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Chapter 1

LPOTT: Simulation of
Pion-Nucleus Scattering, 8/02

1.1 Introduction

1.1.1 Thumbnail Sketch of Lab

The program LPOTT[LPOTT] simulates the multiple scattering of a pion by the various
nucleons within a nucleus. You give LPOTT1 the energy of the pion incident on specified
target nucleus, and it computes the scattering cross sections and wave functions. LPOTT

solves an integral equation in momentum space that is just the Schrödinger equation spe-
cialized for scattering. This integral equation is reduced to simultaneous linear equations
which are solved with matrix techniques. The physics investigated includes the effect of the
pion-nucleon resonances, the interference of Coulomb and nuclear forces, and the multiple
scattering of the pion within the nucleus. Further studies include the focusing of the pion’s
wave function caused by an absorptive nucleus and the importance of nuclear spin flip.

1.1.2 Learning Goals

• understanding how the many-body nature of the nucleus affects the scattering

• gaining experience with the solution of integral equations

• gaining experience with matrix equations and matrix manipulations

• understanding how interpolation on a data set converts it into a function

• understanding the physics of scattering

1.1.3 Why Need High Performance Computing

Since LPOTT solves the Schrödinger equation as an integral equation in momentum (Fourier)
space, it requires more computing time than solving a differential equation. When the first
versions of LPOTT were written in 1972, it was revolutionary in its promise to provide a
more precise description of nuclear scattering than was possible by doing the calculation in
r space. While LPOTT lived up to its promise, the fact that it took 10-100 times longer
to perform the calculation than the standard coordinate-space codes meant that it was
considered very “expensive” to run. That was a time when computers were thousands of
time slower than today, and when computer time was so precious that researchers had to
buy every second of it (one hour of computer time cost about the same as one month of

1LPOTT is an acronym of sorts for the Landau-Phatak-Tabakin Optical Potential.
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graduate student salary). Although there are thousands of lines of Fortran code in LPOTT,
modern computers are so fast that running time is no longer an issue.

When LPOTT was used as an instrument for basic research, it was important to test the
sensitivity of the calculation to various theoretical assumptions, as well as to the parameters
used to describe the nuclear size and shape. For these reasons there are a bunch of numbers
that the user “feeds” LPOTT to get it going. Some of these input data are “switches” that
control the logical flow within the calculation, while others are parameters that give the size
and shape of the nucleus or control different aspect of the interaction.

1.1.4 Purpose of this Research

• to learn about the structure of nuclei via π scattering

• to understand the mechanism of how a π interacts with a nucleus

• to learn about the pion-nucleon (πN) interaction via π scattering from the collection
of nucleons within a nucleus

1.1.5 Computer Language

Fortran 77.

1.1.6 Required Resources

disk space, Ram, file sizes, CPU time.

1.2 Physics Background

The scattering of a π by a nucleus arises from the nuclear (or strong) and Coulomb forces
between a π and the nucleus of an atom in the target. This force may be attractive or
repulsive, and, indeed, you will conduct an experiment to determine which it is. Yet even if
the nuclear force were infinitely attractive, angular momentum conservations requires that
the incident beam will be scattered from the nucleus and not captured by it. For the high
energies considered in this lab (millions of electron volts), we can safely ignore any scattering
from electrons in the target and consider just the nuclei.

Before we plow into the theory, it is important to understand what pions are, why they
occur in nature, and why anyone would want to smash them into a nucleus. The π story
begins in 1935 when Yukawa[Yuk35] discovered that quantum field theory could be used to
provide the first theoretical description of the nuclear and short-ranged force between the
neutrons and protons (“nucleons”) in the nucleus. To accomplish this, Yukawa postulated
that the nuclear force arises when one N emits a particle that is subsequently absorbed by
a different N. To get the nucleons to fit inside the small size of a nucleus (∆x ∼ 10−13cm)
and still satisfy the uncertainty principle ∆x∆p � h̄. Yukawa realized that the exchanged
particle had to have a mass of about 1/7th that of a N. Although it took some years for
this particle to be found, we now call it the π meson or pion. (The term “meson” denotes
particles that are intermediate in mass between heavy ones like nucleons, and light ones like
electrons).

While pions are the strong glue that holds nuclei together, when removed from a nucleus
and placed in free space, they are unstable and decay with a mean lifetime of 3 × 10−8

seconds. Because they have such short lifetimes, it has been a challenge to determine the
properties of isolated pions as well as the nature of their interactions with other particles.
The pions don’t live long enough to be placed in an accelerator, nor to make a target out of
them. However, an accelerator can produce protons with such high energies that when they
hit a “production” target, some of the proton’s kinetic energy is converted into pions, and a
beam of pions is produced. If a secondary target is placed nearby, some of these pions will



1.2. PHYSICS BACKGROUND 5

hit that target and interact with the nuclei within the target. This is what we simulate in
the present lab.

Once we have the ability to form a beam of pions, we smash them into nuclei to learn
more about the nucleus or about the π and its interactions. Pions are a particularly useful
probe of nuclei since their unique properties make them sensitive to different aspects of
the nucleus than other probes, and thereby able to view the nucleus “in a different light”.
We also study the interaction of pions with nuclei to learn about π interactions that are
otherwise impossible to observe. For example, neutrons are too unstable to be made into a
target to scatter from, yet the neutrons inside of a nucleus are stable and can thereby be
used to study π-neutron scattering (two unstable particles).

1.2.1 Scattering Kinematics

In a scattering experiment a beam of particles of well-defined momentum is directed at a
target (often a thin foil). Unless the target is very thick, most of the beam passes through
the target undeflected with some small number of particles scattered out of the beam at
various angles. The measurements made in a scattering experiment are of the number of
particles and their energies scattered at each angle.

In Fig. 1.1 we show a schematic diagram of a typical scattering experiment. The beam
comes in from the left and moves along the positive z axis to the right. The target is at the
origin, and a scattered particle is observed at a polar scattering angle θ and an azimuthal
angle φ. If, as we assume for this lab, the force between the beam particle and the target
particle is central, that is, lies along the line connecting the centers of the two particles, then
rotational invariance demands that the scattering not depend upon the azimuthal angle φ.

The laboratory frame of reference, or “lab frame” is the reference frame in which the
target particle is initially at rest. While experiments are conducted in the lab frame, it is
easier to understand the physics of scattering in the center-of-momentum (COM) reference
frame. As we show in Fig. 1.2, the COM frame is the one in which a particle in the beam
and a particle in the target have equal and opposite momenta.

In this lab we compute the elastic scattering of pions from a nucleus, that is, scattering
in which no internal degrees of freedom are excited. We perform the calculation in the
π-nucleus COM frame where the theory is simplest, but then relate it to quantities in the
lab frame, where the measurements are made. As we see in Fig.??, this means that in the
COM, the scattering process consists of just a rotation of the initial momenta of the beam
and target into the final momenta[QMII].

