Parallel Computing on the CPUG Beowulf with mpiJAVA

Kristopher Wieland, Kevin Kyle, Rubin Landau
Oregon State University, Department of Physics

July 19, 2002

1 Using JavaMPI

The Computational Physics for UnderGraduates (CPUG) program at OSU has set up a
Beowulf cluster. This is a do-it-yourself supercomputer made up of some 20 Sun Unix
workstations connected to each other via an HP switch on a 100BT network. The Beowulf
was built by students for the purpose of teaching parallel computing and for computational
physics research.

This multicomputer can be used as separate workstations or with any number of CPU’s
working on the same problem. We use MPI for the Message-Passing Interface needed for
parallel computing. Usually MPI is called from within a C or Fortran program, yet we have
also installed some “wrappers” called mpiJava (or sometimes MPJ) so that MPI can also
be invoked from within a Java program.

We will give you some examples of Java programs using JavaMPI. Your job is to get the
experience of running MPI, to understand some of the MPI commands within the programs,
and then to run some timing experiments.

2 Setup

1. First you need an account on all the Beowulf computers. Although these computers
run the same operating system as does the berry patch, you need separate accounts
for the Beowulf. The system administrator must help you with that. You can contact
the system administrator by e-mailing support@physics.orst.edu.

2. Next, make a subdirectory mpiJava in your home directory with the command
> mkdir mpiJava

3. Once you have a Beowulf account, you need to configure it so that you can run MPI
commands from the Unix command line and from within Java. Command line access
requires that the operating system knows where to find the MPI commands that
you and your program may issue. The places where the operating system looks for

commands are listed in a configuration file . cshrc that resides in your home directory.
Since this file begins with a “dot”, it is usually hidden from view and is read by the
operating system only when you log on the computer. Likewise, the different places
where Java looks for class files are listed in the .cshrc dotfile.

(a)

The places where Unix looks for commands is called your PATH, and the places
where Java looks for classes is called your CLASSPATH. Your PATH needs to
include the entries for MPI, namely:

Jusr/local/mpich-1.2.1/bin and /usr/local/mpiJava/src/scripts.

Your CLASSPATH needs to include the three directories 1) /home/username,
2) /home/username/mpiJava, and 3) /usr/local/mpiJava/lib/classes

Since your .cshrc file controls your environment, having an error in this file
can lead to a nonfunctional computer for you. And since the format is rather
unforgiving, it is not hard to make mistakes. So first make a backup copy with
the command:

> cp .cshrc .cshrc_bk.
You can use this backup file as reference, or copy it back to .cshrc if things get
to be too much of a mess. Even then, you may need help from an administrator
if your file gets messed up.

Edit your .cshrc file so that line which has setenv PATH includes
Jusr/local/mpich-1.2.1/bin and /usr/local/mpiJava/src/scripts. Find a line con-
taining setenv PATH and add these in after one of the colons, making sure to
separate the names with colons.

Edit your setenv CLASSPATH to include /home/username,
/home/username/mpiJava, and /usr/local/mpiJava/lib/classes. Here too use
colons as separators.

As an example, the .cshrc file for user rubin is

@(#)cshrc 1.11 89/11/29 SMI umask 022

setenv PATH /usr/local/bin:/opt/SUNWspro/bin:/opt/SUNWrtvc/bin:
/opt/SUNWste/bin: /usr/bin/X11:/usr/openwin/bin: /usr/dt/bin:/usr/ucb/:
/usr/ccs/bin/:/usr/bin:/bin: /usr/sbin/:/sbin:
/usr/local/mpich-1.2.1/bin:/usr/local/mpiJava/src/scripts: setenv
PAGER less setenv CLASSPATH

/home/rubin: /home/rubin/dev/java/chapmanjava/classes/:
/home/rubin/dev/565/javacode/:
/home/rubin/dev/565/currproj/: /home/rubin: /home/rubin/mpiJava:
/usr/local/mpiJava/lib/classes:

set prompt="%"::%m> "

BEGINNING of automatic update setenv MANPATH
/usr/local/man:/usr/man:/opt/SUNWspro/man:/opt/SUNWspci/man # END
of automatic update

Since dotfiles are read by the system when you first log on, you will have to log
off and back on for your changes to take effect.

