that is, 10decimal  =  1010binary.   

Optional:  We will leave discussion of the binary representation of numbers to a math class for now, 
but for the curious:  

(1)                                                       1010binary =  1× 23 + 0× 22 + 1× 21 + 0× 20,                          where 

(2)                                                        23  =  8,      22 = 4,     21 = 2,      2   0 = 1,                                        and 

(3)                                                              10decimal  =  1× 101 +  0× 100,                                              where 

(4)                                                                     101  =  10,       100 = 1. 

As a consequence of this scheme, N bits can store positive integers in the range 0 - 2𝑁. 

While it is no longer essential that you know how to convert numbers between different representations 
in order to compute (we could tell you war stories about that, but maybe another time), it often is 
essential to remember that numbers on a computer are stored using a finite number of bits, and that 
unless the number is a power of 2, the process of converting it to a decimal number introduces a small 
uncertainty. In computing, an uncertainty is often called an “error”, although this does not imply that 
anyone or any computer has done anything wrong.  

The number of bits that a computer or its operating system uses to store a number is called the word 
length. For example, you might have heard about 32 bit and 64 bit versions of the Windows operating 
systems. Well, these just refer to the length of the words that the computer processes. While we are 
talking about these sorts of things, we should mention that often word lengths or memory sizes are 
expressed in bytes (a mouthful of bits), where 

(5)                                                                        1 byte = 8 bits = B. 
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Conveniently, 1 byte is the amount of memory needed to store a single letter like ``a''. This adds up to a 
typical printed page requiring approximately 3000 B = 3 KB of storage. Of course with memory sizes 
continuing to grow, rather than bytes, you hear of kilobytes, megabytes or gigabytes,  which mean one 
thousand, one million or one billion bytes (gega is used for billion since in Europe a billion means a 
million millions rather than our thousand millions).  [If you want to be really technical, the kilobyte of 
computer memory is really 210 = 1024 bytes, but you do not have to worry about that.] 

Integer Storage 
In a mathematical sense, integers are real numbers (no imaginary parts) that do not contain a fractional 
or decimal part. They can be positive or negative and comprise the set {-∞, ..., −2, −1, 0, 1, 2, ... ∞}.  
Integers are also are one of two ways to store numbers on a computer (we get to the second way soon). 
They are stored exactly, that is, with no fractional part, but because a finite number of bits used to 
represent them, they do not cover the entire range from -∞ to +∞. Just what range they do cover, and 
what happens when you try to go beyond that range is something we shall leave for the exercises.  

In order to satisfy Landau’s first rule of education, you should know that if you try to store a number 
larger than the hardware or software was designed for, what is called an overflow results. Likewise, if 
you try to store a number smaller than the hardware or software was designed for, what is called an 
underflow results. As we shall see, integers do not under- or overflow gracefully, and if either an under- 
or overflow occur in a computation you are undertaking with integers, it is likely that your results are 
not meaningful (“garbage”). Using 64 bits permits integers in the range -1019 − 1019 . Integers in Python 
cover the range: 

(6)                                                        -2, 147, 483, 648 ≤ Integers≤  +2, 147,483, 647 

While at first this may seem like a large range, it really is not when compared to the range of sizes 
encountered in the physical world. As a case in point, the ratio of the size of the universe to the size of a 
proton is approximately ±1041, which is way beyond what you can do with integers. 

Order of Operations 
Before we run headfirst into actually doing calculations on the computer, it is good to remind you that 
computers may be very powerful, but they still cannot figure out what you are thinking! (sorry Hal.) So 
even though you may know what you want when you write 

(7)                      6 + 3 × 2 = ?, 

the computer may well find this ambiguous. Should it read the operations from left to right, as is done in 
English, or from right to left, as in done in Hebrew and Arabic? The general rule for order of operations is   

(8)                                                𝑃𝑙𝑒𝑎𝑠𝑒 𝐸𝑥𝑐𝑢𝑠𝑒 𝑀𝑦 𝐷𝑒𝑎𝑟 𝐴𝑢𝑛𝑡 𝑆𝑎𝑙𝑙𝑦! 
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that is, Parentheses, Exponentiation, Multiplication or Division, Addition or Subtraction. This means first 
do any operation in parentheses, then do any exponentiation, etc.  Accordingly the operation in 
equation 7 is equivalent to  

(9)                      6 + (3 × 2) = 6 + 6 = 12. 