For nonrelativistic scattering, the momentum transfer q is the same in the lab and COM
frames:

q = p′
lab − plab = k′ − k, (1.1)

where a prime is used to denote momenta after the scattering, and k is used to denote
momenta in the COM. For relativistic scattering, the kinematic relations are based on the
Lorentz invariance of the COM energy or its square s:

ECOM = EP (k) + ET (k) =
√

M2
P + k2 +

√
m2

T + k2 =
√

s, (1.2)

⇒ k2 =
[s − (mP + mT )2][s − (mP − mT )2]

4s
. (1.3)

Here the subscripts P and T denote projectile and target respectively. Since s is a relativistic
invariant, it can be evaluated in the lab as well,

s = m2
P + m2

T + 2mT EP (plab), (1.4)

⇒ plab =
k
√

s

mP
. (1.5)

This means that knowing the COM energy s gives the COM momentum k, as well as the
lab momentum Plab.
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Figure 1.1: The incident, scattered, and transmitted waves in a scattering experiment. k
and k′ are the initial and final projectile momenta θ is the scattering angle.
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Figure 1.2: The elastic scattering of mass m1 and m2 in their center-of-momentum system.
Only the direction of the momenta change.
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If we know the COM energy, we can determine the π lab energy and momentum via

Elab
π =

E2
cm − m2

π − m2
N

2mN
, (1.6)

Tπ = Elab
π − m2

π, (1.7)

pπ =
√

Eπ − m2
π. (1.8)

1.2.2 Scattering Cross Sections

In a scattering experiment, such as that sketched in Fig. 1.1, the experimentalist counts the
number of particles scattered into their detector located at some angle θ and φ. Usually,
the results of a scattering experiment are converted into the scattering cross section σ(θ, φ)
that is a function of the scattering angle. For scattering into the differential solid angle
dΩ = d cos θ dφ, we deal with the differential cross section per unit solid angle, dσ/dΩ.
Cross sections are independent of the details of the experimental apparatus, independent
of the intensity of the incident beam, independent of the amount of target material, and of
the size of the detector. This is what makes them universal.

The differential cross section for elastic scattering dσ/dΩ is defined with reference to the
scattering setup of Fig. 1.1,

dσ

dΩ
(θ, φ) = lim

∆→0

N(θ, φ)/∆Ω
Nin/∆Ain

. (1.9)

That is, to obtain a quantity independent of detector size, we divide the number of particles
scattered into the detector N , by the solid angle subtended by the detector ∆Ω, and then
take the limit for infinitesimally small detector size and infinitesimally thin targets.

It follows from (1.20) that dσ/dΩ has the dimension of area, or area per solid angle (per
steradian). For nuclear scattering, a natural unit is Fermi2/steradian or millibarn/steradian.
Note that 1 Fermi = 10−13 cm ≡ 1 fm, 1 barn = 10−24 cm2, and 1 millibarn ≡ mb = fm2/10.
(The Barn is a very large unit; for most nuclear processes it is so large that a target producing
a cross section of a Barn would be as easy to hit as “the broad side of a barn.”)

Classically, the cross section σ is the effective cross sectional area the target presents
to the beam. Indeed, σ = πR2 for a hard sphere target of radius R. The quantum-
mechanical cross section describes the scattering of waves, and much like the scattering
of light waves, often varies rapidly with energy and angle. The analogy is so strong that
the literature of scattering theory borrows optical terms such as diffraction, dispersion,
absorption, interference, and index of refraction.

In elastic scattering the cross section as measured in the COM and lab frames are related
by

dσ

dΩ
(θ, φ)

∣∣∣∣
lab

=
dσ

dΩ
(θ, φ)

∣∣∣∣
COM

d(cos θ)
d(cos θlab)

, (1.10)

where angles without subscripts are in the COM. For nonrelativistic collisions, the lab and
COM scattering angles are related by

tan θlab =
sin θ

cos θ + mP /mT
. (1.11)

For relativistic collisions, we invoke the Lorentz invariance of the square of the 4-momentum
transfer,

t = (p′P − pP )2 = (p′T − pT )2, (1.12)

evaluate t in both frames, and obtain the relation between the scattering angles,

cos θ =
EP (k)2 − EP (plab)EP (p′lab) + plabp

′
lab cos θlab

k2
, (1.13)
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Figure 1.3: A setup for measuring a total cross section by observing the depletion of a
beam’s intensity from I(0) before the target to I(x) after the target.

where the prime is used to denote the scattered or final particle.
The total cross section is just integrated elastic cross section:

σel =
∫

dΩ
dσ

dΩ
=

∫ 2π

0

dφ

∫ 1

−1

d(cos θ)
dσ

dΩ
(θ). (1.14)

Total cross sections can be measured very simply by just passing a beam of intensity I0

through a target of thickness t as shown in Fig. 1.3. If you also measure the intensity I of
the beam when it leaves the target, the two intensities are related by

I = I0e
−σρt, (1.15)

where ρ is the density of the target.

1.2.3 Scattering Wave Functions

Our time-independent view of the scattering experiment is shown in Fig. 1.1. We describe
the incident beam as a plane wave2 continuously entering along the negative z axis:

φk(r) =
1

(2π)3/2
eik·r =

1
(2π)3/2

eikz, (1.16)

where the subscript k indicates the beam’s momentum. The constant 1/(2π)3/2 in these
equations is a normalization factor chosen to provide delta-function normalization of the
plane wave.

The complete scattering setup in Fig. 1.1 is described by there being a plane wave plus
a scattered wave:

ψk(r) = φk(r) + ψsc
k (r). (1.17)

Here the scattered wave ψsc
k (r) describes the scattered particles radiating away from the

target. A spherical, radiating wave has the form

ψsc
k (r) ∼ fE(θ, φ)

eikr

r
, (1.18)

where fE(θ, φ) is the amplitude of the scattered wave, or as the scattering amplitude. The
complete wave function accordingly has the asymptotic form

ψk(r) ∼ 1
(2π)3/2

[
eikz + fE(θ, φ)

eikr

r

]
. (1.19)

2So called because it occupies an infinite 2D plane in space.
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A crucial result of scattering theory is that the scattering amplitude fE(θ, φ) can be
determined experimentally by measuring cross sections. Specifically for elastic scattering,
the differential cross section is just the squared modulus of the scattering amplitude:

dσ

dΩ
(θ, φ) = |fE(θ, φ)|2. (1.20)

1.2.4 Partial Waves

While a plane wave is a reasonable model for the incident beam in a scattering experiment,
the mathematical analysis becomes simpler if the incident beam were a spherical wave. We
take advantage of this simplicity and the law of linear superposition by decomposing the
incident plane wave into the sum of an infinite number of spherical, partial waves:

φk(r) =
eik·r

(2π)3/2
=

∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ)
(2π)3/2

. (1.21)

Here Pl(cos θ) is the Legendre polynomial and jl(kr) is the spherical Bessel function. The
combination of incident and scattering wave make up the complete wave function of the
system and is also expanded as the sum of partial waves

ψk(r) =
∞∑

l=0

(2l + 1)il Pl(cos θ)ul(kr)
kr(2π)3/2

, (1.22)

where we must solve for the radial wave function ul(kr). The ul’s are called distorted partial
waves and are related to the scattering phase shifts via their behavior at large r:

ul(kr) ∼ eiδl(E) [sin δl cos(kr − lπ/2) + cos δl sin(kr − lπ/2)] (1.23)
= eiδl sin(kr − lπ/2 + δl). (1.24)

In turn, the phase shifts are related to the scattering amplitude that can be measured by
experiment:

fE(θ) =
∞∑

l=0

(2l + 1)Pl(cos θ)
(ηle

2iδl − 1)
2ik

, (1.25)

=
∞∑

l=0

(2l + 1)Pl(cos θ)
Tl(k)

k
, (1.26)

Tl(k) =
(ηle

2iδl − 1)
2i

. (1.27)

Here Tl(k) is called the partial wave amplitude, and has the 1/k factor removed from it to
leave it with unit modulus. In terms of these amplitudes, the total cross section is:

σtot =
4π

k2

∞∑
l=0

(2l + 1) ImTl. (1.28)

For the scattering that we simulate in this lab, the nucleus has the capability not only of
scattering the incident waves on it, but also of actually absorbing some of that wave so that
they effectively disappear (like light being absorbed by a cloudy mirror). For cases such as
these, the absorption parameter in (1.27) ηl ≤ 1. For elastic scattering, ηl = 1.
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Figure 1.4: The parameters involved in an Argand diagram and their geometrical interpre-
tation: the central angle is 2δl, the absorption parameter ηl is the radius, and determines
the complex amplitude Tl.

