
Contents

1 Introduction 2
1.1 Why this Experiment was Done 2
1.2 Preview of this Lab . 4

1.2.1 The Four Steps . 5

2 The Physics 6
2.1 Theory . 6
2.2 Experimental Layout . 7
2.3 Kinematics . 7

3 Your Experiment 10
3.1 Step 1: Kinematics and Decay Rates (Kinematics f.mws) . . 12

3.1.1 Kinematics f.mws Worksheet Listing 12
3.2 Step 2: Detector Calibration (LineShape.mws) 13

3.2.1 LineShape.mws Worksheet Listing 14
3.2.2 Analysis of Line Shape 15
3.2.3 Fitting Lines (Iteration.f) 15

3.3 Step 3: Monte Carlo Simulation (Generator.f) 16
3.4 Step 4: Analysis (Sorter.f, Generator.f) 18

A Appendix A: List of Subroutines 21
.1 Generator Directory . 22
.1 Iteration Directory . 22
.1 Sorter Directory . 22

A Appendix B: Fortran Program Listings 22
.1 Generator . 22
.1 Sorter . 35

A Appendix C: How Simulated Data were Generated 37

B Reprint of Original Paper 39

1

Deducing the π0’s Structure via Data Analysis

A. Stetz, M. Ashfield (Summer, 2001, REU), (RHL Edits)

July 30, 2002

1 Introduction

1.1 Why this Experiment was Done

It is well known to those who study subatomic physics that interact via the
strong force, such as protons and mesons, have sizes on the order of 1 fermi
(10−13cm). In contrast, elementary particles that interact via the electro-
magnetic and weak forces, such as electrons and neutrinos have, appear to
have no size at at! They are what we call “point” particles.

The notion of “size” in physics deserves some comment. Although 1 fermi
is approximately a million times smaller than a typical atom, and a billion
times smaller than the wavelength of visible light, physicists feel comfortable
saying that they have “measured the size” of a such an incredibly tiny object.
Just as we think of seeing object smaller than our eyes can see by using a
microscope, subatomic physicists think of seeing elementary particles by
using beams of high energy particles as their “microscopes”.

The basic physics is that in order to look at an object of size `, we need
to use light with a wavelength λ ≤ `. To look at an elementary particle we
use quantum-mechanical deBroglie relation between the momentum p of an
elementary particle and its wavelength:

λ =
h

p
, (1)

where h is Planck’s constant. So we can, in some sense, see the shadow
of neutrons and protons by observing by scattering beams of high energy
particles from them.

Unfortunately, the quantum and relativistic nature of submicroscopic
particles means that there might not be anything as simple as a single “size”
to characterize them. Rather than being little spheres, strongly-interacting

2

particles are more like clouds of particle and fields interacting with each
other. Our goal is to measure something about the structure of that cloud.

Determining the structure of an elementary particle is not easy. If we
chose to see them by “shining” electron on them, then the electrons must
have some 10 GeV of energy to be able to see any detail in a 1 fm particle.
This requires a world-class high-energy accelerator.

There is another problem in trying to study the structure of elementary
particles. While the protons found inside atomic nuclei are stable, all other
strongly-interacting particles decay too quickly to be used as the target in
a scattering experiment. For example, charged pions have a half life of
24 × 10−9 seconds. While, 10−9 seconds may correspond to thousands of
billions of years on a nuclear time scale (typically 10−23 seconds), it is short
for we mortals and so we must be rather ingenious and indirect to see the
structure within an elementary particle.

There is a clever approach to measuring elementary particle sizes that
works in a few special cases. If a particle decays into another two particles,
then the constraints of energy and momentum conservation are too great to
let us learn anything about the dynamics. However, if a particle decays into
three or more particles, then even though the sum of the energies and the
sum of the momenta of the final particles are constrained, the distribution of
energy and momentum among the particles can be used to tell us something
about the structure of the decaying particle. While this is not the same as
directly measuring the size of a decaying particle, in some abstract sense it
is a measurement.

An example of a particle decaying into three final particles is afforded
by the neutral pi meson or pion:

π0 → γ + e+ + e−, (2)

which is usually written as just

π0 → γe+e−. (3)

The π0 is a close relative of the charged pions, π+ and π−, and all three
should have approximately the same size and structure. However, while we
have already indicated that charged pions decay slowly with a half life of
24 × 10−9 seconds, neutral pions decays quickly with a half life of 10−16

seconds. Usually the π0 decays into two photons:

π0 → γγ. (4)

3

But in approximately 1% of the decays, one of the gammas is replaced by
the electron-positron pair shown in (2), and we obtain what is called “Dalitz
decay” (in honor of the theorist who first investigated it). One of the things
that Dalitz showed was that since the decay occurs as a two step process:

π0 → γ γ (5)

↪→ e+e−, (6)

some subtle aspects of the decay are sensitive to the < 1fm structure of the
π0.

1.2 Preview of this Lab

This lab is based on an elementary particle experiment conducted at the
TRIUMF cyclotron in 1986 that studied the the Dalitz decay of the neutral
pion[PL]. While this may at first sight seem like a simple experiment, it
turned out to be very difficult to analyze the data with enough precision to
deduce something about the structure of the π0. Two graduate students,
Peter Gumplinger and Farzin Farzanpay, worked on the analysis for several
years before the final paper (presented in an Appendix) was published. Your
lab is based on the data analyses from those two theses. However, you
will not have to work as hard or long as the Ph.D. students since we have
eliminated some of the details through which they struggled.

This lab is a typical elementary particle experiments in which the data
consist of “events.” An event happens when a beam particle interacts with
a target particle, and the particles produced by this interaction are detected
by the experimental apparatus. The event data consist of records of all the
numbers measured by the apparatus pertaining to that event.

Data analysis occurs in steps. First the raw data on the tape records are
converted to more relevant physical variables. For example, by using our
separate measurements of the magnetic fields, a set of particle coordinates
is converted into the momentum of the particle. Next, these intermediate
data are plotted, examined, and then plotted in a different way until we
are satisfied that this is the best display of the physics. We then go back
and eliminates or “cut” events that do not contain relevant information for
the process of interest; this increases the strength of the signal relative to
the noise. The data are then examined again until all we convinced that no
more corrections can significantly affect the measured parameters.

The analysis of this experiment is challenging, in part, because there may
be just a few interesting events and many uninteresting ones, and so we must

4

be confident that these few events are real. Accordingly, it is important to
understand just how the experimental equipment responds to all feasible
conditions. This understanding is usually obtained by running a program
that uses Monte Carlo simulations that create virtual particles and then
trace out the paths of the particles through each piece of apparatus.

Of course a simulation of an experiment is based on an idealization of an
actual experiment, and is no replacement for a real experiment. However,
simulations let the experimentalists know how their equipment responds and
what type of signal to expect. Finally, the validity of the measurements and
the understanding of its significance is established by comparing actual data
with simulated ones.

1.2.1 The Four Steps

This lab leads you to go through all some four steps needed to analyze
realistic data:

Step 1. Physics: You explore the theory and visualize its kinematic con-
sequences using the Maple worksheet Kinematics f.mws. By plotting
decay rates assuming various phase space boundaries, you gain the
understanding of the kinematic variables needed to develop an exper-
imental design.

Step 2. Calibration: You determine the calibration parameters for the
pair of sodium iodide (NaI) detectors (TINA and MINA in Fig(1) by
making use of a χ2 fitting program to fit a theoretical distribution to
data. The Fortran programs are in the direcory Iteration.

Step 3. Monte Carlo Simulation: You simulate results to calibrate your
instruments and to compare to actual experimental measurements.
The Fortran programs are in the direcory Generator.

Step 4. Analysis: You compare the simulated Monte Carlo data to the
actual data to obtain your final results. The Fortran programs are in
the direcory Sorter.

The original analysis of the data required many days of computer time
during the 1980’s, when computers were slow and expensive by modern
standards. The current analysis takes only a few seconds on a 1.3 GHz
machine and requires several large (∼ 100 MB) files.

5

2 The Physics

The purpose of this experiment is to extract the form-factor slope parameter
a from the decay of the π0 meson. In a simple view, a is a measure of the
“size” of the π0, a quantities of fundamental interest to particle physics.

2.1 Theory

The world of strongly-interacting particles (hadrons) is a fast-paced one in
which events take place on a time scale of 10−23 seconds. So while we may
think of the π0 as unstable, its lifetime is some 10 millions hadronic cycles,
which is a large enough number to be considered hadronically stable.

The π0 meson most often decays into two photons,

π0 → γγ, (7)

with a lifetime of approximately 10−16 sec. While much past effort has gone
into measuring the properties of this decay, there is very little, aside from
the value of the lifetime, to learn from it.

On rare occasion (approximately 1% of the time), the π0 meson may
decays into three particles:

π0 → e−e+γ. (8)

The Dalitz decay (8 can be thought of as a version of the 2γ decay (7) in
which one of the photons converts internally to an electron-positron pair,

π0 → γ γ (9)

↪→ e+e−. (10)

Because there are three particles in the final state in (8), the momentum
of each particle is not uniquely fixed by energy and momentum conservation.
This extra bit of freedom opens a small window into the world of hadronic
interactions through which we shall peak to learn more about the structure
of the π0. Yet as we shall see, it is hard to find the window and it is only
opened a crack.

The π0’s that this experiment observes are created by taking a beam
of π− mesons and slowing them down in a liquid hydrogen (protons) until
they come to rest. Once the π− is at rest, the Coulomb force attracts it to
a positively charged proton which then exchanges charge with it:

π−p→ π0n. (11)

6

The resulting π0’s have a velocity β = v/c ≈ 0.2, and are emitted uniformly
into the full 4π steradians solid angle.