 

Exercise: Aunt Sally 
1) Use your handy calculator, and then computer, to evaluate 

i) 6 + 3 × 2 
ii) 6 + (3 × 2) 
iii) (6 + 3) × 2 
iv) 6  ÷ 3 +2 
v) 6  ÷ (3 +2) 
vi) 6 + 2  ÷ 3 

Integer Arithmetic 
You can add, subtract and multiply integers on a computer and get just the results you would expect. In 
contrast, when you divide two integers and a remainder results, a decision must be made about what to 
do with the fractional part since integers do not have fractional parts. Most computer programs just 
throw away the fractional part, or in other words, the result is always rounded down, even if the fraction 
is greater than 0.5.  

For example, 6c/2c = 3 c, but  3c /2c = 1c, where we use the subscript c to indicate that this is computer 
math.  

Exercise:  Integer Arithmetic  
Now try some of these exercises on your computer to see the effect of Integer arithmetic 

1. 6 × 2 = ? 
2. 6/2 = ? 
3. 3/2 = ? 
4. 8/3  =  ? 
5. 2 × (6/2) = ? 
6. 2 × 6/2 = ? 

 

7. 2 × (3/2) = ? 
8. 12/2/3 = ? 
9. 12/(2/3) = ? 
10. (12/2)/3 = ? 
11. 12/(3/2) = ? 

 

Note that the last 6 exercises are a little tricky in that they involve two arithmetic operations, with the 
final result possibly depending upon the order in which the operations are preformed. In exercise 5, the 
parenthesis makes it clear to the computer and you that you want 6 to be divided by 2 before the 
multiplication occurs. Exercise 6 should produce the same result since division is usually performed 
before multiplication, but it is always worth checking. In any case, because expressions like those in 
exercises 6 and 8 are ambiguous, it is we recommend using parenthesis to eliminate possible 
ambiguities. By the way, in exercise 8, divisions are performed from left to right and so the answer 
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should be 2. However, when the integer division in 9 within the parenthesis is carried out, the result is 0, 
and as you have seen, computers do not permit division by zero. 

Exercise: Determining Range of Integers  
Write a program, or sit at a terminal and do this by hand, and so determine experimentally the range of 
positive and negative integers on your computer system and for your computer language.  (The simple 
Python program Limits.py given later can be modified for this purpose.) You can do this by successive 
multiplications by 2 until the results change abruptly, which is your signal that something  not-quite-
right has happened. A sample pseudocode is 

max = 1 
  min = -1. 

do 1 < i < N 
max = max *2. 

         min = min * 2. 
         write i, max, min  

end do 
   
Hint: we have indicated above that the integers in Python lies between ∓1019, which is equivalent to 
approximately ∓264. 

 Floating-Point Numbers 
 

 

 

 

 

 

 

 
Because integers are represented exactly on a computer, there is no loss of information when using 
them on a computer (at least if you remain within their range). Yet for many purposes the range of 
integers is too small, and of course many important numbers (like π) have fractional parts that cannot 
be represented an integer or even as the ratio of integers (rational numbers). So we also need a more 
powerful way to represent numbers on a computer. In practice, most scientific computations use the 
floating point representation of numbers, which otherwise is commonly known as scientific or 
engineering notation. For example, the speed of light c= + 2.99792458 × 108 m/s in scientific notation 

 

Figure 1 The approximate limits of double-precision (64 bit) floating-point numbers and the consequences of 
exceeding these limits. The hash marks represent the values of numbers that can be stored (approximately 16 decimal 
places); storing a number in between these values leads to round-off error. The shaded areas correspond to over- and 
underflow. 
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or +0.299792458 × 109 in engineering notation. In each of these cases, the number in front is called the 
mantissa and contains nine significant figures.  
 
The power to which 10 is raised is called the exponent, with the plus sign included as a reminder that 
these numbers may be negative: 

𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑃𝑜𝑖𝑛𝑡 𝑁𝑢𝑚𝑏𝑒𝑟 =  𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 
Often on computers the power is indicated by the letter E meaning exponent; for example, c= + 
2.99792458 E08 or 0.299792458 E09. Indeed, deciding whether a number should be represented as an 
integer or a float is an important aspect of “thinking computationally”. 

The problem with using floating point numbers on a computer is that a fixed number of bits is used to 
represent the number, and so this limits the precision possible and the range of numbers possible. 
When 32 bits are used to store a floating-point number, we have what is called single precision, or 
singles, or just floats. When 64 bits are used to store a floating-point number, we have what is called 
double precision, or doubles.  Some computer languages or applications like Maple and Mathematica 
permit the user to define the precision desired, but this is not usually employed since it slows down the 
calculation and sort of requires you to know the answer before doing the calculation.  Most scientific 
computations require and use double precision (64 bits). 