1.2.5 Resonances and Argand Plots

Resonances occur when sound waves get stuck in organ pipes and when quantum waves
get stuck in potential wells. They also occur when strongly interacting particles get so
close to each other that they bind for short times. One of the things that makes this lab
interesting is that the input π-N system has a very strong resonance in the l = 1 partial
wave. This resonance is called the P3/2,3/2 resonance or P33 for short. The P denotes an
orbital angular momentum l = 1 state, the first 3/2 indicates that this is an isospin 3/2
state, and the second 3/2 indicates that the total angular momentum j = l + s = 3/2.

At the resonance energy for a potential resonance, the imaginary part of the scattering
amplitude has a maximum, the real part of the amplitude has a zero, and the scattering
phase shift δ = π/2. Since the optical theorem relates the total cross section to the imaginary
part of the forward scattering amplitude via

σtot =
4π

k
Imf(θ = 0), (1.29)

the maximum in Imf(0) leads to a maximum of the scattering cross section at the resonance
energy also.

One way of visualizing resonances is to draw the partial wave scattering amplitude as
an Argand diagram as in Fig. (1.4). This is a parametric plot of the imaginary part of the
scattering amplitude versus the real part. This is parametric because both ImTl and ReTl

are functions of the energy E, which is the parameter, yet does not appear explicitly in the
plots. For each energy, we evaluate ImTl and ReTl, and then get one point on the diagram.

The scale in an Argand diagrams is usually set by drawing a unit-diameter circle centered
at (0, 1/2). If we look at the expression (1.27) for the partial wave scattering amplitude, we
see that we can relate the phase shift δ and absorption parameter ηl to each point in the
Argand plot. If we draw a line from the origin to a point, the angle the line makes with the
vertical is 2δ, and the distance from the center of the circle to a point is ηl/2.
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The visualization value of these diagrams becomes clear when a resonance occurs, that
is, when the phase shift δ increases rapidly through π/2 a function of energy. This is seen
on the Argand plot as a point moving counterclockwise on the circle as a function of energy
and passing through the vertical at the resonance energy. If the resonance is inelastic with
ηl < 1, then there is still a loop, but its shape gets distorted.

1.2.6 Coulomb-Nuclear Interference

As a charged π scatters from a nucleus, it is affected by both Coulomb and nuclear forces.
Since there is no way of separating the effects of these forces, we follow the quantum pre-
scription of adding the corresponding Coulomb and nuclear scattering amplitudes[QMII]:

f(θ) = fpt
c (θ) + fNC(θ). (1.30)

Here fpt
c is the scattering amplitude that would arise if there were solely scattering from a

point Coulomb charge:

fpt
c = − γ

2k0 sin2 θ/2
exp(2iσ0 − γ ln sin2 θ/2), (1.31)

where γ is the Coulomb parameter (positive for a repulsive interaction),

γ =
ZT ZP e2

v
, (1.32)

with v the target-projectile relative velocity, and ZP and ZT the projectile and target charge
numbers. The function fNC in (1.30) is the scattering amplitude arising from the nuclear
scattering of a wave that has been distorted by the Coulomb force:

fNC(θ) =
1

ik0

∞∑
l=0

(2l + 1)e2iσl [e2iδNC

l − 1]Pl(cos θ), (1.33)

where the extra phase, σl = arg Γ(l + 1 + iγ), accounts for the Coulomb distortion of the
incident wave. As usual, the differential cross section is formed by forming the squared
magnitude of the scattering amplitude:

dσ

dΩ
= |f(θ)|2. (1.34)

1.2.7 The Optical Potential

Although you would be correct to suspect that the passage of a strongly-interacting particle
through a nucleus is complicated, it is successfully modelled as an analog to the passage
of a light wave through a cloudy crystal ball. Some of the wave gets refracted (bent) and
some of it gets diffracted (absorbed). So when you make the π interaction strong enough
in the simulation, you will see that the nucleus appears as a “black disk” to the π, with a
characteristic large forward peak followed by a number of diffraction minima.

The technique we use to model the passage of pions through nuclei is to solve the
Schrödinger equation with a potential that has the properties of a cloudy crystal ball. In
particular, the potential has an imaginary part to account for the absorption of pions by the
nucleus, an energy dependence to account for the energy dependence of the elementary π
interaction, and a nonlocality to account for the fact that the while the π may be interacting
with one N, that N may be interacting with other nucleons at other places in the nucleus.
This kind of potential is called an optical potential in analogy to the passage of light through
a cloudy crystal ball. By solving the Schrödinger equation in momentum space, we include
the proper nonlocalities and energy-momentum dependences of the optical potential that
would otherwise be lost if transformed to coordinate space.
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Figure 1.5: A pion in the lower left of the figure is interacting with a nucleon at r (dark
sphere). As a consequence of interactions with nearby nucleons at r′, the potential that the
pion feels is nonlocal, that is, V (r, r′).

The formula for the optical potential can be derived via a simple, intuitive argument.
Consider Fig. 1.2.7 showing the nucleons within a nucleus (shaded spheres) that the π (white
sphere) interacts with when it enters the nucleus. In order for the π to interact with the
nucleus in some region of space, there must be nucleons present nearby. The probability
of finding nucleons in some region of space is given by the average nuclear density ρ(r).
Accordingly, the optical potential U is proportional to ρ:

U(r) ∝ ρ(r). (1.35)

In some region of space where there are nucleons, the strength of the π’s interaction with
the nuclear medium is proportional to the strength of the π’s interaction with an individual
N. The measure of the strength of this interaction is given by the π-N scattering amplitude
fπN or T matrix tπN (the two are proportional):

U(r) ∝ tπN (r)ρ(r). (1.36)

We note that the size of the nucleus enters the potential through ρ(r), while the size of
the elementary π-N interaction enters via the r-dependence of tπN (r) (which we Fourier
transform into tπN (k)).