Shortly after the π0’s are produced they decay into photons and electrons
via (7) and (8). The emitted photons are difficult to detect, so one usually
measures the magnitude and direction of the momenta of the positrons and
electrons (both referred to as “electrons”). This is the decay of interest and
is called an “event”. An event contains six pieces of information: the three
components of the electron’s momentum and the three components of the
positron’s momentum.

2.2 Experimental Layout

The electron energies were measured with sodium iodide detectors consist-
ing of large transparent crystals. Electrons passing through them produce
electromagnetic showers consisting of electrons, positrons and photons. As
the charged particles interact with the NaI they produce scintillation light
with a total intensity approximately proportional to the total energy of the
shower. This light is converted to a current pulse by means of an array
of photomultiplier tubes, and the pulses are digitized by analog-to-digital
converters, (ADC’s for short). The output of these ADC’s is stored as part
of the event.

2.3 Kinematics

It is convenient to describe the decay (8) in terms of two dimensionless
variables that have magnitudes between 0 and 1. They are called x and y
and are defined as:

x =
(p+ + p−)

2

m2
0

, (12)

y =
E+ − E−

pT
. (13)

Here p± are the electron’s and positron’s four-momenta,

p+ = (Ee+ ,pe+), (14)

p− = (Ee− ,pe−), (15)

m0 is the π0 mass, and
pT = |p+ + p−|, (16)

7

Figure 1: The experimental layout showing incident π− beam, the NaI
scintilators TINA and MINA, and the π0 monitor SOPHIE. (Figure from
Gumplinger’s thesis.)

is the total momentum of the electron-positron pair. Note that we always
use relativistic kinematics, which means that the energy is given by the
Einstein energy-momentum relation

E =
√

p2c2 +m2c4 ≡
√

p2 +m2, (17)

and that the squared modulus of the momentum four-vector is the mass-
squared of the particle:

p2 = (E,p) · (E,p) = E2 − p · p = m2. (18)

We imagine the Dalitz decay of the π0 to occur as shown in the Feynman
diagram in Fig. 2. Here the wiggly lines represent photons, the straight lines
are electrons, and the circle represent the initial π0 at rest. Notice in Fig. 2
that one of the photons decays into an electron-positron pair. Since energy
and momentum conservation do not permit photons with their zero mass to
decay like that, the intermediate photon is not a real and is instead called
a “virtual” photon. While virtual photons cannot be observed in the real
world, the theory of Feynman diagrams makes it clear that it is permissible
to have them occur as intermediate states.

8

Figure 2: Dalitz decay of π0 into a photon γ and an electron-positron pair.
The electron-positron pair is seen to arise from an intermediate (virtual)
photon γ′. The black dot represents the finite size of the π0 and is labeled
by the form factor Fπ0(q2). (Figure taken from Gumplinger’s thesis.)

What makes virtual photons unreal is that they have a nonzero value
for their mass. In fact, if we look at the virtual photon in the Dalitz decay
diagram Fig. 2, we see that since it decays into the electron-positron pair,
momentum conservation requires that the photon’s four momentum be equal
to the sum of the four momentum of the electron and of the positron:

pγ = pe+ + pe− . (19)

So we can say that p2
γ = (pe+ + pe−)

2, is a nonzero quantity and is the
squared mass of the virtual photon. Accordingly, the variable x defined in
(12) equals the squared ratio of the mass of the virtual photon to the mass
of the neutral pion. It is a Lorentz scalar, which means that it has the same
value in the lab system and the rest frame of the π0.

The variable y in (13) is seen to be the ratio of the difference in the
electron’s and positron’s energy to their total momentum. It is a measure
of how the electrons share their energy, with y = 0 corresponding to equal
sharing, with y ' 1 corresponding to one electron taking away almost all
the energy.

If you work out the detailed constraints of momentum and energy con-
servation, you will find that the allowed values of x and y are given by

r ≤ x ≤ 1, −η ≤ y ≤ η, (20)

where r = 4m2
e/m

2
0, η =

√

1− r/x. (21)

We will work with x and y since they show the physics the best, and since
all other variables can be written in terms of them.

9

A final result of the experimental analysis is to obtain a single value for
the decay rate Γ, that is, the number of decays per unit time. We can be
more specific and consider dΓ/(dxdy), that is, the number of π0 decays per
unit time for unit changes in x and y. This differential decay rate will be
extracted from our data and compared to the theoretical prediction for it.

The theoretical prediction of the differential decay rate is called the
Kroll-Wada distribution, and has the form

dΓ

dx dy
=

α

4π

(1− x)3

x

[

1 + y2 +
r

x

]

Fπ0(q2). (22)

Here α is the fine structure constant,

α =
e2

h̄c
'

1

137
, (23)

and Fπ0(q2) is a form factor or structure factor whose deviation from 1 is a
measure of the neutral pion’s finite size. We parameterize the form factor
as

F = 1 + 2a, (24)

where a is called the slope parameter and would equal 0 if the pion were
a point particle. It is the single number we wish most to determine. In
some sense and in some units, a is proportional to the “size” of the π0.
However, the effect of this correction is small and thus hard to measure.
Calculations done before the experiment suggested a value a ≈ 0.03. The
present experiment was designed to have a sensitivity ∆a ≈ ±0.01.

The Kroll-Wada distribution is normalized so that if it is integrated over
the allowed range of x and y, it gives a value that is just the ratio of the
decay rates (the branching ratio),

∫

dx dy
dΓ

dxdy
=

Γ(π0 → e+e−γ)

Γ(π0 → γγ)
= 0.011854. (25)

This value is in good agreement with experiment.

3 Your Experiment

The experiment was published in Physics Letters B 278 (1992) 413-418, as
well as in Peter Gumplinger’s 1986 thesis. Read the Letter now, before
going any further. It should make good sense now (but better when you
have completed this lab).

10

Doing a real experiment entails carrying through many steps, with each
step requiring fussy attention to details. For example, electronics drift,
detectors get out of alignment, particle beams become unstable, and, worst
of all, events occur in our detectors of types we did not plan for. We call
these unplanned events “background”, and we try to keep their number as
small as possible.

Since analyzing the complete TRIUMF experiment would be too com-
plicated and time consuming for a teaching lab such as this, we are present-
ing you with simulated data. These simulated data contain no background
events and have been measured by perfect detectors (the data were, in fact,
generated by the original Monte Carlo program).

Simulated or “theoretical” experiments such as this are increasingly pop-
ular throughout science. They are usually cheaper, faster, and more flexible
than real experiments, and, most critrically, they appear to represent nature
well. For example, you can try out modifications of your equipment to see
which provides the best signal to noise ratio. While in some sense this takes
some of the “experimenting” out of the experiment, believe us, if it does not
work on the computer, it will not work in the lab!

In the Directory/Folder Sorter you are given a file BigData.dat with
99 Meg’s of raw “data” for you to ultimately analyze by comparing to a
data set that you have generated by running a Monte Carlo simulation. As
indicated in the Introduction, you will proceed in four steps:

Step 1: Physics and Kinematics: There is a Maple worksheet Kinematics fort.mws

that leads you through the steps. Alternatively, if you do not have
Maple available, you can follow the same steps by doing the calcula-
tions in the supplied Fortran code [generated directly from the Maple
commands].

Step 2: Simulate Data: Use the Fortran program in the director Generator
to generate your own data set.

Step 3: Calibration: Independently of all this, determine the resolution
function for the NaI detectors TINA and MINA using a χ-square min-
imization program in the Iteration directory.

Step 4: Analyze BigData Determine the size a by analyzing the data in
the file BigData.dat. The program and data are in the directory Sorter.

11

3.1 Step 1: Kinematics and Decay Rates (Kinematics f.mws)

You here follow the first step in designing an experiment, which is to inves-
tigate the constraints imposed by decay rates and kinematics what you can
measure. Although not available when the experiment was being planned,
we here take advantage of Maple’s ability to do computations and visualize
the results easily.

We suggest that you use Maple to work through the worksheet Kinematics f.mws.
We give this worksheet and some of its output below, but reading it is not as
effective as working through the real thing. When you are done, you should
have a better understanding of just what the experiment measures and how
it relates to theory.

3.1.1 Kinematics f.mws Worksheet Listing

12

3.2 Step 2: Detector Calibration (LineShape.mws)

The piece of equipment that detects the electrons resulting from the π0 →
e+e−γ decay is called the detector. In this section we lead you through some
of the necessary background work needed to do an experiment, namely, the
calibration of the detector. The piece of equipment that detects the electrons
resulting from the π0 → e+e−γ decay is called the ”detector”. This is
somewhat of an aside from our main thrust of determining a value for the
pion size a, but is, in fact, one of the things we had to do in the experiment.
Yet since we are presenting you with somewhat idealized data that assume
perfect detector efficiency, you will not make actual use of these calibrations.

As shown in Fig. 1, the electron energies were measured with sodium
iodide detectors consisting of large transparent crystals. Electrons pass-
ing through them produce electromagnetic showers consisting of electrons,
positrons and photons. As the charged particles interact with the NaI they
produce scintillation light with a total intensity approximately proportional
to the total energy of the shower. This light is converted to a current pulse by
means of an array of photomultiplier tubes, and the pulses are digitized by
analog-to-digital converters, (ADC’s for short). The output of these ADC’s
is stored as part of the event.

This process is complicated and not fully predictable. This is partly
because shower formation is stochastic and partly because the responses of
the individual phototubes change with time. Accordingly, a monoenergetic
beam of electrons produces a signal that is distributed over a range of en-
ergies, and this distribution changes slowly over time as the detector ages.
Since the detector’s output is a peak with finite width, the resolution of the
detector, that is, its ability to distinguish electrons of different energy, is
limited. A further corrceion is needed, in addition, because the maximum
of this peak is not necessarily at the incident electron’s energy.