Because only a finite number of bits are used to store the mantissa (the part in front), some numbers 
like π will have some of their digits furthest from the decimal point (their least significant parts) 
truncated, and thus will not be stored exactly. In Figure 1 we represent those numbers that can be 
stored exactly by the vertical hash marks. If the floating point number you try to store on the computer 
falls between two hash marks, some of the least significant digits are truncated and the number gets 
stored at the nearest has mark. For example, if you tried to store 1/3 = 0.33333333333… as a single 
precision float with 7 digit mantissa, it would be stored as 0.3333333, with nothing beyond the last 3.    

We have just described how truncation occurs when you try to store a number whose mantissa has 
more digits than the computer allows. Well, there is also a fixed number of digits allocated to store the 
exponent of a floating point number, and if you try to store more than that, something untoward 
happens. If your exponent is positive and is too big, an error condition known as overflow occurs. This 
usually causes your calculation to stop in its tracks, which is a good thing because otherwise the 
computer would just be producing garbage. If your exponent is a negative number with too large a 
magnitude (i.e. the number is too small is too small), an error condition known as underflow occurs. In 
this case the computer usually sets the full number to zero and continues with the calculation. This may 
result in some loss of precision, but probably will not produce garbage.   

 The Institute of Electrical and Electronics Engineers (IEEE) has actually set standards for how computers 
and computer programs deal with floating point numbers. This means that running the same program 
on different computers should result in the same answers, even though the hardware and software may 
differ.  As we shall define more carefully soon, the result may actually differ somewhat, but that 
difference would be smaller than the known precision of the floating point numbers being used. In 
addition, part of the IEEE standard calls for the symbol “INF” (for infinity) to occur if an overflow occurs, 
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and “NAN” (for not a number) to occur if you try to divide by zero. These symbols cannot be used in any 
further calculations, but are just given to tell you what the problem is. 

The actual limits for single and double precision numbers differ, with the increased length of double 
precision words leading to a greater range and an increased precision. Specifically, single-precision (32-
bit) numbers have mantissas with 6.5 decimal places (not an exact number due to binary to decimal 
conversion), and exponents that limit their range to 

1.4 × 10−45 ≤ Single Precision Numbers ≤  3.4 × 10+38 

Double precision (64 bit) numbers have mantissas with 16 decimal places, and exponents that limit their 
range to 

4.9 × 10−324 ≤ Double Precision Numbers ≤  1.8 × 10+308 

 But, do not believe everything we tell you. We will ask you to verify these limits for yourself. 

 To repeat, serious scientific calculations almost always require at least 64-bit (double-precision) floats. 
And if you need double precision in one part of your calculation, you probably need it all over, which 
means double-precision library routines for all functions used as well. 

 Python and the IEEE 754 Standard 
 Python is a relatively recent language with changes and extensions occurring as its use spreads and as 
its features mature. It should be no surprise then that Python does not at present adhere to all aspects 
of the IEEE standard. Probably the most relevant difference for us is that Python does not support single 
(32 bit) precision floating point numbers. So when we deal with a data type called a float in Python, it is 
the equivalent of a double in the IEEE standard. Since singles are inadequate for most scientific 
computing, this is not a loss. However be wary, if you switch over to Java or C you should declare your 
variables as doubles and not as floats.  

Exercise: Over and Underflows   
1. Write a program, or sit at a terminal and do this by hand, and test for the underflow and 

overflow limits (within a factor of 2) of your computer system.  (The simple Python program 
Limits.py given later on can be modified for this purpose.) You can do this by successive 
multiplication and divisions by 2 until the computer tells you that something is wrong. A sample 
pseudocode is 

under = 1. 
  over = 1. 

do 1 < i <N    
         under = under/2. 
         over = over * 2. 
         write out: i, under, over 

end do 
  



INSTANCES: Incorporating Computational Scientific Thinking Advances into Education & Science Courses 
 
 

 9 

You may need to increase N if your initial choice does not lead to underflow and overflow.   

2. If your computer system lets you specify word length, check where under- and overflow occur 
for single-precision floating-point numbers (floats). Give your answer in decimal. 

3. Check where under- and overflow occur for double-precision floating-point numbers (doubles in 
Java, floats in Python).  

Machine Precision (Model) 
 A major concern of computational scientists is that the floating-point representation used to store 
numbers is of limited precision. In general, single-precision numbers are precise to 6-7 decimal places, 
while doubles are precise to 15-16 places.  To see how limited precision affects calculations, consider the 
simple computer addition of two single-precision words with 6 place precision:  

7  +  1.0 × 10−7 = ? 

Because there is no room left to store any digit beyond the sixth, they are lost, and after all this hard 
work the addition just gives 7 as the answer (truncation error in Figure 1). In other words, because a 
single precision number stores only 6 decimal places, it effectively ignores any changes beyond the sixth 
decimal place.  