A more rigorous derivation[KMT] determines the optical potential in momentum (Fourier
transform) space to be:

〈k′|V |k〉 = −4π

k
〈k′| tπN |bk〉 ρ̃(k′ − k). (1.37)

The t in this equation is T matrices, and is just a generalization of the scattering amplitude
to cases where the initial and final COM momenta differ3. When the initial and final
momenta have the same magnitude, we have what is known as “on-energy-shell” scattering,
and the T matrix becomes proportional to the scattering amplitude:

fE(θ, φ) = −4π2µTE(k′,k)
∣∣
k′=k

, (1.38)

where µ is a reduced mass.
The function ρ̃(k′−k) in (1.37) is the Fourier transform of the nuclear density ρ(r) that

was introduced in (1.36):

ρ̃(k′ − k) =
∫

dr ei(k′−k)·rρ(r). (1.39)

ρ̃(k′−k) is called the nuclear form factor and contains all the information about the nuclear
size and shape that we need for the computation. Since the neutrons and protons within the
nucleus may have somewhat different distributions, LPOTT accounts for that by generalizing

3We are formulating this problem with “natural” units in which Planck’s constant h̄ ≡ 1. This means
that there is no difference between momentum and wave vectors.
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the formula for the optical to include separate form factors and T matrices for neutrons and
protons:

〈k′|V |k〉 = −4π

k
[〈k′| tπp |k〉 ρ̃p(k′ − k) + 〈k′| tπn |k〉 ρ̃n(k′ − k)] . (1.40)

1.2.8 Schrödinger Equation to be Solved

Because scattering experiments measure cross sections and scattering amplitudes, it is con-
venient to convert the Schrödinger equation into an equation dealing with amplitudes rather
than wave functions. An integral form of the Schrödinger equation dealing with the ampli-
tude R (reaction matrix) is

R(k′, k) = V (k′, k) +
2
π
P

∫ ∞

0

dp
p2V (k′, p)R(p, k)

(k2
0 − p2)/2µ

, (1.41)

where the symbol P in (1.41) indicates that the Cauchy principal-value prescription is used
to avoid the singularity arising from the zero of the denominator (the R matrix is a simpler
version of the T matrix). As is evident from the denominator under the integral, this
equation uses the nonrelativistic formula for energy. We use it here to keep the equations
simpler even though LPOTT uses the relativistic definition of energy:

E(k0) =
√

m2
π + k2

0 +
√

m2
A + k2

0. (1.42)

We solve (1.41) in order to determine the diagonal matrix element R(k0, k0). This
number determines the experimental scattering phase shift via

R(k0, k0) = − tan δl

2µk0
, (1.43)

where µ is a reduced mass. Even though we may want to compute only the number R(k0, k0)
since (1.41) is an integral equation it requires an integration of R(p, k) over all p values.
Yet since R(p, k) is an unknown, we can’t solve for the single number R(k0, k0) without also
solving for the entire function R(p, k). Accordingly, R(p, k) is solved for all values of p with
only the p = k0 piece used to determine the scattering amplitude (we do use the other pieces
to compute the wave function).

The technique for solving the integral equation (1.41) is to reduce it to simultaneous
linear equations that are then solved with matrix techniques. First we have to transform
the Cauchy principal part prescription into something that can be computed. This we do
by writing the principal-value prescription as the definite integral:

R(k′, k) = V (k′, k) +
2
π

∫ ∞

0

dp
p2V (k′, p)R(p, k) − k2

0V (k′, k0)R(k0, k)
(k2

0 − p2)/2µ
. (1.44)

We convert the integral equation (1.44) into linear equations by approximating the integral
as a sum over N Gaussian quadrature integration points {kj ; j = 1, N} with weights wj :

R(k, k0) � V (k, k0) +
2
π

N∑
j=1

k2
j V (k, kj)R(kj , k0)wj

(k2
0 − k2

j )/2µ

− 2
π

k2
0V (k, k0)R(k0, k0)

N∑
m=1

wm

(k2
0 − k2

m)/2µ
. (1.45)

Note here that the last term in (1.45) implements the principal-value prescription and cancels
the singular behavior of the first term.
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N(k   )1(k  ) 3   (k  ) RRRR 2(k  ) 

Figure 1.6: The grid in momentum space on which the integral equation for the R is solved.

Equation (1.45) contains the N unknowns R(kj , k0), j = 1, N , and R(k0, k0). We turn
this into N +1 simultaneous equations by evaluating it for N +1 k values on the grid shown
in Fig. 1.6:

k = ki =
{

kj , j = 1, N (quadrature points),
k0, i = 0 (experimental point). (1.46)

There are now N + 1 unknowns R(ki, k0) ≡ Ri, and N + 1 linear equations for them:

Ri = Vi +
2
π

N∑
j=1

k2
j VijRjwj

(k2
0 − k2

j )/2µ
− 2

π
k2
0ViiR0

N∑
m=1

wm

(k2
0 − k2

m)/2µ
(i = 1, N + 1). (1.47)

We express these equations as a matrix equation by first combining the denominators and
weights into a single denominator vector D:

Di =




+ 2
π

wik
2
i

(k2
0−k2

i
)/2µ

, for i = 1, N ,

− 2
π

∑N
j=1

wik
2
0

(k2
0−k2

j
)/2µ

, for i = N + 1.
(1.48)

The linear equations (1.47) now assume the matrix form

[R] = [V ] + [DV ][R]. (1.49)

Here R and V are column vectors of length N1 ≡ N + 1:

[R] = [Ri,N1 ] =




R1,N1

R2,N1

...
RN1,N1


 , (1.50)

[V ] = [Vi,N1 ] =




V1,N1

V2,N1

...
VN1,N1


 . (1.51)

The integral equation (1.49) can be rewritten as the matrix equation:

[F ][R] = [V ], (1.52)
F = 1 − DV, ⇒ Fij = δij − DjVij , (1.53)

With R the unknown vector, (1.52) is in the standard form AX = B, which can be solved
by use of mathematical subroutine libraries.

1.2.9 Solution via Inversion or Elimination

An elegant (but alas not most efficient) solution to (1.52) is by direct matrix inversion:

[R] = [F ]−1[V ], (1.54)

where the computers performs the inversion numerically. Because the inversion of even
complex matrices is a standard routine in mathematical libraries, (1.54) is a direct solution
for the R matrix. A more efficient approach is to find an [R] that solves [F ][R] = [V ] without
computing the inverse. This is accomplished by Gaussian elimination.
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Subroutine Name Description
LPOTT Main program; begins execution, read in data, setup
Beslia Spherical Bessel functions of imaginary argument
CGc2 Square of Clebsh Gordon coefficients
FFact Nuclear Form Factor
FFX Form Factors for 3He and 3H
Ffpn Form Factor for proton and neutron
Gauss Gaussian integration points

HarmNuc Gaussian form factor for harmonic oscillator nuclei
Lagrng Lagrange interpolation
LogPlt Semilogrithmic plot on printer
LegPol Legendre polynomials
Minv Matrix inversion
mixup Mixes partial waves when transform reference frames
OptP Computes optical potential

Plprme Derivative of Legendre polynomial
rcwfn Coulomb Wave function in coordinate space

rhok, rhokff, rhoofr Nuclear form factors and densities
sigcl σc, the pure Coulomb phase shift

spBesl Spherical Bessel function
Tfold Fermi averaging (folding)

Tncm, Tnoff On & off-shell πN amplitudes in πN COM
Tnuc, Tnucth πN amplitudes in πNucleus COM

Tpirsl Rowe, Saloman, Landau πN amplitudes
Vabs True π absorption potential

Vcoul, Vc Coulomb potential
WavFn π-nucleus wave function

Table 1.1: The subroutines of LPOTT and their general purposes. You should compile all
subroutines.