In order to analyze the experiment, it was necessary to know the response
of these detectors to a high degree of accuracy. So one of the major tasks
was to monitor this performance and quantify it so that it would be useful
for analysis. We quantify the process by using an empirical function R(E)
that gives the output response of the detector at energy E when an electron
of energy E0 enters the detector:

R(E) = A exp

[

E − E0

a

] [

1− erf

(

E − E0

b

)]

(26)

Here erf is the error function, A is a normalization constant, and a and b are
parameters obtained by fitting this function to real data. Other researchers

13

who have investigated this function suggest that a better description of the
detector is obtained by including an energy dependence in the parameters
of the form

a = a0E
c. (27)

In order for you to get a feel for the detector’s reponse and calibration,
you should now examine the Maple worksheet LineShape.mws.

3.2.1 LineShape.mws Worksheet Listing

14

3.2.2 Analysis of Line Shape

We have just seen that real detectors do not output one number for an
electron’s energy but rather yield a spread of energies. They thereby give
a 1D line a width, and shift the position of this line by an amount that
depends on the energy.

There is an addition complication that arises from the analog-to-digital
converters (ADC’s) used to convert the output of our instruments to the
digital form we record on magnetic tapes. The ADC’s do not measure energy
directly, but instead output an integer N that in theory is proportional to
the light output of the crystal:

E = λN (28)

So before we can decode the magnetic tape, we must determine the con-
stant of proportionality λ for each detector and then verify that they are
independent of energy.

Fortunately, nature provides us a number of reactions that we can use
to calibrate our detector. The dominant decay of the neutral pion

π0 → γγ, (29)

produces photons with energy mπ/2 in the π0 rest frame. In the lab we see
these photons with a uniform distribution from 55 to 86 MeV. In addition,
the reaction

π−p→ nγ (30)

produces an 131 MeV gamma ray. Fortunately, NaI detectors responds to
photons much like they do to electrons, and so we have two benchmarks
with which to calibrate our detectors.

3.2.3 Fitting Lines (Iteration.f)

The program iteration.f fits lines to data, that is, it searches for values
of the parameters in the resolution function that provide a best fit to the
data. There are also two data files t330.dat and m330.dat containing a list
of channel numbers and the corresponding number of events (t and m stand
for the NaI detectors TINA and MINA shown in Fig. 1.)

The first step you should now take is to examine t330.dat and
m330.dat by plotting them both on the same graph.

15

100 150 200 250 300 350 400
0

1e+05

2e+05

3e+05

4e+05

5e+05

Counts versus Channel Number (Energy)
m330.dat

Figure 3: Plot of data in file m330.dat in Iteration directory/folder.

You should obtain a spectrum of counts versus channel number (gamma
ray energy) that looks like Fig. 3. The broad peak from 150 to 250 is from
the π0 → 2γ decay, while the narrower peak at 330 is due to the π−p→ nγ
reaction.

Note that if the experimental equipment had infinite resolution, then the
narrow peak would be a single line. Accordingly, the width and shape of this
line gives provides us with a direct measure of our experimental resoltion.
Note also these cases the curves look smooth because they represent such a
vast number of events that the statistical variation is small in comparison
to the signal. The statistical variations will show up after we impose cuts
on the kinematics.

The next step for you is to fit the Kroll-Wada distribution (22)
to the data in the files t330.dat and m330.dat.

When you run the executeable in Iteration, you will be asked a number
of questions for you to answer at your terminal. The program then fits
equation (22) to the data that lies between the minimum and maximum
channel numbers that you have enterred. You are given the option of fitting
one parameter at a time until they are all close enough to a minumum for
the automated fitting routine to take over and refine the fit. The final values
for the parameters are saved in file CHIPLOT.dat. Simulation output data
corresponding to these parameters is stored inDataFit.dat.

3.3 Step 3: Monte Carlo Simulation (Generator.f)

Finally, the pion size parameter a will now be determined by comparing a
complete Monte Carlo simulation of the experiment with the experimental
data. In other words, we will compare portions of the data set with output
of the Monte Carlo simulation until we find a region of data that is sensitive

16

to a and which agrees with the simulation for some specific value of a. That
specific value is the number we deduce from the data.

The first step in the simulation is to generate a table (xi, yi) of values
for the kinematic variables x and y defined by (12) and (13). The x and y
values are to be chosen randomly and independently with a probability given
by K-W distribution (22). There are two basic ways to generate random
numbers weighted by a specified distribution function f(x), that is, with
the probability of a number falling the the range x→ x+ dx given by

P(x) = f(x) dx. (31)

In both cases, there will be more random x’s near where f(x) is large, but
the x’s will still be uncorrelated with each other.

The rejection method starts by generating two sets of uniformly dis-
tributed random numbers, x and z, with the separate ranges

xmin ≤ x ≤ xmax, 0 ≤ z ≤ fmax. (32)

Here fmax is the maximum value of f(x) in the interval xmin ≤ x ≤ xmax.
We next convert the uniform x distribution into one weighted by f(x) by
rejecting some x’s. If f(x) > z, you reject x and pick another pair of random
numbers. If f(x) < z, you accept x and add its value to a table of(xi values.
The x’s accumulated in this way will be random with weight f(x).

This technique is straightforward, guaranteed to work, but expensive.
Its efficiency, that is, the ratio of trials to successes, is given by

∫ xmax

xmin
f(x)dx

fmax (xmin − xmax)
. (33)

Yet if f(x) is the Kroll-Wada distribution, we have such a sharply peaked
f(x) that the efficiency is only about 10−3. This means that we will reject
1000 events for each 1 that we accept.

The direct method is 100% efficient, though it’s also less elegant and
requires more programming. We start by examining the expression for the
cumulative probability function g(x) for the K-W distribution:

g(x) =

∫ x

xmin

f(x′) dx′ =

∫ x

xmin

dΓ

dx dy
dx′ (34)

=

∫ x

xmin

α

4π

(1− x)3

x

[

1 + y2 +
r

x

]

(1 + 2a) dx. (35)

17

We next imagine that g(x) were a uniform, random distribution between 0
and 1, and set it to a new variable z:

z = g(x) = uniform. (36)

The key observation now is that if we could somehow solve this equation for
x

x = g−1(z), (37)

then the x’s will be a random distribution with weight f(x) if the z’s are
uniform. In other words, we chose a uniform random distribution for z, and
then insert those z’s into (37) to get an appropriately weighted x distribu-
tion.

The problem with the direct method is that it is often difficult or im-
possible to find an analytic expression for the inverse. We get around that
evaluating the integral numerically and then doing a table lookup to deter-
mine the inverse. Explicitly, we generate a table of 1000 uniformly spaced
random numbers xi, and then evaluate the integral (34) to obtain the cor-
responding values of g(xi). We then generate a uniform random gj and
interpolate to find the the corresponding g−1.

The table of xi’s and gi’s is in the file Xtable.dat. The needed distribu-
tion in y is not sharply peaked and so is generated by the rejection method
(32) in DIVONDZ.f.

3.4 Step 4: Analysis (Sorter.f, Generator.f)

In order to generate your own Monte Carlo events, now run the program
in Generator. You will be asked three questions when you start the pro-
gram:

1. The number of events you want to simulate.

2. The name of the file you want to store the events in.

3. Whether to use the structure-independent (F = 1) or structure-dependent
distribution. (The reason for this will be explained shortly.)

The output from Generator includes the number of π0’s responsible for
these events. Be sure to keep track of this number. The data given to you
to analyze correspond to a 4044 million π0’s. Also be careful to give unique
filenames for the data, lest you overwrite a previous file. You are assisted in
this by the file BOOKKEEPER that keeps a record of the files you have created.

18

The “data” for you to analyze is in the 90 MB file BigData.dat in the
folder/directory Sorter. When analyzed, its 5× 105 events yields approxi-
mately 5000 good events.

The obvious way to analyze these data is to fit equation (22) to data with
a as an adjustable parameter. This approach was used in earlier experiments
but yielded poor results for two reasons. (1) the experimental distribution
depends on the apparatus in a more complicated way than just equation (22).
(2) The fit really involves a number of parameters, but these parameters are
correlated in a complicated way, yet fitting a number of parameters to the
data produces a value of a with poor statistical accuracy.

Our less obvious approach avoids the statistical problems with fitting.
First we note that we can determine the actual number of π0’s produced in
the target by counting (very carefully) the number of γ’s from the common
two photon decay,

π0 → γγ. (38)

The Scheme to Measure a was already explored in the Maple work-
sheet Kinematics f.mws. We know that the experimental data, which are
mainly at small x values, are described rather well by the KW distribution
with the structure function F = 1 + 2ax = 1, that is, with a = 0. However,
we saw that by looking at larger values of x, we can extract a statistically
meaningful value for a.

We start by examining the theoretical expression for the measured decay
rate ΓM with the structure function written out explicitly:

ΓM =

∫ xmax

xmin

(1 + 2ax)
dΓSI(x)

dx
dx, (39)

where dΓSI(x)/dx is the KW distribution function with no structure func-
tion include (“SI” for structure independent). We now write this integral as
the two separate integrals

∫ xmax

xmin

(1 + 2ax)
dΓSI(x)

dx
dx =

∫

dΓSI(x)

dx
dx+ 2a

∫

x
dΓSI(x)

dx
dx (40)

= ΓSI + ΓSD. (41)

So we have written our measured rate ΓM as a structure independent rate
ΓSI and a structure dependent rate ΓSD where

ΓSI =

∫ xmax

xmin

dΓSI(x)

dx
dx (42)

19

ΓSD =

∫ xmax

xmin

x
dΓSI(x)

dx
dx. (43)

We can solve this expression for a to obtain

a =
ΓM − ΓSI
2ΓSD

. (44)

The scheme is then to measure ΓM and simulate ΓSI and ΓSD with the
Monte Carlo program Generator.