(g) Once you have loged back on, you can check the values of your PATH and
CLASSPATH environment variables with the Unix commands
> echo $PATH
> echo $CLASSPATH

4. Let’s now take a look at what has been done to the computers to have them run as
a Beowulf cluster. On Unix systems the directory “/” (“slash”) is the root or top
directory.

5. Change directory to / (cd /) and you will see file names there which are the operating
system, kernel, devices, and all. You may not be permitted to examine these files,
which is a good thing since modifying them could cause real problems (it’s the sort
of thing that hackers do).

6. MPI is our local addition to the operating system. Accordingly, it has been placed
in the directory /usr/local, where the first / indicates the root directory. Change
directory to /usr/local and notice the directories mpiJava and mpich-1.2.1 (mpich
is a symbolic link to mpich-1.2.1). Feel free to explore these directories, but please
do not try to write in them. You will notice that there are examples in mpiJava.

7. Copy the examples subdirectory into your personal mpiJava directory:
> cp -r examples /home/userid/mpiJava

If you wish, try out some of the examples (not all have been tuned to work on our
setup, however).

8. Copy the file /usr/local/mpich/share/machines.solaris to your home directory
and examine it. This file contains a list of all of our workstations that are on the
Beowulf cluster and can be utilized with MPI. Although this list may change as
machines come and go, at present the list is:

> cat machines.solaris

Change this file to contain the machines that you want to use
to run MPI jobs on. The format is one host name per line, with
either # hostname or hostname:n # where n is the number of
processors in an SMP. The hostname should # be the same as the
result from the command "hostname" daphy chris albert david erik
henri kirk paul pom rose rubin tom tomek cortez cpug #lady silas
emma #popcorn 11/13/01 withdrawn from cluster joe manuel

2.1 Run HelloWorldMPI.java

Now test the configuration by running
/usr/local/mpiJava/examples/simple/HelloWorldMPI. java

from your home directory (there is also a copy on the Web). This file contains the simple
code in which each of the processors print Hello World from processor # followed by
the rank of the processor sending the message. We’ll talk more about rank below.

/*
HelloWorldMPI. java: a simple MPI Program to demonstrate basics.

*/

import mpi.*; //get the mpi classes

public class HelloWorldMPI

{ public static void main(String[] args) throws MPIException
{
int myrank = MPI.COMM_WORLD.Rank(); // what is my rank?
MPI.Init(args); //start mpi for "args" machines
System.out.println ("\n\t Hello World from processor #" + myrank);
MPI.Finalize(); //end MPI
}

Compile HelloWor1ldMPI. java using the usual Java compiler:
> javac HelloWorldMPI. java
Run this code on 2 processors using the JavaMPI command

> prunjava n HelloWorldMPI

where n is the number of processors. Processor 0 will be the master and processors 1-
(n-1) will be slaves.

Optional: Modify the code so that only the slave processors say hello.
Hint: What do the slave processors have in common?

3 MPI Basics: HelloWorldMPI Explained

import mpi.*;
public class HelloWorldMPI

{
public static void main(String[] args) throws MPIException}

{

The first thing done in HelloWorldMPIL.java is to import the MPI libraries. As you
write more complex code, you may also need to include other libraries, such as the Java
10, JAMA, SLATEC, etc. The class is defined next, and a main method, as is routine
for java. Notice that main throws and MPIException, and probably should throw an an
IOException to allow more in-depth error reports. The variable args in main is passed to it
as whatever argument the user enters when they run the program from the command line.
This is important because this argument is passed to the MPI.Init routine later where it
defines how many processors you will be using.

int myrank;
The next part of HelloWorldMPI. java sets up the variables that MPI and the program

need. This program is simple and so the only variable we will use is myrank. This variable
stands for the rank of the computer as will be explained below.