1.3 Simulation: Get LPOTT Running

In the directory/folder LPOTT is everything you need to run the program, including some
sample cases. Here you will find the subdirectories that LPOTT uses for research:

LPOTT Directory and main program name
Subs Fortran subroutines
In input data files, sample control files
Out named output files
Run script to assemble and run program

1.3.1 Compiling

The input data files are in the subdirectory in, and the output files produced by LPOTT

are in out. The script file run (for Unix) attends to the input and output files, as well
producing information about the run. For non-Unix systems, you might want to set up a
similar script. We usually give a descriptive name to the input files, such as He3, and place
it in the subdirectory in. The program then automatically produces an output file of the
same name in the directory out.

1. Go to Subs and compile all the subroutines there. The subroutine that should be there
and their purposes are indicated in Table 1.1.

2. Store the executeable a.out in the file Lpott. If you use the -o Lpott option to the
compile command, this is done automatically. You can leave the executeable in the
file a.out and use that name instead of Lpott in what follows, but things can then get
confusing since you cannot tell one a.out from another.
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3. Move the executeable Lpott to your own, personal, working directory.

4. In order to get a feel for how to execute LPOTT, run through the following steps by
hand. Use the run command, which does all this for you, for subsequent executions.

5. The input files have the historical names of tapeN, N= 1, 4. Set up the four input tapes
by copying files from the in directory to them:

• in/delal (input πN phase shifts) to tape1

• in/gth (input πN potentials) to tape2

• in/talnf (input πN T matrices) to tape3

• in/dencl (input πN denominator) to tape4

6. Run the program with the input control parameters from in/sample and with the output
going to out/sample:

Lpott < in/sample > out.sample

7. Check that the file out/sample has been created and that it agrees with the files
out/sample.bak (reproduced below).

8. If there are significant differences, then something is wrong. See if you can fix it. If
not, ask your instructor for help. If no one can fix the problem, try contacting the
authors.

9. Try modifying the script run so that a version of it will run on your system. For
example, execute it with

run Lpott sample

1.3.2 Understanding the Output

The output file should contain a great deal of information that chronicles all the steps
that LPOTT has gone through during the calculation. Make sure to look at the top of the
output since it tells you what LPOTT thinks you have told it to do via the in/sample file. As
with other complicated programs, always check that LPOTT is running the case you want
(“garbage in, garbage out” as they say). The sample output looks like this:

program= Lpott input= in/sample Tue Jan 1 12:30:30 PST 2002

$\pi$-nucleus scattering via lpott (CPlab 2002 version), orig 1/86

ok tape6

1 10

50.0000

16 22 0.20E+05 3-2.00-3.00

no of grid points= 16

1.5500 1.5500 0.0000 1.5500 1.5500 0.0000 3.0000 7.0000

6 12 0 101705003 0 0 0 0 0 0 0 0 0 0

nifty( 1)= 0 pi+ nifty( 2)= 1 *5=be shift

nifty( 3)= 0 no w.f. nifty( 4)= 1 nlsp-g(p)

nifty( 5)= 7 e3b, aay nifty( 6)= 0 no spin ms

nifty( 7)= 5 abs-old,sp nifty( 8)= 0 nifty( 9)= 0

no Pauli nifty(10)= 3 exact coul nifty(11)= 0

pi0,pi-,k+ shift nifty(12)= 0 pi+,ko shift nifty(13)= 0

pi-channel shift nifty(14)= 0 pi+channel shift

nifty(15)= 0 not used shift nifty(16)= 0

rhog,rho2g nifty(17)= 0 kmt nifty(18)= 0 full

amps nifty(19)= 0 use nif-16 nifty(20)= 0 no

t10 plt nes,nwaves,b0r,b0i,c0r,c0i= 59 14 0.00000 0.00000

0.00000 0.00000 nes,nwaves,b0r,b0i,c0r,c0i= 59 14 -0.04000

0.04000 0.00000 0.08000

********** amass= 12.0000**********

tpi epilab ecm(Sqrts) kcm plab

50.0000 189.5780 11447.9312 126.1716 128.2880

relativistic calculation

energy momentum

50.0000 126.1716

----- angular momentum = 0-----

opt poten values for kp=k0= 126.172and l=1

k rev vc rabs(n0 flip) rabs(flip)imv imvabs(noflip),imabs(flip)
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parameters changed for folding,n(5)=n(2)=0 save t matrics now

folded and use again If want folded

***** in tfold,nstore lt 60,nfoldset= nstore ,**** 59 two body t

matrices now folded and stored on tape3; folded denom on tape4 nb

tape3 should be saved... so Dont have to fold each time,

one= 0.100432E+01 kap,ret,imt(p,n,s,p waves) now follow

209.

0.1323E-06-0.3101E-07-0.2813E-07-0.2372E-07-0.2677E-06-0.9263E-06-0.6789E-07-0.3105E-06

212.

0.1318E-06-0.3174E-07-0.2692E-07-0.2382E-07-0.2075E-06-0.9377E-06-0.4941E-07-0.3147E-06

... 780. 0.1951E-07-0.4886E-07

0.1798E-07-0.3912E-07-0.7662E-09-0.5633E-07 0.9186E-08-0.7118E-07

0.6722E+00 -0.3845E-07 0.3016E-07 -0.380E-08 0.000E+00 -0.2310E-09 -0.166E-06 0.000E+00

0.3596E+01 0.3161E-07 0.1612E-06 0.142E-08 0.000E+00 0.2486E-07 -0.176E-06 0.000E+00

...

0.2368E+05 0.2390E-12 0.2390E-12 0.000E+00 0.000E+00 0.0000E+00 0.000E+00 0.000E+00

true 2n annihilation params for k(=kp=k0): imb,reb,imc,rec/ then,

re, im vabs(l) flip+noflip

126.172 0.73876E-10 -0.73876E-10 0.18842E-13 0.00000E+00

0.11807E-05 -0.19043E-05 0.00000E+00 0.00000E+00

...

0.98200E-19 -0.12392E-16 0.00000E+00 0.00000E+00

opt poten values for kp=k0= 126.172and l=1

k rev vc rabs(n0 flip) rabs(flip)imv imvabs(noflip),imabs(flip)

0.1262E+03 -0.5030E-05 0.2161E-05 0.178E-06 0.000E+00 0.1585E-05 -0.181E-05 0.000E+00

determinant from matrix inversion= 0.1519044E-01

unnormalized r matrix(re,im,re,-im) 0.4371098E-05-0.2248315E-05 0.4371098E-05 0.2248315E-05

normalized r(k,k..k)= -0.2041241E+00 0.1049932E+00

t(k,k,k)= -0.1763562E+00 0.1362330E+00

eta= 0.8085 delta= -12.9322

now with exact Coulomb after matching

t(k,k,k)= -0.5548773E-01 0.1001452E+00

eta= 0.8074 delta= -3.9502

Coulomb phase modified nuclear amplitude

t(k,k.k) = -0.4857603E-01 0.1036741E+00

born approximation

normalized r(k,k..k)= -0.1791078E+00 0.8828074E-01

t(k,k,k)= -0.1953904E+00 0.9630627E-01

eta= 0.8970 delta= -12.9136

now with exact Coulomb after matching

t(k,k,k)= -0.6122770E-01 0.5603444E-01

eta= 0.8963 delta= -3.9261

....

th-c.m. cos(cm) dsig/dw-cm th-lab cos(lab) ds/dw ref(th)-cm imf signuc

0.0 1.000 0.435E+15 0.000 1.000 0.450E+15 0.227E+01 0.172E+01 0.811E+02

3.0 0.999 0.498E+05 2.951 0.999 0.514E+05 0.227E+01 0.171E+01 0.807E+02

6.0 0.995 0.247E+04 5.901 0.995 0.255E+04 0.225E+01 0.170E+01 0.794E+02

9.0 0.988 0.324E+03 8.852 0.988 0.335E+03 0.221E+01 0.169E+01 0.774E+02

...