1. Generate a large number of events using the structure-independent
distribution

dΓSI
dx dy

=
α

4π

(1− x)3

x

[

1 + y2 +
r

x

]

. (45)

2. Analyze these events in exactly the same way and with the same cuts
as the measured data. The program that does this will tell you how
many π0’s were required.

ΓSI ≡
SI-type MC events remaining after all cuts

The number of π0’s that produced them
(46)

3. Next generate events using the structure-dependent distribution,

dΓSD
dx dy

=
α

4π

(1− x)3

x

[

1 + y2 +
r

x

]

x (47)

Use the program Sorter to analyze your events to obtain

ΓSD ≡
SD-type MC events remaining after all cuts

The number of π0’s that produced them
(48)

When you run this program you will have a chance to impose different cuts
on the data and look at the results as histograms. There are two cuts that
cannot be changed (1) all events are required to have a hit in the positron
detector, and (2) all events are required to have x > 0.1.

You should play with your data, as do experimentalists, to see what it
takes tomake the statistical error as small as possible. The strategies for
doing this were discussed in the Maple worksheet, Kinematics f.mws, and
include:

1. Increasing the xmin cut.

20

2. Changing the position of electron detector by changing the opening
angle parameter.

3. Setting a minimum energy cut.

The program automatically generates various files for you to plot and
study:

EMspec electron energy spectra
EPspec positron energy spectra
Tspec opening angle spectrum
Xspec the x spectrum

Part of the responsibility of an experimentalist is to give an error estimate
of any measured quantity. In this analysis with simulated data there are no
systematic errors, but there are statistical ones. To obtain an estimate of
the error in a we use (22) and (24) to solve for a:

a =
dΓ/dx/dy

2xα
4π

(1−x)3

x

[

1 + y2 + r
x

]

− 1. (49)

If we view this equation in terms of data fitting, then it has the form

a = a(Γ, x, y), (50)

where x, y, and Γ are the quantities we have measured. The uncertainty ∆a
in a can then be approximated by the chain rule,

∆a '
∂F

∂Γ
∆Γ +

∂F

∂x
∆x+

∂F

∂y
∆y (51)

where ∆x, for example, is the uncertainty in the measured x.
Use this equation to estimate, as best you can, the uncertainty in a.

A Appendix A: List of Subroutines

Each folder (directory) Generator, Iteration, and Sorter has a complete
Fortran program and the data files for it to read. You can compile the source
programs in any one directory independent of the other directories.

21

.1 Generator Directory

Generator Generates Dalitz events in the lab frame
Setup Sets up Bookkeeper file
Inikine Initializes kinematic parameters (e.g. masses)
Dfun(x,y) joint probability function for x and y varuiables
Thdz Generates kinematics for Dalitz decay
Create Generates particle with specified momenta
Divondz Reads x table
Locate locate point as part of rejection method
Polint

.1 Iteration Directory

Iteration Extracts NaI response parameters photon spectrum.
Chi2 Calculate χ2 by iteration
Amoeba
Amotry
BLUR Simulate energy resolution by smearing
Erf Error function
Gammln Ln of gamma function
Gammp Gamma’ function
Gcf
Gser
T4hist Histogram construction
Xyread

.1 Sorter Directory

Sorter Analyze data files written by Sorter (Dalitz.f)

A Appendix B: Fortran Program Listings

.1 Generator
! Generator.f (use f90 compiler)

! Generates Dalitz events in the lab frame

!

IMPLICIT REAL(M)

CHARACTER(12) :: FILENAME

DIMENSION PE(4), PP(4), PG(4)

COMMON/FILENAME/FILENAME

COMMON / KIN / PE, PP, PG, X, Y

COMMON / RANDOM / ISEED

COMMON / USERMASSES / MP, MN, MP0, MPM, ME

CALL Setup(NEVENTS)

OPEN(UNIT=9, FILE=FILENAME, STATUS=’REPLACE’)

22

ISEED=1234567

CALL Inikine

DO I = 1, NEVENTS

CALL Thdz

! Recalculate x from the transformed data.

PDOTP=PE(4)*PP(4)

DO J=1,3

PDOTP=PDOTP-PE(J)*PP(J)

END DO

REX=2.*(ME*ME+PDOTP)/MP0**2

DIFF=X-REX

! Finally, write everything to a file.

WRITE(9,100) I,X,Y

100 FORMAT(I10,4X,2(E10.4,4X))

WRITE(9,110) PP(1),PP(2),PP(3),PP(4)

WRITE(9,110) PE(1),PE(2),PE(3),PE(4)

WRITE(9,110) PG(1),PG(2),PG(3),PG(4)

110 FORMAT(4(E10.4,4X))

END DO

CLOSE(9)

STOP

END

C***

SUBROUTINE Setup(NEVENTS)

CHARACTER*25 FILENAME

CHARACTER*100 COMMENT

CHARACTER*8 DATE

CHARACTER*10 TIME

CHARACTER*5 ZONE

INTEGER VALUES(8)

REAL N0

COMMON/FILENAME/FILENAME

COMMON /SPECTRUM/ITYPE

WRITE(*,*) ’TYPE 1 FOR SI, 2 FOR SD SPECTRA.’

READ(*,*) ITYPE

WRITE(*,*) ’GENERATE HOW MANY EVENTS? NEVENTS = ’

READ(*,*) NEVENTS

WRITE(*,*) ’WHAT SHALL WE NAME YOUR FILE?’

READ(*,*) FILENAME

WRITE(*,*) ’BRIEF COMMENT?’

READ(*,30) COMMENT

WRITE(*,30) COMMENT

30 FORMAT(100A)

XMIN=0.10

BRSI=1.16882E-3

BRSD=2.54067E-4

SANGLE=2*5.176E-2

WRITE(*,*) "XMIN = ", XMIN

WRITE(*,*) "INTEGRATED SI BRANCHING RATIO = ", BRSI

WRITE(*,*) "INTEGRATED SD BRANCHING RATIO = ", BRSD

WRITE(*,*) "26.3 DEGREE OPENING ANGLE CORRECTION = ", SANGLE

IF(ITYPE.EQ.1) THEN

N0=REAL(NEVENTS)/(BRSI*SANGLE)

GO TO 10

ELSE IF(ITYPE.EQ.2) THEN

N0=REAL(NEVENTS)/(BRSD*SANGLE)

GO TO 10

ELSE

WRITE(*,*) ’NO CHOICE. I QUIT!’

STOP

END IF

10 WRITE(*,*) "NUMBER OF ORIGINAL PI-ZEROS = "

WRITE(*,20) N0

20 FORMAT(E10.4)

! Set up the Bookkeeper file

CALL DATE_AND_TIME(DATE,TIME,ZONE,VALUES)

OPEN(UNIT=10, FILE=’BOOKKEEPER’,STATUS=’OLD’, POSITION=’APPEND’)

WRITE(10,*) ’YEAR = ’,VALUES(1)

WRITE(10,*) ’MONTH = ’,VALUES(2)

WRITE(10,*) ’DAY = ’,VALUES(3)

WRITE(10,*) ’HOUR = ’,VALUES(5)

WRITE(10,*) ’MINUTES =’,VALUES(6)

WRITE(10,*) ’FILENAME = ’,FILENAME

WRITE(10,30) COMMENT

WRITE(10,*) ’EVENTS PROCESSED = ’,NEVENTS

WRITE(10,*) ’DATA TYPE = ’,ITYPE

23

WRITE(10,*) ’XMIN = ’, XMIN

WRITE(10,*) ’INTEGRATED SI BRANCHING RATIO = ’, BRSI

WRITE(10,*) ’INTEGRATED SD BRANCHING RATIO = ’, BRSD

WRITE(10,*) ’26.3 DEGREE OPENING ANGLE CORRECTION = ’, SANGLE

WRITE(10,*) ’NUMBER OF ORIGINAL PI-ZEROS = ’

WRITE(10,20) N0

CLOSE(10)

RETURN

END

C***

C SUBROUTINE Inikine initialize the parameters needed in the kinematics:

C particle masses, physical constants...

SUBROUTINE INIKINE

IMPLICIT REAL(M)

COMMON / USERMASSES / MP, MN, MP0, MPM, ME

COMMON / KINCONST / PI, RR, MAXEN, ETOTAL, B, GAMMA

COMMON / NCONSTRAIN / CTHEMIN, CTHEMAX

DATA PI / 3.1415926D0 /

DATA MP / 938.27231D0/ ! proton mass, MeV/c*c

DATA MN / 939.56563D0 / ! neutron mass

DATA MP0 / 134.9739D0 / ! pi-0 mass

DATA MPM / 139.5675D0 / ! pi-minus mass

DATA ME / 0.51099906D0 / ! electron mass

DATA BIND / 0.4E-3 / ! binding E of pi- p system

DATA CTHEMIN / -1.0 / ! cos of max angle (180)

C the neutron can go and still hit

C the counters

DATA CTHEMAX / 1.0 / ! cos of min angle (164)...