// MPI Initialization

MPI.Init(args);

myrank = MPI.COMM_WORLD.Rank() ;

System.out.println ("\n\t Hello World from processor #" +myrank);

The next phase of the initialization is to initialize MPI. This is accomplished by the
MPI.Init(args) command. The args variable is passed to MPL.Init and defines how many
processors you are requesting. Remember that each processor is in parallel and thus runs
its own code after the MPI.Init argument. The next statement sets the myrank variable for
each of the processors. This is critical to how parallel computing works.

The processor that the program is executed on is called the host or master, and all
other machines are called guests or slaves. The host is always has a myrank value of zero
(as an integer). All the other processors, based on who responds first, have their processor
numbers assigned to myrank. So, the variable myrank is 1 for the first slave to respond, 2
for the second, an so on. This needs to be concreted in your mind to further understand
the if statements in more complex programs later. Then, because all the processes are in
parallel, they each run the next line, a printout command. Because only the host has a
screen, all messages from the other processors are printed on the host’s screen. You may
notice that processor 5 responds before processor 3, for example. Remember, all processes
are independent and so whichever processor completes the code first is printed first. If things
need to be done in order, use the MPI.COMM_WORLD.Barrierz command. This command
acts as a stop sign, and makes all the processors wait until they are all at that point in the
program before continuing.

The last basic MPI command is MPI.Finalize. This command is at the end of the
main routine, and is the counterpart of MPI.Init. The MPI.Finilize command tells all
the slaves that the program is done, and terminates MPI in a nice way.

Now, with an understanding of how to initialize MPI, you are ready to move on to
sending and receiving date among processors.

4 Basic Sending and Receiving: Hellow.java

The next example does exactly the same thing as HelloWorldMPI. java, but in a different
way. In this example, the master sends the message Hello, there to machine 1, and then
prints the message out when it gets returned from machine 1. The difference from before
is that Hellow. java uses the basic send and receive commands of MPI.

import mpi.* ;

class Hellow {
static public void main(String[] args)
throws MPIException

MPI.Init(args) ;
int myrank = MPI.COMM_WORLD.Rank() ; // what is my rank?
if (myrank == 0)
{ // am I the master?
char [] message = "Hello, there".toCharArray() ;
//Send variable "message",array offset,no items,variable type
//, destination, message tag
MPI.COMM_WORLD.Send(message, 0, message.length, MPI.CHAR, 1, 99) ;

}
else
{
char [] message = new char [20] ;
//mpi receive matches send
MPI.COMM_WORLD.Recv(message, 0, 20, MPI.CHAR, 0, 99) ;
//printed out on 1 only
System.out.println("received:" + new String(message) + ":") ;
}
MPI.Finalize();

}

When you run this code you should get processor 1 to say hello.
Optional: Modify the code so that all processors say hello.

5 More MPI Basics

Sending and receiving data makes up the heart of parallel computing. The slave processors
need to report back the data that they have computed to the host. As we just learned,
there are some basic MPI commands, Send and Recv (receive) to do that. More powerful
commands include Bceast (broadcast) and the Allreduce, which we will explore next. First,
understand that if one processor runs code to send data, another processor must run code to
receive data. Otherwise the one sending simply waits indefinitely! Likewise, if a processor
has a receive command, that processor will wait indefinitely for data. Always keep this in
mind as you send and receive data.

Now look at the MpiPi.java program. It is a simple program that computes 7 in
parallel using the “stone throwing” technique. In it you will find the basics that were
discussed above, with the inclusion of a few new MPI commands.

The first new MPI command in MpiPi.java is MPI.Wtime. As might be evident, this
command returns the wall time in seconds. This can be useful when computing speedup
curves, which will be discussed later. Before we talk about the communication commands,
it is important to remember that
MPI will only allow arrays to be passed.