177.0 -0.999 0.918E+01 176.949 -0.999 0.887E+01 -0.673E+00 -0.632E+00 0.852E+01

180.0 -1.000 0.917E+01 180.000 -1.000 0.887E+01 -0.672E+00 -0.632E+00 0.852E+01

total cross-section = 299.630 elast , inel

cross-section = 156.861 142.768

cross-sections in millibarns --------- energy(kinetic),gamcoul=

50.0 0.642E-01 born approx total = 221.655 elastic

sigma= 140.883

sig(th) 50.0 6 12 0 001005003 0 0 0 0 0 0 0 0 0 0

0.10E+04+++ . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.550 1.550 0.000 1.550 1.550 0.000

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

0.32E+03. + . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

0.10E+03. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . .

. . . . . . .

. + . . . . . .

. . . . . . .

. . . . . . .

0.32E+02. . . . . .

. + . . . . .

. ++.++ . . . . .

. + + . ++ . . . . .

. + . + . . . . .

. . + . . . . .

0.10E+02. . . . . . . . .+. . . . . . . . . . . . . +++ . . . . .

. . + . . +++++++ ++++++++++++++

. . . . ++ . . .

. . +. . ++ . . .

. . + . + . . .

. . . .+ . . .

0.32E+01. . .+ + . .

. . . + +. . . .

. . . + . . . .

. . . + + . . . .

. . . +++ . . . .
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. . . . . . .

eof in main

Here the lines up to *** amass= 12 are an unprocessed printout and explanation of
the input data you have given LPOTT in file in/sample. After the amass printout, LPOTT
prints out some kinematics quantities, such as energy and momentum, and tells you whether
you called for a relativistic or nonrelativistic calculation.

Next LPOTT loops through all the partial waves, and computes the R and T matrices for
each l value. Since the — angular momentum = 0 case is the first, at this point a number of
quantities must be computed that will also be stored and used for higher anular momenta
as well. After the print outs of the partial-wave T matrices, the differential cross sections
and total cross sections are printed out, as well as some printer plots of the differential cross
sections (the code was written before the advent of graphical terminals).

1.3.3 Understanding the Logic: Follow the Data Flow

A good approach for developing some feel of how a complicated program works is to follow
the flow of data through it. You have just ran the sample case and generated output that
looks right. In Table 1.1 we gave you a list of all the subroutines in LPOTT, not all of which
get used every time.

Start with the data file used by this sample run and trace its flow through the subroutines.
To do that you need a paper or electronic listing of the program. Then make a list, starting at
main, that gives the names of the subroutines called by LPOTT for these input parameters.
Use Table 1.1 to add the description of each subroutine, and thereby chronicle the logical
flow through the program.

Alternatively, make a flow chart by using arrows to show which subroutine calls which
other ones. With this scheme you need only list each subroutine once and you get a visual
picture of the logic.

1.4 Experiments

1.4.1 Experiment 1: Checking the Input πN Scattering

When faced with a big and complicated program like LPOTT, a good start is to understand
some of the important parts that comprise the package. If they do not work as expected,
then either you need to understand more or fix something that may be broken.

For LPOTT, the physics is the optical potential (1.36) or (1.37). We see from these
expressions that the potential is simply the product of the πN T matrix and the nuclear
density ρ. Since the most dynamic part of the optical potential arises from the πN T matrix
elements, in this first simulation we will explore the elementary πN T matrix elements that
are used as input to the optical potential.

Exercise 1: The πN Phase Shifts

Browse through the file delta al in the in subdirectory (the “al” indicates that these phases
wer collected by Almehed and Lovelace [AL]). For each value of 71 values of the πN COM
energy ECOM , you should find a πN absorption parameter ηl and a phase shift δl, for each
of 14 partial waves. The COM energy is given by (1.2), which has the minimum value

ECOM =
√

m2
π + κ2 +

√
m2

N + κ2 > mπ + mN � 1078MeV, (1.55)

ECOM is seen to start at about 200 MeV above the sum of the masses.
Since the πN system has spin and isospin, what we call “waves” here, and nwaves in the

code, are actually a combination of orbital angular momentum, spin, and isospin which is
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Figure 1.7: (left) Real part and (right) imaginary part of the P33 πN partial wave amplitude.

denoted by the symbol L2I 2J . As indicated in the subroutine tncm.f, the nwave code is

nwave L2I,2J nwave L2I,2J nwave L2I,2J nwave L2I,2J nwave L2I,2J

1 s31 2 p31 3 p33 4 s11 5 p11
6 p13 7 d33 8 d35 9 f35 10 f37

11 d13 12 d15 13 f15 14 f17

If you try to run LPOTT at an energy below the lowest of that in the file of phase shifts,
it will use an analytic function that Rowe, Salomon and Landau fit to the low energy phase
shifts. Look at the subroutine Tpirsl in the subs directory and check through the sections
which compute the phase shift and the T matrix. Plot the input P33 (nwave =3) phase
shift as a function of energy. It should rapidly pass through 90o at a COM energy of about
1238 MeV.

Exercise 2: The P33 Argand Plot

In the subs\Testroutines\Fortran directory we have placed a program TestPiNdel.f
that computes the elementary, input πN T matrices. This is the type of program a researcher
might write to test individual pieces of a big program. TestPiNdel.f reads πN phase shifts
from the file delal, augments it with lower-energy phases from tpirsl.f, and then calls
argand.f to compute the real and imaginary parts of the partial amplitude (1.25),

Tl =
1
2i

(ηl exp 2iδl − 1). (1.56)

The results for just one partial wave (nwave=3, P33) are stored in TestPiNdel.dat for you
to plot up with your favorite graphics program.

1. Make a plot of the real and imaginary parts of the P33 πN scattering amplitude as
functions of energy, as we have done in Fig. 1.7. Record the energy at which the real
part vanishes and at which the imaginary part is maximum. This is the resonance
energy.

2. Make an Argand plot of the P33 πN wave.

3. Add a circle of radius 0.5 and centered at (0,1/2) to your Argand plot and check if
the resonance is elastic.
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Figure 1.8: Reading from upper left: The Argand diagrams for S31, P31, P33, and purely
elastic S31 partial waves. Note that the purely elastic scattering lies on the circle.

4. Deduce whether increasing energy corresponds to clockwise or counterclockwise mo-
tion.

5. In Fig. 1.8 we give the Argand diagrams for the P33 partial wave using only the
higher-energy phase shifts. Your P33 case should be similar. Compare your Argand
plot to the separate plots of the real and imaginary parts of the scattering amplitude
and correlate the behaviors.

6. Extract from your Argand plot the energies for which ImfP33 = 1/2. The difference
in these two energies is the full width at half maximum.