RR = 4*ME*ME / (MP0*MP0) ! magic ratio R

ETOTAL = MPM + MP - BIND ! total energy of pi-minus

C and proton, in their rest frame

S = ETOTAL*ETOTAL

PPI0 = 0.5*SQRT((S - (MN+MP0)**2) * (S - (MP0-MN)**2) / S)

EPI0 = SQRT(PPI0**2 + MP0**2)

B = PPI0 / EPI0 ! velocity of pi0

GAMMA = 1.D0 / SQRT(1. - B*B)

MAXEN = MPM + MP - MN - BIND ! maximum energy available to the

C 2 electrons in the 3-body process

C pi- p --> e+ e- n

RETURN

END

C**

FUNCTION Dfun(X,Y)

C joint probability fn. for X and Y

COMMON / USERMASSES / MP, MN, MP0, MPM, ME

COMMON / CUTS / XMIN, XMAX

COMMON / KINCONST / PI, RR

DATA CONST / 5.80857D2 /

DATA ASLOPE / 0.00 /

DATA XMIN/0./

DATA XMAX/1./

IF (X .LT. RR) GOTO 100

IF (X .LT. XMIN .OR. X .GT. XMAX) GOTO 100

ETA = SQRT(1. - RR/X)

IF (ABS(Y) .GT. ETA) GOTO 100

FORM0 = 1.D0 + 2.*ASLOPE*X

DFUN = CONST * (1. - X)**3 * (1. + RR/X + Y*Y) * (1./X)

. * FORM0

RETURN

100 DFUN = 0.0D0

RETURN

END

C ***

C generate kinematics for Dalitz decay

SUBROUTINE Thdz

IMPLICIT REAL*4 (A-H, O-Z)

REAL*4 MP, MN, MP0, MPM, ME, MAXEN

REAL*4 PP0(3), PE0(3), PG0(3), BETA(3)

REAL*4 A(2), X, Y

REAL*4 PE(4), PP(4), PG(4)

COMMON / NCONSTRAIN / CTHEMIN, CTHEMAX

COMMON / RANDOM / II

COMMON / USERMASSES / MP, MN, MP0, MPM, ME

24

COMMON / KINCONST / PI, RR, MAXEN, ETOTAL, B, GAMMA

COMMON / KIN / PE, PP, PG, X, Y

C use DIVON to get a random value of X, Y. X is normalized to its max.

C value, in this case, MPI0*MPI0. NOTE: this is all in the pi0 frame!!!!

1 CALL Divondz(X,Y)

C total energy and momentum of e+ e- pair

EPAIR = MP0/2. * (1. + X)

PPAIR = MP0/2. * (1. - X)

C energy and momentum of positron and electron

EP0 = (EPAIR + PPAIR*Y) / 2.

EE0 = EPAIR - EP0

PPM0 = SQRT(EP0*EP0 - ME*ME)

PEM0 = SQRT(EE0*EE0 - ME*ME)

C opening angle between e+ e-

COSA = (2.*EP0*EE0 + 2.*ME*ME - MP0*MP0*X) / (2.*PPM0*PEM0)

IF (ABS(COSA) .GT. 1.) GOTO 1

SINA = SQRT(1. - COSA*COSA)

C put e+ along z axis and spin e- around it by some arbitrary angle

DEL = 2.*PI*RAN(II)

COSDEL = COS(DEL)

SINDEL = SIN(DEL)

PEX = PEM0*COSDEL*SINA

PEY = PEM0*SINDEL*SINA

PEZ = PEM0*COSA

C throw positron into 26.3 degree half-angle cone.

COSMIN = 0.896486

COSMAX = 1.

CALL CREATE(CTPOS, STPOS, CPPOS, SPPOS, COSMIN, COSMAX)

PP0(1) = PPM0*CPPOS*STPOS

PP0(2) = PPM0*SPPOS*STPOS

PP0(3) = PPM0*CTPOS

C now connect the electron to this by rotating by theta and phi of e+

PE0(1) = PEX*CTPOS*CPPOS - PEY*SPPOS + PEZ*STPOS*CPPOS

PE0(2) = PEX*CTPOS*SPPOS + PEY*CPPOS + PEZ*STPOS*SPPOS

PE0(3) = -PEX*STPOS + PEZ*CTPOS

C momentum of photon by momentum conservation

PG0(1) = -PE0(1) - PP0(1)

PG0(2) = -PE0(2) - PP0(2)

PG0(3) = -PE0(3) - PP0(3)

EG0 = MP0 - EP0 - EE0

C now we create the neutron, firing it into the neutron counters.

C NOTE that this is now in the lab frame. NOTE THAT FOR DALITZ EXPT

C THERE ARE NO NEUTRON COUNTERS SO CTHEMIN AND CTHEMAX ARE 1.0

CALL Create(CTNEUT, STNEUT, CPNEUT, SPNEUT, CTHEMIN, CTHEMAX)

UNEUTX = CPNEUT*STNEUT

UNEUTY = SPNEUT*STNEUT ! unit v. in neutron dir.

UNEUTZ = CTNEUT

BETA(1) = B*UNEUTX

BETA(2) = B*UNEUTY

BETA(3) = B*UNEUTZ

C Lorentz boost e+, e- and photon into lab frame

BDOTPP = BETA(1)*PP0(1) + BETA(2)*PP0(2) + BETA(3)*PP0(3)

BDOTPE = BETA(1)*PE0(1) + BETA(2)*PE0(2) + BETA(3)*PE0(3)

BDOTPG = BETA(1)*PG0(1) + BETA(2)*PG0(2) + BETA(3)*PG0(3)

DO I = 1, 3

PP(I) = PP0(I) - BETA(I)*GAMMA*(EP0 - GAMMA/(GAMMA+1.)*BDOTPP)

PE(I) = PE0(I) - BETA(I)*GAMMA*(EE0 - GAMMA/(GAMMA+1.)*BDOTPE)

PG(I) = PG0(I) - BETA(I)*GAMMA*(EG0 - GAMMA/(GAMMA+1.)*BDOTPG)

END DO

C energies in lab frame

PP(4) = GAMMA*(EP0 - BDOTPP)

PE(4) = GAMMA*(EE0 - BDOTPE)

PG(4) = GAMMA*(EG0 - BDOTPG)

RETURN

END

C**

C little subroutine to generate a particle with momentum

C within a certain ring of solid angle about the z axis.

C

SUBROUTINE Create(COSTHETA, SINTHETA, COSPHI, SINPHI,

. COSMIN, COSMAX)

C

IMPLICIT REAL*4 (A-H, O-Z)

COMMON / KINCONST / PI

COMMON / RANDOM / II

C

25

C phi is random between 0 and 2pi

C

PHI = 2.*PI*RAN(II)

COSPHI = COS(PHI)

SINPHI = SIN(PHI)

C

C theta is random between min and max

C

COSTHETA = (COSMAX - COSMIN)*RAN(II) + COSMIN

SINTHETA = SQRT(1. - COSTHETA*COSTHETA)

C

RETURN

END

C **

SUBROUTINE Divondz(xval,yval)

COMMON/SPECTRUM/ITYPE

COMMON / KINCONST / PI, RR, MAXEN, ETOTAL, B, GAMMA

COMMON / NCONSTRAIN / CTHEMIN, CTHEMAX

DIMENSION X(1001), Z(1001), ZA(1001)

LOGICAL INIT

DATA INIT/.FALSE./

DATA ISEED/123456789/

! The open statement must be changed when reading the secret x table.

IF(INIT) GOTO 30

OPEN(UNIT=7, FILE=’Xtable’, STATUS=’OLD’, ACTION= "READ")

! OPEN(UNIT=7, FILE=’Secret’, STATUS=’OLD’, ACTION= "READ")

N=0

10 READ(7,*,END=20) xval,zval,zaval

! The Xtable is organized with three columns. xval is the

! usual x, zval is the integrated SI spectrum, and zaval is

! the integrated SD spectrum.

N=N+1

IF(N.GT.1001) GO TO 20

X(N)=xval

Z(N)=zval

IF(ITYPE.eq.2) Z(N)=zaval

GOTO 10

20 CLOSE(7)

NDAT=N

INIT=.TRUE.

IF(ITYPE.EQ.1) THEN

WRITE(*,*)’Structure-independent spectrum will be generated.’

ELSE IF (ITYPE.EQ.2) THEN

WRITE(*,*)’Structure-dependent spectrum will be generated.’

ELSE

WRITE(*,*) ’NO CHOICE, I QUIT.’

STOP

END IF

30 CONTINUE

zval=RAN(ISEED)

n=1001

CALL Locate(Z,n,zval,j)

IF (j.EQ.0 .OR. j.EQ.N) GOTO 50

m=4 ! Interpolation order

k=MIN(MAX(j-(m-1)/2,1), n+1-m) ! array offsets

CALL Polint(Z(k),X(k),m,zval,xval,dx)

! write(*,*) zval,xval,dx

! The y distribution is generated with the classic

! rejection technique.

eta=sqrt(1.-RR/xval)

fmax=DFUN(xval,eta)

fmin=DFUN(xval,0.)

40 yval=eta-RAN(ISEED)*2.*eta

zval=fmax*RAN(ISEED)

if(zval .GT. DFUN(xval,yval)) GOTO 40

RETURN

50 WRITE(*,*) ’ARRAY OUT OF BOUNDS j= ’,j

RETURN

END

C**

SUBROUTINE Locate(xx,n,x,j)

INTEGER j,n

REAL x,xx(n)

INTEGER jl,jm,ju

jl=0

ju=n+1

26

10 if(ju-jl.gt.1)then

jm=(ju+jl)/2

if((xx(n).ge.xx(1)).eqv.(x.ge.xx(jm)))then

jl=jm

else

ju=jm

endif

goto 10

endif

if(x.eq.xx(1))then

j=1

else if(x.eq.xx(n))then

j=n-1

else

j=jl

endif

return

END

C**

SUBROUTINE Polint(xa,ya,n,x,y,dy)

INTEGER n,NMAX

REAL dy,x,y,xa(n),ya(n)

PARAMETER (NMAX=10)

INTEGER i,m,ns

REAL den,dif,dift,ho,hp,w,c(NMAX),d(NMAX)

ns=1

dif=abs(x-xa(1))

do 11 i=1,n

dift=abs(x-xa(i))

if (dift.lt.dif) then

ns=i

dif=dift

endif

c(i)=ya(i)

d(i)=ya(i)

11 continue

y=ya(ns)

ns=ns-1

do 13 m=1,n-1

do 12 i=1,n-m

ho=xa(i)-x

hp=xa(i+m)-x

w=c(i+1)-d(i)

den=ho-hp

if(den.eq.0.)Write(*,*) x

den=w/den

d(i)=hp*den

c(i)=ho*den

12 continue

if (2*ns.lt.n-m)then

dy=c(ns+1)

else

dy=d(ns)

ns=ns-1

endif

y=y+dy

13 continue

return

END

\endd{verbatim}

\end{tiny}

\appendix

\subsection{Iteration}

\begin{tiny}

\begin{verbatim}

PROGRAM Iteration

EXTERNAL T4hist, Chi2

C "Iteration" is a program to extract the NaI response parameters from

C a photon "singles" spectrum. The prominent features are

C the uniform distribution of gamma energies from the decay,

C pi-zero -> gamma + gamma, which ranges from 57 to 84 MeV,

C and the 131.5 MeV peak from pi-minus + p -> pi-zero + n.