When you write your own code, make sure that the data you are passing is stored in arrays!

The next MPI command is MPI.COMM_WORLD.Bcast (). This command broadcasts the
data from one processor to all the others. So, in this program, the number of iterations
is entered on the host, and then the host broadcasts this to the other computers. They
replace their value of n with the one received from the host.

The final new command is MPT.COMM_WORLD.Allreduce(). This is a glorified broadcast
command. It takes a variable (mypi) from each of the processors and then performs an
operation on them (MPI.SUM) and then broadcasts the result in the form of another variable

(pi).
Compile and experiment with the code.

Optional:

1. Notice how long each run takes and how accurate the answers are. Do round off errors
enter in? What could you do to get a more accurate number?

2. There are two different kinds of parallel programs, one in which the host acts just like
a slave and one in which the host does nothing at all but control the action. These
are called active and lazy hosts respectively. Is MpiPi.java a lazy host or active host?
How could you change it?

3. What does a plot of the time verses number of processors for a calculation of 7 look
like? What does the speedup graph look like? (Plot the time divided by the time for
one processor versus the number of processors.)

6 MpiPi.java Listing

/* MpiPi.java: a simple parallel program to compute pi
converted to mpijava from cpi.c
*/
import java.io.x*;
import mpi.*;
//Version 6-3-02
public class MpiPi {
public static void main(String[] args)
throws MPIException, IOException
{
int done = O, myrank, worldsize, i;
int [] n = new int [1];
double PI25DT = 3.141592653589793238462643;
double h, sum, x;
double startwtime = 0.0, endwtime;
double [] mypi = new double [1];
double [] pi = new double [1];

MPI.Init(args);
myrank = MPI.COMM_WORLD.Rank() ;

worldsize = MPI.COMM_WORLD.Size();

n[0]=100000000;
while (done!=1)
{
if (myrank == 0)
{
System.out.println("\nEnter the number of intervals: (0 quits) ");
InputStreamReader keyboard = new InputStreamReader(System.in);
BufferedReader keyin = new BufferedReader (keyboard) ;
n[0] = Integer.parselnt(keyin.readLine());
startwtime = MPI.Wtime();
}
//Bcast variable n,array offset,no items,variable type, destination, message tag
MPI.COMM_WORLD.Bcast(n, O, 1, MPI.INT , 0) ;
if (n[0] == 0) done = 1;

else
{
h =1.0/ (double) n[0];
sum = 0.0;
for (i = myrank + 1; i <= n[0]; i += worldsize)

{
x = h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));
}
mypi[0] = h * sum;
//Allreduce variable mypi,array offset, place to store result pi, array offset,
//count, variable type, operation to be preformed
MPI.COMM_WORLD.Allreduce(mypi, O, pi , 0,1, MPI.DOUBLE, MPI.SUM);
if (myrank == 0)
{
System.out.println("\nPI is approximately " + pi[0]
+ " \tError is " + Math.abs(pi[0] - PI25DT) + "\n");
endwtime = MPI.Wtime();
System.out.println("wall clock time =
+ (endwtime-startwtime) +"\n");

}

}
MPI.Finalize();
}

7 A Bad Example: TuneMP1I.java

Recall the Tune program that we experimented with previously to determine how memory
access affects the running time of programs. You should also recall that as the size of a
matrix was made larger, the execution time increased more rapidly than did the number
of operations the program had to perform, the extra increase coming from communication
time. Since parallel programming often involves a balance between computation and com-

Runtime for TuneMPI

300

250 -

200 |~

Execution Time
=
(o)
o
I

100 —

50—

0 \ \ \
0 5 10 15 20

Number of Processors

Figure 1: Execution time versus the number of processors for the TuneMP program. Note
that here the single processor result is very small since it is the time without running MPI. A
single processor running MPI takes approximately the same time as two processors running
MPI.

munication (although in this case communicating with another computer rather than with
the disk), the Tune program is also be a good teaching tool for parallel computations.