Exercise 3: Other πN Waves

Make Argand plots of other partial waves and search for resonances in them too. We give
some samples in Fig. 1.8, where you will note considerable inelasticity.

Exercise 4: πN Total Cross Sections

Included in the file TestPiNdel.f is the subroutine crossect.f that computes the πN total
cross section as a function of momentum according to (1.28).

1. Modify TestPiNdel.f so that cross sections are now outputted to TestPiNdel.dat.
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Figure 1.9: The energy dependence of the elementary π-proton (left) and π-neutron (right)
total cross sections.
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Figure 1.10: The energy dependence of the P33 π − N interaction containing a resonance.
(Left): phase shift δ33, (center): total cross section, (right): Argand diagram.

2. Run the edited code and plot the total cross section for the P33 wave as a function of
energy.

3. Compare your plot to the one in Fig. 1.9. Record the pion kinetic energy and momen-
tum at which there is a resonance peak.

4. Decide if the total cross section resonance occurs at the same energy as the scattering
amplitude in the Argand plot.

1.5 Experiment 2: Low-Energy π − 4He Scattering

The file sample in the in directory was for π scattering from a 12C nucleus. Copy that
file to a new one named He4 and modify it so that it supplies the parameters needed for
π− − 4He scattering (4He has Z = 2 protons and A = 4 nucleons). The top of the listing of
the main program LPOTT.f explains the nifty values. Here is a good set of input:
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1 10 nr (1 for relativistic), 10 π−A partial waves
110.0 π kinetic energy in lab
16 22 20000. -3 -2. -3 1st 3 numbers control integration, last 3 plotting
1.362 0.316 0.00 1.362 0.316 0.00 3.0 7. Radii of nuclear densities
2 4 0 1 0 1 7 0 5 2 0 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0 Z, A, 20 Nifty’s
59 14 0. 0. 0. 0 # of πN energies and partial waves; b0, c0

Now run a series of simulations to examine the effect on scattering of changing the
incident pion’s kinetic energy and charge. Since the nucleus is positively charged and the π
can have positive or negative charge, both the nuclear and Coulomb force contribute to as
described by (1.30).

Repeat part of the 1978 calculation of Landau and Thomas [LT] which explained some
baffling experimental results. In that work they discovered that for low energies, the strong
force on the π arising from the nucleus becomes unusually weak. Accordingly, the Coulomb
force, which is normally expected to be much weaker than the nuclear force, except for very
small scattering angles, interferes strongly with the nuclear force at large scattering angles.

The Coulomb-nuclear interference arises from destruction or construction when summing
the real parts of the Coulomb and nuclear amplitudes. Regardless of the sign convention
(our’s has positive potential causing negative real amplitude), the real parts will have the
same sign, and thus interfere constructively, if both forces are either attractive or repulsive;
if one is attractive and the other repulsive, there will be destructive interference. Since the
π+ and π− mesons have the same nuclear force but opposite electric charge, one meson will
experience constructive interference while the other will experience destructive interference.
You will have to experiment to see which meson does what!

1. Run LPOTT for both π+ and π− scattering at 50 MeV from 4He. This corresponds to
two different values of Nifty(1).

2. While the Coulomb force is independent of energy, the nuclear force depends sensitively
on the energy. As indicated above, the nuclear force essentially vanishes at some energy
and so you should try a number of energies and see how the scattering varies. Run
the program for (at least) π laboratory kinetic energies of 24, 30, 40, 50, 75 and 110
MeV.

3. Look at each output file produced by each run. In the section before the printer
plots you should see a table of the predicted differential cross sections. It has a title
beginning with:

th-c.m. cos(cm) dsig/dw-cm ds/dw(b.a.) t th-lab ......

4. We are interested in the first and third columns. The first column gives the scattering
angle θ in the center of mass system that the outgoing π makes with the incident
beam. The third column gives the differential cross section dσ

dΩ in mb units.

5. Extract these two columns from the output and use your favorite plotting program to
draw a semilogarithmic plot of the differential cross section versus θ. Place the plots
for all the energies on the same graph. Your plot should look something like Fig. 1.11.

6. Repeat these same calculations for these same energies but now for the scattering of
a negative π from 4He.

7. Observe the differences between the computed cross sections for π+ and π− scattering,
especially for small scattering angles, and conclude which has destructive and which
has constructive interference.
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Figure 1.11: Differential cross sections at several incident π energies for (left) π−, (center)
π+ , and (right) pure Coulomb scattering from a 4He nucleus.

The right part of Fig. 1.11 shows the differential cross section that results when a positive
π is scattered by just the repulsive Coulomb potential of the 4He nucleus. Of course this
could not occur in nature unless the master of the universe and could somehow turn off
the nuclear force, but it does lead to an interesting theoretical comparison. In general, we
expect that interference can occur when the pure Coulomb and pure nuclear cross sections
are of comparable magnitude.

To understand how the nuclear and Coulomb forces interfere with each other, we note
that a π+ meson always feels a repulsive Coulomb force due to the positively charged
nucleus. If the nuclear force is also repulsive, then there will be constructive interference
and the cross section will always be larger than the pure Coulomb cross section4. If, on the
other hand, the nuclear force is attractive, then there will be destructive interference and
the cross section will dip below the pure Coulomb cross section.

In left hand part of Fig. 1.11 we see a minimum in the cross section at θ � 12o followed
by a maximum at about θ � 40o for all energies above 30 MeV. This is due to the destructive
interference, and tells us that since the Coulomb force is repulsive, the nuclear force must
be attractive. As the energy decreases from 110 MeV, the minimum moves out in angle
and at Tπ=30MeV, the Coulomb minimum merges with the minimum caused by the large
πN P wave at � 70o. At 24 MeV, the interference minimum vanishes completely and the
cross section rises; this is due to sign change in the real part of the nuclear amplitude.
In contrast, note how the π−−4He scattering, which always has constructive interference,
shows a monotonic decrease with energy.

1.6 Experiment 3: Pion-Nucleus Total Cross Sections

We have seen in Fig. 1.10 and Section 1.4.1 that the elementary πN interaction exhibits a
resonance in the P33 partial wave. The question you now investigate is “Does this resonance
still exists when the π scatters from a nucleus, which is, after all, composed of nucleons?”

We look at π+−4He scattering for the answer.

1. Examine the output you already have for π+−4He scattering and extract from it the
data for the π+−4He total cross section as a function of π kinetic energy.

4Actually the argument is more complicated than this because the complex scattering amplitudes must
be added together before squaring to form the cross section, but we will ignore such complications here.
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Figure 1.12: (left) The total cross section as a function of energy for pure nuclear π scattering
from a 4He nucleus; (right): the total cross section times the π’s momentum squared k2.

2. Plot your total cross sections. You should get a plot similar to that on the left of
Fig. 1.12.

3. Record the π lab kinetic energy at which the π+−4He total cross section has a peak.

4. Record the π lab kinetic energy at which the π+N total cross section has a peak.

5. If both of these peaks occurred at the same energy, it would be quite reasonable to
believe that the peak in the π+−4He total cross section is due to the P33 resonance.
However, the energies differ (record which is higher) and so things are not so simple.
One possible explanation is that the shift in peak position is due to some kinematic,
rather than dynamic, effect. For example, equations (1.9) and (1.28) that relate the
total cross section to phase shifts take the simple form for spinless particles of

σtot =
4π

k2

∑
l

(2l + 1)eiδl sin(δl), (1.57)

where we have set the inelasticity ηl = 1 for clarity. We know that the π-N resonance
occurs when the phase shift δl = π/2, at which point sin δl has a maximum. However,
the 1/k2 factor will shift the peak in the total cross section downwards since this factor
is larger at small k than large k.