C Note that the channel number, X(I), is close to three

27

C times the actual energy measured by the NaI detector.

C Deviations from this are adjusted with the scaling parameters,

C P(2), P(3), and P(9), i.e. X=P*3*E.

PARAMETER (NP=15, MP=16, FTOL=0.1)

DIMENSION PVEC(16,15),CHIVEC(16), POLD(15)

DIMENSION P(15)

COMMON/INDATA/ NDAT,X(250),DX(250),Y(250),DY(250)

COMMON/PAR/ PB, PA

EPS=0.5

NDIM=NP

C

DATA P(1)/5.3E5/

DATA P(2)/1./

DATA P(3)/1./

DATA P(4)/4.5/

DATA P(5)/14.0/

DATA P(6)/0.03/

DATA P(7)/0.02/

DATA P(8)/7.0E6/

DATA P(9)/0.85/

DATA P(10)/2.5/

DATA P(11)/13./

DATA P(12)/2.5E5/

DATA P(13)/0.0/

DATA P(14)/38./

DATA P(15)/0.0/

C

CCC

C C

C P(1) == Normalization of the pi0-box C

C P(2) == Left edge of the pi0-box C

C P(3) == Right edge of the pi0-box C

C P(4) == Width parameter of higher energy tail C

C P(5) == Width parameeter of lower energy tail C

C P(6) == Energy dependence of P(4) C

C P(7) == Energy dependence of P(5) C

C C

C P(8) == Normalization of 129-peak C

C P(9) == 129-Peak position C

C P(10)== Width parameter of higher energy tail C

C P(11)== Width parameter of lower energy tail C

C C

C P(12)== Normalization of the exp. background C

C P(13)== Pedestal position C

C P(14)== Exponential decay parameter of noise C

C C

C P(15)== Constant background C

C C

CCC

CALL Xyread

C

CHIMIN=1.E10

C

400 WRITE(*,*)’Which parameter(1-15) do you want to vary? (Zero to exi

Ct.)’

READ(*,*)IGO

CHIMIN = 10.E10

C

IF(IGO.EQ.0)GO TO 500

WRITE(*,*) ’P(’,IGO,’)=’,P(IGO)

WRITE(*,*) ’Enter the parameter range (P) and Delta-P’

WRITE(*,*)’ PARmin, PARmax, Delta-P’

READ(*,*) PMIN, PMAX, PD

C

1 P(IGO)=PMIN

PHOLD=P(IGO)

WRITE(*,*) ’LOOP NUMBER = ’,IGO

WRITE(*,*)

WRITE(*,*) ’LOOP, PARAMETER, CHISQ’

DO 11 I=1,100

CHITRY=CHI2(P)

IF (CHITRY.LT.CHIMIN) THEN

PHOLD=P(IGO)

CHIMIN=CHITRY

END IF

WRITE(*,*) IGO,P(IGO),CHITRY

28

P(IGO)=P(IGO)+PD

IF(P(IGO).GT.PMAX) GO TO 12

11 CONTINUE

12 P(IGO)=PHOLD

C

WRITE(*,*) ’Output summary, P(’,IGO,’)=’,P(IGO)

WRITE(*,*)

WRITE(*,*) ’Look for output on file DataFit.dat’

OPEN(UNIT=8, FILE="DataFit.dat", STATUS="REPLACE")

DO 501, I=1,NDAT

501 WRITE(8,*) X(I), T4HIST(P,X(I))

CLOSE(8)

WRITE(*,*)

WRITE(*,*) ’Any further changes? Yes=1, No=2’

READ(*,*) ILAST

IF(ILAST.EQ.1) GO TO 400

500 WRITE(*,*) ’Begin multi-dimensional minimization.’

WRITE(*,*)

DO 100 I=1,MP

DO 100 J=1,NP

100 PVEC(I,J)=P(J)

DO 101 J=1,NP

101 PVEC(J+1,J)=PVEC(J+1,J)*(1+EPS)

DO 102 I=1,MP

DO 102 J=1,NP

POLD(J)=P(J)

P(J)=PVEC(I,J)

102 CHIVEC(I)=CHI2(P)

C WRITE(*,*) "p =", PVEC(2, 1)

CALL Amoeba(PVEC,CHIVEC,MP,NP,NDIM,FTOL,CHI2,ITER)

OPEN(UNIT=13, FILE= "CHIPLOT.dat", STATUS="REPLACE")

DO 103 J=1,NP

103 P(J)=PVEC(1,J)

WRITE(*,*) ’Number of iterations: ’,ITER

WRITE(*,*)

WRITE(*,*) ’Final chi square: ’,CHIVEC(1)

WRITE(*,*)

WRITE(*,*) ’Output summary’

WRITE(*,*)

WRITE(*,*) ’Par Number, P-old, P-new’

DO 105, J=1,15

105 write(*,149) J, POLD(J), PVEC(1,J)

WRITE(*,*)

WRITE(*,*) "Look for histograms on file DataFit.dat"

WRITE(*,*) "The fitted paarameter values are in CHIPLOT.dat"

WRITE(*,*)

WRITE(13,*) ’Number of iterations: ’,ITER

WRITE(13,*)

WRITE(13,*) ’Final chi square: ’,CHIVEC(1)

WRITE(13,*)

WRITE(13,*) ’Output summary’

WRITE(13,*)

WRITE(13,*) ’Par Number, P-old, P-new’

DO 106, J=1,15

106 write(13,149) J, POLD(J), PVEC(1,J)

WRITE(13,*)

CLOSE(13)

148 FORMAT(1X, A3, F6.3)

149 FORMAT(I2, E12.4, E12.4)

150 FORMAT(1X, A7, F6.3)

OPEN(UNIT=8, FILE="DataFit.dat", STATUS="REPLACE")

DO 502, I=1,NDAT

502 WRITE(8,*) X(I), T4HIST(P,X(I))

CLOSE(8)

C

STOP

END

C**

FUNCTION Chi2(P)

COMMON/INDATA/ NDAT,X(250),DX(250),Y(250),DY(250), ITER

DIMENSION P(15)

CHI2=0.0

DO 100 J=1,NDAT

CHI2=CHI2+(T4HIST(P,X(J))-Y(J))**2/(DY(J)*DY(J))

100 CONTINUE

29

RETURN

END

C***

SUBROUTINE Amoeba(p,y,mp,np,ndim,ftol,funk,iter)

INTEGER iter,mp,ndim,np,NMAX,ITMAX

REAL ftol,p(mp,np),y(mp),funk,TINY

PARAMETER (NMAX=20,ITMAX=5000,TINY=1.e-10)

EXTERNAL Funk

C USES Amotry, Funk

INTEGER i,ihi,ilo,inhi,j,m,n

REAL rtol,sum,swap,ysave,ytry,psum(NMAX),amotry

iter=0

C WRITE(*,*) "p =", p

C STOP

C WRITE(*,*) "y =", y

C STOP

C WRITE(*,*) "mp =", mp

C STOP

C WRITE(*,*) "np =", np

C STOP

C WRITE(*,*) "ndim =", ndim

C STOP

C WRITE(*,*) "ftol =", ftol

C STOP

C WRITE(*,*) "funk =", funk(p)

C WRITE(*,*) "Chi2 =", CHI2(p)

C STOP

C WRITE(*,*) "iter =", iter

C STOP

1 do 12 n=1,ndim

sum=0.

do 11 m=1,ndim+1

sum=sum+p(m,n)

11 continue

psum(n)=sum

12 continue

2 ilo=1

if (y(1).gt.y(2)) then

ihi=1

inhi=2

else

ihi=2

inhi=1

endif

do 13 i=1,ndim+1

if(y(i).le.y(ilo)) ilo=i

if(y(i).gt.y(ihi)) then

inhi=ihi

ihi=i

else if(y(i).gt.y(inhi)) then

if(i.ne.ihi) inhi=i

endif

13 continue

rtol=2.*abs(y(ihi)-y(ilo))/(abs(y(ihi))+abs(y(ilo))+TINY)

if (rtol.lt.ftol) then

swap=y(1)

y(1)=y(ilo)

y(ilo)=swap

do 14 n=1,ndim

swap=p(1,n)

p(1,n)=p(ilo,n)

p(ilo,n)=swap

14 continue

return

endif

if (iter.ge.ITMAX) pause ’ITMAX exceeded in amoeba’

iter=iter+2

ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,-1.0)

if (ytry.le.y(ilo)) then

ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,2.0)

else if (ytry.ge.y(inhi)) then

ysave=y(ihi)

ytry=amotry(p,y,psum,mp,np,ndim,funk,ihi,0.5)

if (ytry.ge.ysave) then

do 16 i=1,ndim+1

if(i.ne.ilo)then

30

do 15 j=1,ndim

psum(j)=0.5*(p(i,j)+p(ilo,j))

p(i,j)=psum(j)

15 continue

y(i)=funk(psum)

endif

16 continue

iter=iter+ndim

goto 1

endif

else

iter=iter-1

endif

goto 2

END

C***

FUNCTION Amotry(p,y,psum,mp,np,ndim,funk,ihi,fac)