As you may have realized already, a number stored on a computer may not equal the mathematical 
value of that number. For example, mathematically the decimal representation of 2/3 has an infinite 
number of digits, 2/3 = .6666666666…. . In contrast, the computer representation is finite, for example, 
2/3c = 0.666667, where we use the subscript c to indicate the computer representation. In other words, 
except for powers of 2 that are store exactly, we should assume that all single-precision numbers 
contain an error in the sixth decimal place and that all doubles have an error in the fifteenth or sixteenth 
place. 

The preceding loss of precision is categorized by defining a number knows as the machine precision ε𝑚. 
Although this may sound like a contradiction at first, ε𝑚 is the largest positive number in a computer 
computation that can be added to the number stored as 1 without changing the value of that stored 1: 

1𝑐 + ε𝑚 =  1𝑐 . 

Here the subscript c is a reminder that this is a computer representation of 1.  Note that the machine 
precision is related to the number of decimal places used to store the mantissa of a floating-point 
number, specifically, 10− 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑐𝑒𝑠.  Because we have told you several times already that the 
number of places for single and double precision numbers, you can predict a value for the machine 
precision by a simple substitution. However, as we ask you to do next, we prefer that you use your 
computer as a laboratory and experiment to determine its machine precision. 

Exercise: Determine Your Computer’s Machine Precision 
We want you to either write a program or just enter numbers on your computer terminal that will 
permit you to determine the machine precision ε𝑚 of your computer system. You do not have to be 
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really precise, so getting the answer within a factor of 2 will be just fine. The basic idea is very simple: 
start with an arbitrary value of ε𝑚,  say ε𝑚 = 1, and add that to 1.0. If the answer is not 1.0, then make 
ε𝑚 smaller and again add it to 1.0. Keep repeating the process until you get 1.0 as an answer. The largest 
value of ε𝑚 for which this happens is your machine precision.  

Implementation 

Note, if you are doing this by entering the values of ε𝑚 by hand, you may want to divide by 10 each time 
until you get a gross answer, and then do some fine tuning. If you are writing a program, you can divide 
by 2 and just let the computer churn away for a long time. Here is a sample pseudo code (the basic 
elements of a computer program not specific to any language): 

eps = 1. 
do N times 
    eps = eps/2.                                  # Make smaller 
    one = 1. + eps                                
   output one, eps          # Write loop number, one, eps 

                            end do  
 

Python Implementation 

A model Python program than needs to be extended  to actually determine the precision is  Limits.py:  

   

     

 

 

 

Vensim:         

Excel:   

Summary and Conclusions 
You must know something about how computers store numbers in order to judge how reliable the 
results are. Unless you are carrying out symbolic manipulations, computed numbers are never exact, but 
can still be used to carry out calculations within a stated level of precision. Specifically, floating point 
numbers can give up to 16 places of precision, while integers can be exact, but have a much more 
limited range of values. Integers are thus appropriate for counting, such done when looping. 

# Limits.py: Increase N to determine approximate machine precision 
 

N = 3 
eps = 1.0 
for  I  in range(N): 
     eps = eps/2 
     one = 1.0  +  eps 
     print('eps = ', eps,  'one = ', one)  
print("Enter and return a character to finish") 
s=raw_input() 
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    Where's Computational Scientific Thinking  

• Understanding that computers are finite and therefore have limits. 
• Being cognizant that uncertainties in numerical calculations are unavoidable. 
• Understanding how it is possible to work within the limits of a computer to obtain meaningful 

results. 
•  Understanding the range of numbers that may be necessary to describe a natural phenomenon. 

    Intuition Development  
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 Computer Numbers and their Precision, I Number Storage



Learning goal:  To understand how the ways computers store numbers lead to limited precision and how that introduces errors into calculations.  

Learning objective        

Computational and mathematical objectives:

· To understand that exact or whole numbers can be stored as integers.

· To understand that the division of two integers is always rounded down to a smaller integer.

· To understand that numbers can also be stored in scientific or engineering notation (floating point numbers).

· To understand the advantages and disadvantages of floating point numbers.

· To understand that computer errors occur when an integer becomes too large, or too negative. 

· To understand that computer errors known as overflow occur when the exponent of a floating point number becomes too large.

· To understand that computer errors known as underflow occur when the exponent of a floating point number becomes too negative.

· To understand that truncation or roundoff occurs when the mantissa of a floating point number becomes too long.

· To understand some of the consequences of the roundoff of floating point numbers.

Science model/computation objectives:

· We present a model in which the complexities of the computer storage of floating point numbers are reduced to knowing a single number called the machine precision, which the student is asked to determine empirically..

· To understand that just as laboratory experiments always have limits on the precision of their measurements, so too do computer simulations have limits on the precision of their numbers.