6. To see if such a kinematic effect is shifting the peak in the π−4He total cross section,
multiply your total cross section data by k2 and plot those up as a function of kinetic
energy (this is what we have done on the right of Fig. 1.120.

7. Record the change in peak position arising from the 1/k2 factor and comment on the
agreement with the simulation.

8. Another way that the nuclear environment may influence the effect of the elementary
πN resonance is through multiple scattering. By this we mean that there are a number
of nucleons within a nucleus and that these nucleons are moving (much like the Fermi
distribution of electron energies within a metal). Accordingly, there is not one precise
energy at which the incident π interacts with each N, but rather a spread of values
for the π-N effective energy. And if the resonance is spread out, then the 1/k2 factor
will shift it up further in energy.

9. To test if the multiple scattering of the π by the nucleons within the nucleus is causing
the total cross section peak to broaden and consequently shift, repeat the analysis of
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Figure 1.13: (left) The total cross section as a function of energy for pure nuclear π scattering
from a 12C nucleus; (right): the total cross section times the π’s momentum squared k2.
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Figure 1.14: Differential cross sections for π scattering from an unpolarized 3He nucleus at
a number of energies.

total cross sections you just did for 4He now for 12C. Since carbon has three times as
many nucleons as does helium, the shift should be larger. Your results should look
somewhat like Fig. 1.13, originally investigated by [LPT].

1.7 Experiment 4: P33 Resonance in π−−12C Scattering

Now that we have seen the influence of the πN P33 resonance on total cross section we may
ask “what is the resonance’s effect on the differential cross sections?” There are a number
of ways to answer this and we shall use our simulations to provide some answers.

1. From a qualitative point of view, we might say that since the elementary π-N resonance
is in the P wave (l = 1), we would expect there to be a large P wave contribution
to π-nucleus scattering. As follows from the partial-wave expansion of the scattering
amplitude, (1.25), a large l = 1 contribution would mean a large weighting factor
for P1(cos θ) Legendre polynomial. Yet since P1(cos θ) = cos θ, this would lead us to
predict that the differential cross section behaves like cos2 θ, that is, with a peak in
the forward direction and a deep minimum near 90o.
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2. Look at the plots and data for your π−4He differential cross sections in the COM
system and note the deep minimum near 90o for energies near resonance (Tπ

lab � 180
MeV).
We got the cross sections in Fig. 1.14 with the input:

1 10

240.0

16 22 20000. -3 -2. -3.

1.362 0.316 0.00 1.362 0.316 0.00 3.0 7.

2 4 0 1 0 1 7 0 5 2 0 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0

59 14 0. 0. 0. 0.

3. Record the angle at which the minimum occurs in the differential cross section for
π−4He scattering.

4. Examine the differential cross sections for π scattering from the 12C nucleus in the
COM system for energies near resonance and record again the angle at which their is
a minimum in the differential cross section.

5. You should be finding that for π scattering from both helium and carbon, the minimum
in the differential cross section occurs at a smaller angle than the 90o for which it occurs
for scattering from a single N. The reason for this is kinematic; the 90o angle is in the
π-N COM system, while we have been looking at the cross sections in the π-nucleus
COM. Since the nucleons in the nucleus are essentially at rest, a transformation from
the π-N to π-nucleus COM would push the entire differential cross section forward in
angle, what is know as the “beacon effect”.

6. To gauge how large this beacon effect is, consider πN scattering at 180 MeV kinetic
energy and at a COM scattering angle of 90o. Compute the corresponding scattering
angle in the lab system. The kinematic relation is

tan θlab =
sin θ

cos θ + mπ/mN
. (1.58)

Is this the right size to explain the shift in the angular position of the resonance?

7. A more reliable way to determine if a resonance is present is to make Argand plots
for individual partial waves. If you look back at Fig. 1.4 and the P33 part of Fig. 1.8,
you will notice that the Argand plot makes a counter-clockwise loop as the energy
passes upwards through resonance. If there is some P33 signal present in π-nucleus
scattering, then the π-nucleus Argand diagrams should have these types of loops in
them.

8. Take your output for π scattering from some nucleus and plot Argand diagrams up
showing the partial wave amplitudes Tl as a function of energy for l = 0 . . . 3. Do you
see evidence of resonances? Some of our results for π-carbon scattering are shown in
Fig. 1.15.

1.8 Experiment 5: Make a Nucleus Black

As we discussed before, the optical potential gets its name from the similarity of light
scattering and particle-nucleus scattering. We know that if light scatters from a completely
absorptive or “ black” disk or sphere, a characteristic diffraction pattern with sharp minima
and maxima results.

LPOTT uses a complex potential to model the interaction of the π with the nucleus.
The imaginary part of this potential is responsible for the absorption of the π as it travels
through the nucleus. In this simulation you will make the nucleus successively blacker by
successively increasing the imaginary part of the optical potential.
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Figure 1.15: Argand diagram for π−−12C scattering in the partial waves: l = 0 . . . 3.
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• To maximize the blackness of the nucleus, we want an energy near resonance which
maximizes the imaginary part and minimizes the real part of the optical potential. A
good choice is 170 MeV.

• A nucleus like 4He may be too small to absorb a good amount of the incident beam,
and so try a nucleus at least as large as 12C. Appropriate input parameters for π−−12C
are

1 10

170.0

16 22 20000. -3 -2. -3.

1.55 1.55 0.00 1.55 1.55 0.00 3.0 7.

6 12 1 1 2 1 7 0 5 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

59 14 0. 0. 0. 0.

• The optical potential is calculated in the subroutine optp.f, and so you need to go in
there and make the imaginary part of the optical potential bigger by factors of 5, 10,
and 100.

• Now look through optp.f. Since the matrix manipulation routines available at the
time LPOTT was written could handle only real matrices, the single matrix equation
(1.49) using complex matrices was converted to two simultaneous equations using real
matrices. In addition, to speed up what at the time was very expensive calculations,
the matrices were stored in a linear form (one lone vector).

• The fragment of optp.f below shows the place where the matrix elements of optical
potential are assigned. You need only modify the line with the following exclamation
sign (the spin-independent case):

npot1 = (i2-1)*n2+i1

320 npot2 = npot1+n1*(n2+1)

npot3 = npot2-n1

npot4 = npot1+n1

u(npot1,1) = f(npt,1)

u(npot2,1) = u(npot1,1)

u(npot3,1) = f(npt,2) * 10.0 ! to see blackness

u(npot4,1) = -u(npot3,1)

c spin-dependent potentials

• Fig. 1.16 shows the effects of multiplying the imaginary part of the optical potential
by factors of 5 and 10 to make it more black (absorptive). The original differential
cross section is also shown. You should obtain similar results.

• Now experiment with making your blackest nucleus bigger. If the scattering is really
like a black disk, this should cause the entire diffraction pattern to shrink into smaller
angles and get sharper. The size of the nucleus is controlled by the four 1.55 parameters
above (they are the size in fm’s). Just increase them all to see the effects.

1.9 Reprints of Original Papers
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