INTEGER ihi,mp,ndim,np,NMAX

REAL amotry,fac,p(mp,np),psum(np),y(mp),funk

PARAMETER (NMAX=20)

EXTERNAL funk

CU USES funk

INTEGER j

REAL fac1,fac2,ytry,ptry(NMAX)

fac1=(1.-fac)/ndim

fac2=fac1-fac

do 11 j=1,ndim

ptry(j)=psum(j)*fac1-p(ihi,j)*fac2

11 continue

ytry=funk(ptry)

if (ytry.lt.y(ihi)) then

y(ihi)=ytry

do 12 j=1,ndim

psum(j)=psum(j)-p(ihi,j)+ptry(j)

p(ihi,j)=ptry(j)

12 continue

endif

amotry=ytry

return

END

C***

SUBROUTINE Blur(P,M)

C

IMPLICIT REAL (A-H,O-Z)

DIMENSION P(*)

DIMENSION X(500),XB(151),E(500),Y(500),YB(151),YC(500)

COMMON/VALUE/YC

COMMON/PAR/ CP, DP

DATA INIT/0/,ELO/54.887/,EHI/82.97/

C

CCCCCCCCuncomment to debugCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C C

C P(1) == Normalization of the pi0-box C

C P(2) == Left edge of the pi0-box C

C P(3) == Right edge of the pi0-box C

C P(4) == Width parameter of higher energy tail C

C P(5) == Width parameeter of lower energy tail C

C P(6) == Energy dependence of P(4) C

C P(7) == Energy dependence of P(5) C

C C

C P(8) == Normalization of 129-peak C

C P(9) == 129-Peak position C

C P(10)== Width parameter of higher energy tail C

C P(11)== Width parameter of lower energy tail C

C C

C P(12)== Normalization of the exp. background C

C P(13)== Pedestal position C

C P(14)== Exponential decay parameter of noise C

C C

C P(15)== Constant background C

C C

CCC

C OPEN(UNIT=10,FILE=’YCTEST’,STATUS=’REPLACE’)

C P(1)=5.35E5

C P(2)=1.

C P(3)=1.

31

C P(4)=4.5

C P(5)=14.0

C P(6)=0.03

C P(7)=0.02

C P(8)=9.7E6

C P(9)=1.

C P(10)=2.5

C P(11)=9.2

C P(12)=2.5E5

C P(13)=0.0

C P(14)=38.

C P(15)=0.0

C M=0

IF(INIT.EQ.0)THEN

INIT=1

DO 10 J=1,151

10 XB(J)=(J-112.0)

DO 20 J=1,500

20 X(J)=J

END IF

C

IF(M.GT.0)GOTO 1

C

IXLO=INT(3.*57.0*P(2))

IXHI=INT(3.*83.6*P(3))

NBOX=IXHI-IXLO

C

DO 30 I=1,500

Y(I)=0.0

30 E(I)=0.0

C

DO 40 I=1,500

IF(I.GE.IXLO.AND.I.LE.IXHI)Y(I)=1.0

IF(Y(I).GT.0.0)E(I)=ELO+(EHI-ELO)/NBOX*(I-IXLO)

40 CONTINUE

C ********************

1 CONTINUE

C ********************

DO 50 I=1,500

50 YC(I)=0.0

C

DO 101 K=1,500

IF(Y(K).EQ.0.0)GOTO 101

CP=P(4)*E(K)**P(6)

DP=P(5)*E(K)**P(7)

RNORM=2.*DP*EXP(CP*CP/4./DP/DP)

DO 100 J=1,151

L=J+K-112

IF(L.LT.1.OR.L.GT.500)GOTO 100

XTEST=XB(J)/CP

C WRITE(*,*) J, CP, XB(J)/CP, XTEST

YB(J)=EXP(XB(J)/DP)*(1.-ERF(XTEST))/RNORM

YC(L)=YC(L)+YB(J)*Y(K)

100 CONTINUE

101 CONTINUE

C

C DO 102 L=1,500

C102 WRITE(10,*) YC(L)

C

C CLOSE(10)

RETURN

END

C**

FUNCTION Erf(x)

REAL erf,x

CU USES gammp

REAL gammp

if(x.lt.0.)then

erf=-gammp(.5,x**2)

else

erf=gammp(.5,x**2)

endif

32

return

END

C**

FUNCTION Gammln(xx)

REAL gammln,xx

INTEGER j

DOUBLE PRECISION ser,stp,tmp,x,y,cof(6)

SAVE cof,stp

DATA cof,stp/76.18009172947146d0,-86.50532032941677d0,

*24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2,

*-.5395239384953d-5,2.5066282746310005d0/

x=xx

y=x

tmp=x+5.5d0

tmp=(x+0.5d0)*log(tmp)-tmp

ser=1.000000000190015d0

do 11 j=1,6

y=y+1.d0

ser=ser+cof(j)/y

11 continue

gammln=tmp+log(stp*ser/x)

RETURN

END

C**

FUNCTION Gammp(a,x)

REAL a,gammp,x

CU USES gcf,gser

REAL gammcf,gamser,gln

if(x.lt.0..or.a.le.0.)pause ’bad arguments in gammp’

if(x.lt.a+1.)then

call gser(gamser,a,x,gln)

gammp=gamser

else

call gcf(gammcf,a,x,gln)

gammp=1.-gammcf

endif

return

END

C**

SUBROUTINE Gcf(gammcf,a,x,gln)

INTEGER ITMAX

REAL a,gammcf,gln,x,EPS,FPMIN

PARAMETER (ITMAX=100,EPS=3.e-7,FPMIN=1.e-30)

CU USES gammln

INTEGER i

REAL an,b,c,d,del,h,gammln

gln=gammln(a)

b=x+1.-a

c=1./FPMIN

d=1./b

h=d

do 11 i=1,ITMAX

an=-i*(i-a)

b=b+2.

d=an*d+b

if(abs(d).lt.FPMIN)d=FPMIN

c=b+an/c

if(abs(c).lt.FPMIN)c=FPMIN

d=1./d

del=d*c

h=h*del

if(abs(del-1.).lt.EPS)goto 1

11 continue

pause ’a too large, ITMAX too small in gcf’

1 gammcf=exp(-x+a*log(x)-gln)*h

RETURN

END

C**

SUBROUTINE Gser(gamser,a,x,gln)

INTEGER ITMAX

REAL a,gamser,gln,x,EPS

PARAMETER (ITMAX=100,EPS=3.e-7)

CU USES gammln

INTEGER n

REAL ap,del,sum,gammln

gln=gammln(a)

33

if(x.le.0.)then

if(x.lt.0.)pause ’x < 0 in gser’

gamser=0.

return

endif

ap=a

sum=1./a

del=sum

do 11 n=1,ITMAX

ap=ap+1.

del=del*x/ap

sum=sum+del

if(abs(del).lt.abs(sum)*EPS)goto 1

11 continue

pause ’a too large, ITMAX too small in gser’

1 gamser=sum*exp(-x+a*log(x)-gln)

return

END

C **

FUNCTION T4hist(P,XIN)

C

IMPLICIT REAL (A-H,O-Z)

COMMON/INDATA/ NDAT,X(250),DX(250),Y(250),DY(250)

DIMENSION P(15)

COMMON/VALUE/YC(750)

CCC

C C

C P(1) == Normalization of the pi0-box C

C P(2) == Left edge of the pi0-box C

C P(3) == Right edge of the pi0-box C

C P(4) == Width parameter of higher energy tail C

C P(5) == Width parameeter of lower energy tail C

C P(6) == Energy dependence of P(4) C

C P(7) == Energy dependence of P(5) C

C C

C P(8) == Normalization of 129-peak C

C P(9) == 129-Peak position C

C P(10)== Width parameter of higher energy tail C

C P(11)== Width parameter of lower energy tail C

C C

C P(12)== Normalization of the exp. background C

C P(13)== Pedestal position C

C P(14)== Exponential decay parameter of noise C

C C

C P(15)== Constant background C

C C

CCC

DATA P1OLD/0.0/,P2OLD/0.0/,P3OLD/0.0/,P4OLD/0.0/

DATA P5OLD/0.0/,P6OLD/0.0/,P7OLD/0.0/

C

M=0

C

IF(P(2).EQ.P2OLD.AND.P(3).EQ.P3OLD)M=1

IF(M.EQ.1.AND.P(4).EQ.P4OLD.AND.P(5).EQ.P5OLD)M=2

IF(M.EQ.2.AND.P(6).EQ.P6OLD.AND.P(7).EQ.P7OLD)GOTO 1

C

P1OLD=P(1)

P2OLD=P(2)

P3OLD=P(3)

P4OLD=P(4)

P5OLD=P(5)

P6OLD=P(6)

P7OLD=P(7)

C

CALL Blur(P,M)

BOX=P(1)*YC(INT(3.*XIN))

GOTO 10

C

1 CONTINUE

P1OLD=P(1)

BOX=P(1)*YC(INT(XIN))

10 CONTINUE

C XIN=333.