Below you will find a listing of the program TuneMPI.java. One running of this code
yielded the speedup curve shown in Fig. 7 It is the basic Tune program with modifications to
run under MPI. The basic modification is to have each row of its large matrix multiplication
performed on a different processor (called rank as explained above):

= rank1l = P |
= rank 2 = v |
= rank 3 = Y3
= rankl = Py)
Hnxn[¥Nxr = | & rank2 = s | (1)
= rank3 = ve)
= rankl = (oS
i : Inxn L I Nx1

Here the assignment of a row to each processor continues until we run out of processors,
and then starts all over again. Since this multiplication gets repeated for a number of

iterations, this is the most computationally intensive part of the program, and it makes
sense to parallelize this load.

However, life is not that simple. If the matrix size is made small enough so as to
avoid memory page conflicts, then the computational demand of the program is too low to
work out well running on a parallel computer. Accordingly, to slow down the program we
have inserted an inner for look over k that takes up time but accomplishes little (sound
familiar?). This slowdown permits you to accumulate more realistic timings.

7.1 TuneMPIl.java Listing

/* TuneMPI.java: MPI version of Tune with slowdown inner loop
converted to MPI by Kristopher Wieland based on tune.f in
"Computational Physics" by Landau and Paez copyrighted Paul J Fink
and Rubin Landau, Oregon State Univ */ import java.io.*; import
mpi.*; //Get mpi routines
//use for N X N Matrix speed tests with MPI
public class TuneMPI { public static void main(String[] args)
throws MPIException //args is no of machines
{
final int N=200, MAX = 15; //matrix size, no of iterations
final double ERR = 1.0e-6;
double dummy = 2.;
int h = 1, myrank, nmach; //mpi: whoami, total no
int i, j, iter = 0;
double [][] ham = new double [N] [N]; double [] ovlp = new double [1];
double [] coef = new double [N]; double [] sigma = new double [N];
double [] ener = new double [1]; double [] err = new double [1];
// MPI variables. "my": specific to each CPU, can have own values
double [] mycoef = new double [1]; double [] timempi = new double [2];
double [] mysigma = new double [1]; double [] myener = new double [1];
double [] myerr = new double [1]; double [] myovlp = new double [1];
double step=0.,time = 0.0;
// MPI Initialization
MPI.Init(args); //args from main = no machines
myrank = MPI.COMM_WORLD.Rank(); //assign rank number for this CPU
nmach = MPI.COMM_WORLD.Size(); //determine no machines actually working
MPI.COMM_WORLD.Barrier(); //syncronize: make all processes wait here
if (myrank == 0) //0 for host or master
{timempi[0] = MPI.Wtime(); //mpi timing, done only on master
// Store initial time
time = System.currentTimeMillis();

}
// set up Hamiltonian and starting vector
System.out.println ("\n\t Processor " +myrank + " checking in...");
for (i =1; i < N; i++)

{

for (j =1; j <N; j++)

{
if (Math.abs(j-i) >10) {ham[jl1[i] = 0.0;}
else ham[j][i] = Math.pow(0.3, Math.abs(j-1i));

10

}

ham[i] [i] = i
coef[i] = 0.0
}

coef[1] = 1.0 ;

// start iterating towards the solution

err[0] = 1.0;

iter = 0 ;

if (myrank==0)System.out.println ("Iteration #\tEnergy\t\tERR\t\tTotal Time ");
while (iter <MAX && err[0] > ERR)

)

{//---—— start while loop--------------——----
iter = iter + 1
mycoef [0]=0.0; //initialize for each machine, for each loop

ener[0] = 0.0; myener[0] = 0.0 ;
ovlp[0] = 0.0; myovlp[0] = 0.0 ;
err[0] = 0.0 ; myerr[O] 0.0;
for (i=1; i < N; i++)
{
//h =key variable to pick cpu no, ea row on different cpu
h = (int) (i)%(amach-1)+1 ;
if (myrank == h)
{
myovlp[0] = myovlp[0]+coef[i]l*coef[i] ;
mysigma[0] = 0.0;
for (j= 1; j < N; j++)