· To understand the difference between “precision” and “accuracy”. 

· Students will practice the following scientific skills: 

· Doing numerical experiments on the computer.

Activities

In this lesson, students will:

· Perform calculations on the computer as experiments to determine the computer’s limits in regard to the storage of numbers.  

· Perform numerical calculations to see how the rules of mathematics are implemented.

· Sum the series for the sine function to see the effect of error accumulation.

Products

?

Where’s Computational Scientiﬁc Thinking and Intuition Development

· Understanding that computers are finite and therefore have limits that affect calculations.

· Being cognizant that uncertainties in numerical calculations are unavoidable.

· Understanding how to obtain meaningful results even with a computer’s limited precision.

· Understanding the range of numbers that may be necessary to describe a natural phenomenon.

Background

It is expected students understand some basic aspects of numbers and their properties. In particular, they should be familiar with the real number systems, integers, rational numbers and irrational numbers, as well as the scientific representation of numbers. A review of these aspects can be found at [UNChem], where there is short Mathematics Review as well as some a useful Calculator Review.

Landau’s Rules of Education:  Much of the educational philosophy applied in these modules is summarized by these three rules: 

1. Most of education is learning what the words mean; the concepts are usually quite simple once you understand what you are being told.

2. Confusion is the first step to understanding.

3. Traumatic experiences tend to be the most educational ones.



In colloquial usage, the terms accurate and precise are often used interchangeably. In computational science and engineering, precision usually indicates the number of significant figures or meaningful decimal places there are in a measurement or a calculation. In contrast, accuracy is more of a measure of how close a measurement of some quantity is to its true value. Likewise, accuracy sometimes refers to how close a theoretical description or model of some phenomena is to what might actually be happening in nature.

You may think of precision as relating to the quality or capability of an “instrument”, but not necessarily as to whether the measured value is close to the true value. For example, we may have a watch that always reads exactly 11:00.00 AM when the sun is at its zenith, and does this year after year. Since there are approximately   seconds in a year, this means that the watch has a precision of better than one part in a million, which is quite precise as it is quite repeatable. However, since the true time should be noon, the watch cannot be said to be an accurate measure of “the time”, although it would be accurate for measuring time differences.

Computer Number Representations (Theory)

 Regardless of how powerful a computer may be, it is still finite. This means that the computer takes a finite time to complete an operation and that it has only a finite amount of space in which to store things . Of course as computers and communication networks get faster, and as the available storage gets to be very large, a computer’s response may seem to be instantaneous and its memory may seem to be endless, but if you try to do something like predict the weather from first principles or make a copy of a high-definition DVD, the computer’s finiteness becomes evident. 

In this module we explore one aspect of the finiteness of computers, namely, how they store numbers. And because the basic scheme is used on computers of all sizes, the limitations related to this storage is universal and is often an essential element in learning to think computationally.

The problem faced by computer designers is how to represent an arbitrary number using a finite amount of memory. Most computer memories contain magnetic materials in which elementary magnets are aligned to face either up or down. As a consequence, the most elementary units of computer memory are the two binary integers 0 and 1 that form the basis of the binary number system (representing all numbers with just two symbols).  The phrase “binary integer” is usually abbreviated as the word bit. This in turn means that, ultimately, everything stored in a computer memory is just a long strings of zeros and ones, with each bit representing the number of times a power of 2 is to be added in. For example, the decimal 10 is the binary 1010, that is, 10decimal  =  1010binary.  

Optional:  We will leave discussion of the binary representation of numbers to a math class for now, but for the curious: 

(1)                                                       1010binary =  1 + 0 + 1 + 0,                          where

(2) =  8,     = 4,  = 2,  = 1,                                        and

(3)                                                              10decimal  =  1 +  0,                                              where

(4)                                                                       =  10,  = 1.

As a consequence of this scheme, N bits can store positive integers in the range 0 - .

While it is no longer essential that you know how to convert numbers between different representations in order to compute (we could tell you war stories about that, but maybe another time), it often is essential to remember that numbers on a computer are stored using a finite number of bits, and that unless the number is a power of 2, the process of converting it to a decimal number introduces a small uncertainty. In computing, an uncertainty is often called an “error”, although this does not imply that anyone or any computer has done anything wrong. 

The number of bits that a computer or its operating system uses to store a number is called the word length. For example, you might have heard about 32 bit and 64 bit versions of the Windows operating systems. Well, these just refer to the length of the words that the computer processes. While we are talking about these sorts of things, we should mention that often word lengths or memory sizes are expressed in bytes (a mouthful of bits), where

(5)                                                                        1 byte = 8 bits = B.