PEAK=EXP((XIN-3.*131.5*P(9))/P(11))*

C(1.-ERF((XIN-3.*131.5*P(9))/P(10)))

34

PEAK=PEAK/(2.*P(11)*EXP(P(10)*P(10)/4./P(11)/P(11)))

PEAK=P(8)*PEAK

C

20 BACK=P(12)*EXP(-(XIN-P(13))/P(14))

C

30 BACK=BACK+P(15)

C

T4HIST=BOX+PEAK+BACK

C WRITE(*,*) "T4hist =", T4HIST

C STOP

C

RETURN

END

C **

SUBROUTINE Xyread

IMPLICIT REAL (A-H,O-Z)

INTEGER :: CL

COMMON/INDATA/ NDAT,X(250),DX(250),Y(250),DY(250)

CHARACTER*25 FILENAME

WRITE(*,100)

100 FORMAT(/’ enter filename of data: ’,$)

READ(*,101) FILENAME

101 FORMAT(A)

WRITE(*,*) FILENAME

WRITE(*,102)

102 FORMAT(’ Enter first and last channel number ’)

READ(*,*)XMIN,XMAX

WRITE(*,*)

WRITE(*,*) XMIN, XMAX

OPEN(UNIT=7,FILE=FILENAME,STATUS=’OLD’,ACTION= "READ")

N=0

150 READ(7,*,END=200)XVAL,YVAL

IF(XVAL.LT.XMIN.OR.XVAL.GT.XMAX)GOTO 150

N=N+1

X(N)=XVAL

Y(N)=YVAL

DX(N)=.5

DY(N)=SQRT(ABS(Y(N)))

GOTO 150

200 NDAT=N

CLOSE(7)

201 WRITE(*,300)N,X(1),X(N)

300 FORMAT(’ Number of points read in : ’,I4,/,

& ’ Range of Nchannel : ’,G10.4,’ to ’,G10.4)

RETURN

END

.1 Sorter
!**

!

! PROGRAM: Sorter (for f90 compiler)

!

! PURPOSE: Analyze data files written by Dalitz

!

!**

Program Sorter

implicit real(M)

character*25 Filename

logical flag

! Variables

dimension PP(4), PE(4), PG(4), DETEC(3)

integer XSPEC(100),EPSPEC(100),EESPEC(100),TSPEC(180)

data N0/0/, N1/0/, N2/0/, N3/0/, N4/0/,N5/0/

data ME/0.511/, PI/3.14159/, MP0/134.9739/

data THETAMAX/0.2618/ ! 15 DEGREES OPENING ANGLE

TMAX=TAN(THETAMAX)

CMAX=COS(THETAMAX)

data XSPEC/100*0./, EPSPEC/100*0./

data EESPEC/100*0./, TSPEC/180*0./

! Body of Sorter

write(*,*) ’Enter filename of data’

read(*,1) Filename

1 format(A)

35

write(*,*) ’Enter minimum x cut’

read(*,*) XMIN

write(*,*) ’Enter minimum energy cut’

read(*,*) EMIN

write(*,*) ’Enter the detector opening angle in degrees’

read(*,*) TOPEN

COPEN=COS(TOPEN*PI/180.)

SOPEN=SIN(TOPEN*PI/180.)

DETEC(1)=SOPEN

DETEC(2)=0.

DETEC(3)=COPEN

open(unit=7, File=Filename, Status=’old’, ACTION= "READ")

open(unit=8, File=’Xspec’, Status=’replace’)

open(unit=9, File=’EPspec’, Status=’replace’)

open(unit=10, File=’EMspec’, Status=’replace’)

open(unit=11, File=’Tspec’, Status=’replace’)

5 read(7,10,IOSTAT=istat) I,X,Y

10 format(I10,4X,2(E10.4,4X))

if(istat<0) go to 100

if(istat>0) go to 5

read(7,20) PP(1),PP(2),PP(3),PP(4)

read(7,20) PE(1),PE(2),PE(3),PE(4)

read(7,20) PG(1),PG(2),PG(3),PG(4)

20 format (4(E10.4,4X))

N0=N0+1

flag=.true.

! Analyze these events.

! Does PP hit the detector?

PPperp2=PP(1)*PP(1)+PP(2)*PP(2)

PPperp=sqrt(PPperp2)

TanPP=PPperp/PP(3)

if(TanPP .gt. TMAX) go to 5

N1=N1+1

! Does PE hit the detector?

PP2=0.

PE2=0.

do I=1,3

PE2=PE2+PE(I)*PE(I)

PP2=PP2+PP(I)*PP(I)

end do

PEmag=sqrt(PE2)

PPmag=sqrt(PP2)

! Construct the dot product of DETEC and a unit vector

! in the PE direction.

PdotD=0.

do I=1,3

PdotD=PdotD+PE(I)*DETEC(I)/PEmag

end do

if(PdotD .gt. CMAX) then

N2=N2+1

else

flag=.false.

end if

DETangle=180.*acos(PdotD)/PI

! All events that hit the positron detector are histogramed.

! Calculate the opening angle

PdotE=0.

do I=1,3

PdotE=PdotE+PP(I)*PE(I)

end do

PdotE=PdotE/(PPmag*PEmag)

PEangle=180.*acos(PdotE)/PI

! Now impose the energy cuts.

if(PP(4).gt.EMIN .and. PE(4).gt.EMIN) then

N3=N3+1

else

flag=.false.

end if

! Finally the x cut.

Xval=2.*ME*ME

do I=1,3

Xval=Xval-2.*PP(I)*PE(I)

end do

Xval=Xval+2.*PP(4)*PE(4)

Xval=Xval/(MP0*MP0)

if(Xval .gt. XMIN) then

36

N4=N4+1

else

flag=.false.

end if

if(flag.eqv..true.) N5=N5+1

! Histogram results.

I=Xval*100.+1.

if(I.lt.0 .or. I.gt.100) go to 30

Xspec(I)=Xspec(I)+1

I=PP(4)+1.

if(I.lt.0 .or. I.gt.100) go to 30

EPspec(I)=EPspec(I)+1

I=PE(4)+1.

if(I.lt.0 .or. I.gt.100) go to 30

EEspec(I)=EEspec(I)+1

I=PEangle+1.

if(I.lt.0 .or. I.gt.180) go to 30

TSPEC(I)=TSPEC(I)+1

go to 5

! Write up the summary and histograms.

30 write(*,*) ’Out of bounds error I = ’,I

go to 5

100 continue

write(*,*) ’Filename = ’,Filename

write(*,*) ’Events read from file = ’,N0

write(*,*) ’Events hitting positron detector = ’,N1

write(*,*) ’Events hitting electron detector = ’,N2

write(*,*) ’Events passing energy cuts = ’,N3

write(*,*) ’Events passing xmin cut = ’,N4

write(*,*) ’Events passing all cuts = ’,N5

do I=1,100

write(8,*) XSPEC(I)

write(9,*) EPSPEC(I)

write(10,*) EESPEC(I)

end do

do I=1,180

write(11,*) TSPEC(I)

end do

close(7)

close(8)

close(9)

close(10)

close(11)

end

A Appendix C: How Simulated Data were Gener-
ated

Recall, the data are from the successive processes

π−p→ π0 n (52)

↪→ γe−e+. (53)

There are three simplications in the simulated data:

1. We assume that a known number of π0’s (and nothing else) are pro-
duced precisely in the center of the proton target in which the π−’s
stop.

37

2. The decay electrons in (53) are detected in two NaI detectors. These
are large crystals that give off a flash of light when electrons pass into
them. We measure the amount of light given off with photomultiplier
tubes, and use that to deduce the energy of the electrons. We assume
that the two NaI detectors are identical, and that they both subtend a
cone with its apex at the production point with a half-angle of 150. We
also assume that particles inside these cones are detected with 100%
efficiency, while those outside of the cone are not detected at all.

3. To avoid you having to remove the effects of the finite angular and
energy resolution of the detectors, we assume that the detectors deter-
mine the directions and energies of the particles with perfect accuracy.
In contrast, the calibration project in § 6 makes use of real data.

If you are not familiar with Monte Carlo techniques, now is the time to
review them. Chapters 6 and 7 in Computational Physics [CP] is a good
place to look for a discussion of these techniques.

The variables x and y, in (12)-(13), representing the sum and differences
of the electron pairs energy, are chosen randomly but with a weighting given
by the Kroll-Wada distribution (22). In theory one should generate the
distribution over the complete, kinematically-allowed range r ≤ x ≤ 1.
However, in order not to waste time, we leave out the small-x events since
our apparatus could not detect most of them anyway. Next, the direction
of the emitted e+ is chosen randomly within the full 4π range of solid angle.
However, to save time and not create events that cannot be observed, its
direction is restricted to a cone centered around one of the detectors.

The energy of the two decay electrons and the angle between them θ
(their “opening angle”) is determined from the values of x and y.

The azimuthal angle of the electron (with respect to the positron direc-
tion) in the π0 rest frame is determined randomly. [How is this different
from opening angle??] All momenta are transformed from the π0 rest frame
into the lab system. Since we have used the photon’s momentum vector to
orient the two electrons, and since this photon is emitted symetrically over
the entire sphere, there is no prefer direction for the photon. Accordingly,
the transformation velocity β is given a random chosen direction.

The resulting “event” is written to a file with the Fortran code:

! Finally, write everything to a file.

WRITE(9,100) I,X,Y

100 FORMAT(I10,4X,2(E10.4,4X))

WRITE(9,110) PP(1),PP(2),PP(3),PP(4)

38

WRITE(9,110) PE(1),PE(2),PE(3),PE(4)

WRITE(9,110) PG(1),PG(2),PG(3),PG(4)

110 FORMAT(4(E10.4,4X))

This section of code is executed for each event, and leads to a a huge
output file! Here, I is the event number, X and Y are the x and y variables
(12)-(13), PP, PE, and PG are the positron’s, electron’s, and gamma’s momen-
tum vectors respectively, with the fourth component of each momentum
vector the energy of the particle.

B Reprint of Original Paper

References

[PL] Measurement of the slope of the π0 electromagnetic form factor, F.
Farzanpay, P. Gumplinger, A. Stetz, j.-M. Poutissou, I. Blevis, M. Has-
sinoff, C.J. Virtue, C.E. Waltham, B.C. Robertson, T. Mulera, A. Shor,
J. Lowe, and S.H. Chew, Physocs Letters B 278 (1992) 413-418.

[CP] Computational Physics, Problem Solving with Computers, R.H. Lan-
dau and M.J. Paez, John wiley, N.Y., 1997.

39