{mysigma[0] = mysigmal[O] + coef[jl*ham[j][i];3}
myener [0] = myener[0]+coef [i]*mysigmal[0] ;
// mpi Send + matching Receive
//(array offset,no items,type,destination,item sent)
MPI.COMM_WORLD.Send(mysigma,0,1,MPI.DOUBLE,O,h);
}
if (myrank == 0)
{
MPI .COMM_WORLD.Recv(mysigma,0,1,MPI.DOUBLE,h,h);
sigma[i]=mysigmal[0];
}
}
//mpi sum all machines’ values and then broadcast so same on all machines
MPI.COMM_WORLD.Allreduce(myener, O, ener , 0,1, MPI.DOUBLE, MPI.SUM);
MPI.COMM_WORLD.Allreduce(myovlp, O, ovlp , 0,1, MPI.DOUBLE, MPI.SUM);
MPI.COMM_WORLD.Bcast(sigma, O, N-1, MPI.DOUBLE , 0) ;
ener [0] = ener[0]/(ovlp[0]);
for (i =1; i< N; i++)
{
h = (int) (i)%(amach-1)+1 ;
if (myrank == h)
{
mycoef [0] = coef[i]/Math.sqrt(ovlp[0]) ;
mysigma[0] = sigmal[il/Math.sqrt(ovlp[0]) ;
MPI.COMM_WORLD. Send (mycoef,0,1,MPI.DOUBLE, O,nmach+h+1) ;
MPI.COMM_WORLD.Send(mysigma,0,1,MPI.DOUBLE,O0, 2*nmach+h+1) ;
}
if (myrank == 0)

11

{
MPI.COMM_WORLD.Recv(mycoef,0,1,MPI.DOUBLE,h,nmach+h+1);
MPI.COMM_WORLD.Recv(mysigma,0,1,MPI.DOUBLE,h, 2*nmach+h+1) ;
coef [i]=mycoef [0] ;
sigma[i]=mysigma[0];
}
}
MPI.COMM_WORLD.Bcast(sigma, O, N-1, MPI.DOUBLE , 0) ;
MPI.COMM_WORLD.Bcast(coef, O, N-1, MPI.DOUBLE , 0) ;
for (i =2; i <N ; i++)
{h = (int) (i)%(nmach-1)+1 ;
if (myrank == h)
{
step = (sigmal[i] - ener[0]*coef[i])/(ener[0]-ham[i] [i]) ;
mycoef [0] = coef[i] + step ;
myerr[0] = myerr[0]+Math.pow(step,2);
for (int k= 0; k <= N*N; k++)// slowdown loop
{dummy = Math.pow(dummy ,dummy) ;
dummy = Math.pow(dummy,1./dummy) ;}
MPI.COMM_WORLD. Send(mycoef,0,1,MPI.DOUBLE,O,3*nmach+h+1);
}
if (myrank == 0)
{
MPI.COMM_WORLD.Recv(mycoef,0,1,MPI.DOUBLE,h,3*nmach+h+1);
coef [i]=mycoef [0] ;
}
}
MPI.COMM_WORLD.Bcast(coef, O, N-1, MPI.DOUBLE , 0) ;
MPI.COMM_WORLD.Allreduce(myerr, O, err , 0,1, MPI.DOUBLE, MPI.SUM);
err[0] = Math.sqrt(err[0]) ;
if (myrank==0)
{
System.out.println ("\t#"+iter+"\t"+ener[0]+ "\t" +err[0]
+ "\t"+(System.currentTimeMillis() -time)/1000);