Conveniently, 1 byte is the amount of memory needed to store a single letter like ``a''. This adds up to a typical printed page requiring approximately 3000 B = 3 KB of storage. Of course with memory sizes continuing to grow, rather than bytes, you hear of kilobytes, megabytes or gigabytes,  which mean one thousand, one million or one billion bytes (gega is used for billion since in Europe a billion means a million millions rather than our thousand millions).  [If you want to be really technical, the kilobyte of computer memory is really  = 1024 bytes, but you do not have to worry about that.]

Integer Storage

In a mathematical sense, integers are real numbers (no imaginary parts) that do not contain a fractional or decimal part. They can be positive or negative and comprise the set {-, ..., −2, −1, 0, 1, 2, ... }.  Integers are also are one of two ways to store numbers on a computer (we get to the second way soon). They are stored exactly, that is, with no fractional part, but because a finite number of bits used to represent them, they do not cover the entire range from - to +. Just what range they do cover, and what happens when you try to go beyond that range is something we shall leave for the exercises. 

In order to satisfy Landau’s first rule of education, you should know that if you try to store a number larger than the hardware or software was designed for, what is called an overflow results. Likewise, if you try to store a number smaller than the hardware or software was designed for, what is called an underflow results. As we shall see, integers do not under- or overflow gracefully, and if either an under- or overflow occur in a computation you are undertaking with integers, it is likely that your results are not meaningful (“garbage”). Using 64 bits permits integers in the range -. Integers in Python cover the range:

(6)                                                        -2, 147, 483, 648  Integers  +2, 147,483, 647

While at first this may seem like a large range, it really is not when compared to the range of sizes encountered in the physical world. As a case in point, the ratio of the size of the universe to the size of a proton is approximately ± which is way beyond what you can do with integers.

Order of Operations

Before we run headfirst into actually doing calculations on the computer, it is good to remind you that computers may be very powerful, but they still cannot figure out what you are thinking! (sorry Hal.) So even though you may know what you want when you write

(7)	                     6 + 3 × 2 = ?,

the computer may well find this ambiguous. Should it read the operations from left to right, as is done in English, or from right to left, as in done in Hebrew and Arabic? The general rule for order of operations is  

(8)  

[bookmark: paren]that is, Parentheses, Exponentiation, Multiplication or Division, Addition or Subtraction. This means first do any operation in parentheses, then do any exponentiation, etc.  Accordingly the operation in equation 7 is equivalent to 

(9)	                     6 + (3 × 2) = 6 + 6 = 12.



Exercise: Aunt Sally

1) Use your handy calculator, and then computer, to evaluate

i) 6 + 3 × 2

ii) 6 + (3 × 2)

iii) (6 + 3) × 2

iv) 6  ÷ 3 +2

v) 6  ÷ (3 +2)

vi) 6 + 2  ÷ 3

Integer Arithmetic

You can add, subtract and multiply integers on a computer and get just the results you would expect. In contrast, when you divide two integers and a remainder results, a decision must be made about what to do with the fractional part since integers do not have fractional parts. Most computer programs just throw away the fractional part, or in other words, the result is always rounded down, even if the fraction is greater than 0.5. 

For example, 6c/2c = 3 c, but  3c /2c = 1c, where we use the subscript c to indicate that this is computer math. 

Exercise:  Integer Arithmetic 

Now try some of these exercises on your computer to see the effect of Integer arithmetic

		1. 6 × 2 = ?

2. 6/2 = ?

3. 3/2 = ?

4. 8/3  =  ?

5. 2 × (6/2) = ?

6. 2 × 6/2 = ?



		7. 2 × (3/2) = ?

8. 12/2/3 = ?

9. 12/(2/3) = ?

10. (12/2)/3 = ?

11. 12/(3/2) = ?







Note that the last 6 exercises are a little tricky in that they involve two arithmetic operations, with the final result possibly depending upon the order in which the operations are preformed. In exercise 5, the parenthesis makes it clear to the computer and you that you want 6 to be divided by 2 before the multiplication occurs. Exercise 6 should produce the same result since division is usually performed before multiplication, but it is always worth checking. In any case, because expressions like those in exercises 6 and 8 are ambiguous, it is we recommend using parenthesis to eliminate possible ambiguities. By the way, in exercise 8, divisions are performed from left to right and so the answer should be 2. However, when the integer division in 9 within the parenthesis is carried out, the result is 0, and as you have seen, computers do not permit division by zero.

Exercise: Determining Range of Integers 

Write a program, or sit at a terminal and do this by hand, and so determine experimentally the range of positive and negative integers on your computer system and for your computer language.  (The simple Python program Limits.py given later can be modified for this purpose.) You can do this by successive multiplications by 2 until the results change abruptly, which is your signal that something  not-quite-right has happened. A sample pseudocode is

max = 1

 	min = -1.

do 1 < i < N

max = max *2.

       		min = min * 2.

       		write i, max, min 

end do

  

Hint: we have indicated above that the integers in Python lies between , which is equivalent to approximately .
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Because integers are represented exactly on a computer, there is no loss of information when using them on a computer (at least if you remain within their range). Yet for many purposes the range of integers is too small, and of course many important numbers (like ) have fractional parts that cannot be represented an integer or even as the ratio of integers (rational numbers). So we also need a more powerful way to represent numbers on a computer. In practice, most scientific computations use the floating point representation of numbers, which otherwise is commonly known as scientific or engineering notation. For example, the speed of light c= + 2.99792458 m/s in scientific notation or +0.299792458  in engineering notation. In each of these cases, the number in front is called the mantissa and contains nine significant figures. 



The power to which 10 is raised is called the exponent, with the plus sign included as a reminder that these numbers may be negative:



Often on computers the power is indicated by the letter E meaning exponent; for example, c= + 2.99792458 E08 or 0.299792458 E09. Indeed, deciding whether a number should be represented as an integer or a float is an important aspect of “thinking computationally”.

The problem with using floating point numbers on a computer is that a fixed number of bits is used to represent the number, and so this limits the precision possible and the range of numbers possible. When 32 bits are used to store a floating-point number, we have what is called single precision, or singles, or just floats. When 64 bits are used to store a floating-point number, we have what is called double precision, or doubles.  Some computer languages or applications like Maple and Mathematica permit the user to define the precision desired, but this is not usually employed since it slows down the calculation and sort of requires you to know the answer before doing the calculation.  Most scientific computations require and use double precision (64 bits).

Because only a finite number of bits are used to store the mantissa (the part in front), some numbers like  will have some of their digits furthest from the decimal point (their least significant parts) truncated, and thus will not be stored exactly. In Figure 1 we represent those numbers that can be stored exactly by the vertical hash marks. If the floating point number you try to store on the computer falls between two hash marks, some of the least significant digits are truncated and the number gets stored at the nearest has mark. For example, if you tried to store 1/3 = 0.33333333333… as a single precision float with 7 digit mantissa, it would be stored as 0.3333333, with nothing beyond the last 3.   

We have just described how truncation occurs when you try to store a number whose mantissa has more digits than the computer allows. Well, there is also a fixed number of digits allocated to store the exponent of a floating point number, and if you try to store more than that, something untoward happens. If your exponent is positive and is too big, an error condition known as overflow occurs. This usually causes your calculation to stop in its tracks, which is a good thing because otherwise the computer would just be producing garbage. If your exponent is a negative number with too large a magnitude (i.e. the number is too small is too small), an error condition known as underflow occurs. In this case the computer usually sets the full number to zero and continues with the calculation. This may result in some loss of precision, but probably will not produce garbage.  

 The Institute of Electrical and Electronics Engineers (IEEE) has actually set standards for how computers and computer programs deal with floating point numbers. This means that running the same program on different computers should result in the same answers, even though the hardware and software may differ.  As we shall define more carefully soon, the result may actually differ somewhat, but that difference would be smaller than the known precision of the floating point numbers being used. In addition, part of the IEEE standard calls for the symbol “INF” (for infinity) to occur if an overflow occurs, and “NAN” (for not a number) to occur if you try to divide by zero. These symbols cannot be used in any further calculations, but are just given to tell you what the problem is.

The actual limits for single and double precision numbers differ, with the increased length of double precision words leading to a greater range and an increased precision. Specifically, single-precision (32-bit) numbers have mantissas with 6.5 decimal places (not an exact number due to binary to decimal conversion), and exponents that limit their range to

  Single Precision Numbers 

Double precision (64 bit) numbers have mantissas with 16 decimal places, and exponents that limit their range to

  Double Precision Numbers 

 But, do not believe everything we tell you. We will ask you to verify these limits for yourself.

 To repeat, serious scientific calculations almost always require at least 64-bit (double-precision) floats. And if you need double precision in one part of your calculation, you probably need it all over, which means double-precision library routines for all functions used as well.

 Python and the IEEE 754 Standard

 Python is a relatively recent language with changes and extensions occurring as its use spreads and as its features mature. It should be no surprise then that Python does not at present adhere to all aspects of the IEEE standard. Probably the most relevant difference for us is that Python does not support single (32 bit) precision floating point numbers. So when we deal with a data type called a float in Python, it is the equivalent of a double in the IEEE standard. Since singles are inadequate for most scientific computing, this is not a loss. However be wary, if you switch over to Java or C you should declare your variables as doubles and not as floats. 

Exercise: Over and Underflows  

1. Write a program, or sit at a terminal and do this by hand, and test for the underflow and overflow limits (within a factor of 2) of your computer system.  (The simple Python program Limits.py given later on can be modified for this purpose.) You can do this by successive multiplication and divisions by 2 until the computer tells you that something is wrong. A sample pseudocode is

under = 1.

 	over = 1.

do 1 < i <N   

       		under = under/2.

       		over = over * 2.

       		write out: i, under, over

end do

 

You may need to increase N if your initial choice does not lead to underflow and overflow.  

2. If your computer system lets you specify word length, check where under- and overflow occur for single-precision floating-point numbers (floats). Give your answer in decimal.

3. Check where under- and overflow occur for double-precision floating-point numbers (doubles in Java, floats in Python). 

Machine Precision (Model)

 A major concern of computational scientists is that the floating-point representation used to store numbers is of limited precision. In general, single-precision numbers are precise to 6-7 decimal places, while doubles are precise to 15-16 places.  To see how limited precision affects calculations, consider the simple computer addition of two single-precision words with 6 place precision: 

7  +  1.0  = ?

Because there is no room left to store any digit beyond the sixth, they are lost, and after all this hard work the addition just gives 7 as the answer (truncation error in Figure 1). In other words, because a single precision number stores only 6 decimal places, it effectively ignores any changes beyond the sixth decimal place. 

As you may have realized already, a number stored on a computer may not equal the mathematical value of that number. For example, mathematically the decimal representation of 2/3 has an infinite number of digits, 2/3 = .6666666666…. . In contrast, the computer representation is finite, for example, 2/3c = 0.666667, where we use the subscript c to indicate the computer representation. In other words, except for powers of 2 that are store exactly, we should assume that all single-precision numbers contain an error in the sixth decimal place and that all doubles have an error in the fifteenth or sixteenth place.

The preceding loss of precision is categorized by defining a number knows as the machine precision . Although this may sound like a contradiction at first,  is the largest positive number in a computer computation that can be added to the number stored as 1 without changing the value of that stored 1:

 .

Here the subscript c is a reminder that this is a computer representation of 1.  Note that the machine precision is related to the number of decimal places used to store the mantissa of a floating-point number, specifically,  Because we have told you several times already that the number of places for single and double precision numbers, you can predict a value for the machine precision by a simple substitution. However, as we ask you to do next, we prefer that you use your computer as a laboratory and experiment to determine its machine precision.

Exercise: Determine Your Computer’s Machine Precision

We want you to either write a program or just enter numbers on your computer terminal that will permit you to determine the machine precision  of your computer system. You do not have to be really precise, so getting the answer within a factor of 2 will be just fine. The basic idea is very simple: start with an arbitrary value of ,  say and add that to 1.0. If the answer is not 1.0, then make  smaller and again add it to 1.0. Keep repeating the process until you get 1.0 as an answer. The largest value of  for which this happens is your machine precision. 

Implementation

Note, if you are doing this by entering the values of  by hand, you may want to divide by 10 each time until you get a gross answer, and then do some fine tuning. If you are writing a program, you can divide by 2 and just let the computer churn away for a long time. Here is a sample pseudo code (the basic elements of a computer program not specific to any language):

eps = 1.

do N times

  	 eps = eps/2.                                  # Make smaller

   	one = 1. + eps                               

  	output one, eps          # Write loop number, one, eps

                            end do 



Python Implementation

A model Python program than needs to be extended  to actually determine the precision is  Limits.py: 

 (
# Limits.py: Increase N to determine approximate machine precision
N = 3
eps
 = 1.0
for  I
  in range(N):
   
 
eps
 = 
eps
/2
   
 
one
 = 1.0  +  
eps
    
print(
'
eps
 = ', 
eps
,  'one = ', one) 
print(
"Enter and return a character to finish")
s=
raw_
input
()
)  

    







Vensim:        

Excel:  

Summary and Conclusions

You must know something about how computers store numbers in order to judge how reliable the results are. Unless you are carrying out symbolic manipulations, computed numbers are never exact, but can still be used to carry out calculations within a stated level of precision. Specifically, floating point numbers can give up to 16 places of precision, while integers can be exact, but have a much more limited range of values. Integers are thus appropriate for counting, such done when looping.

    Where's Computational Scientific Thinking 

· Understanding that computers are finite and therefore have limits.

· Being cognizant that uncertainties in numerical calculations are unavoidable.

· Understanding how it is possible to work within the limits of a computer to obtain meaningful results.

·  Understanding the range of numbers that may be necessary to describe a natural phenomenon.

    Intuition Development 
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