Y /- end whileloop -
// output elapsed time
if (myrank == 0)
{
time = (System.currentTimeMillis() - time)/1000;
System.out.println("\n\tTotal time = "+ time + " s");
timempi[1] = MPI.Wtime(Q);
System.out.println("\n\tMPItime= "+ (timempi[1]-timempi[0]) + " s");
}
MPI.Finalize(); //stop mpi
}

7.2 Running TuneMPI.java

1. Issue the command

12

> prunjava 2 TuneMPI

This is your base program. It will use one processor as the master and another one to
do the work. To determine the speedup with multiple processors, you issue the same
command with any number of processors (prunjava 1... leads to an error message
as there is no one to do the work).

. Since you are already familiar with the Tune. java program, find the old scalar one,
or modify the present one so that it runs on only one processor. Run the pure scalar
version of TuneMPI and record the time it takes. Note that communications costs are
so high with message passing systems, that it may require the use of several processors
to beat this time!

. Open another window so that you can watch the processing of your MPI jobs on the
master computer.

. While the code is running, a file beginning with PI should appear.

It lists all the machines running your mpiJava job. For example:

> more PI*

rubin O /home/rubin/mpiJava/TuneMPI.jig albert 1
/home/rubin/mpiJava/TuneMPI. jig david 1
/home/rubin/mpiJava/TuneMPI. jig erik 1
/home/rubin/mpiJava/TuneMPI. jig henri 1
/home/rubin/mpiJava/TuneMPI. jig kirk 1
/home/rubin/mpiJava/TuneMPI. jig paul 1
/home/rubin/mpiJava/TuneMPI. jig pom 1
/home/rubin/mpiJava/TuneMPI. jig

Once your job is complete, this file is removed automatically. If you do terminate
MPI prematurely, you will need to clean up these files along with the processes that
could be still running.

. To look at the processes in more detail while running, try issuing several versions of
the Unix processes command:

> psor> ps -ef or > ps —aor > /bin/ps -ef

A typical output of ps is

PID TT S COMMAND
23583 pts/1 S ~-tcsh
24203 pts/1 S /bin/sh /usr/local/mpiJava/src/scripts/prunjava 4 TuneMPI
24206 pts/1 S /bin/sh /usr/local/mpiJava/src/scripts/prun 4 TuneMPI.jig
24207 pts/1 S /bin/sh /usr/local/mpich-1.2.1/bin/mpirun -pg -np 4 TuneMPI.jig

13

10.

24289 pts/1
24298 pts/1
24299 pts/1
24300 pts/1
24301 pts/1

/usr/java/bin/../jre/bin/../bin/sparc/native_threads/java TuneMPI
/usr/java/bin/../jre/bin/../bin/sparc/native_threads/java TuneMPI
rsh albert -1 rubin -n /home/rubin/mpiJava/TuneMPI.jig rose

rsh david -1 rubin -n /home/rubin/mpiJava/TuneMPI.jig rose

rsh erik -1 rubin -n /home/rubin/mpiJava/TuneMPI.jig rose

0N nwn n wn

(a) This shows that the prunjava 4 command we issued from the command line
to start JavaMPI has issued the prun command, which, in turn, has issued the
MPI command mpirun. That, in turn, has led to some Java native threads
(lightweight Java processes that can handle individual chores).

(b) We also see that the master has started remote shells (rsh) running on the
named computers (albert, david and erik), and that they were started from
the computer rose. You too can issue the rsh command to run on different
Beowulf machines.

. You now want to collect data for a plot of running time versus number of machines.

Make sure your matrix size is reasonable but not too large; we found that N=200 works
well.

Run TuneMPI on a variable number of machines, starting at 2, until you find no
appreciable speedup (or an actual slowdown) with an increasing number of machines
(see warning below).

Warning: While you will do no harm running on the Beowulf when others are also
running on it, in order to get meaningful speedup graphs, you really need to have the
cluster all to yourself. Otherwise, the time it takes to switch around jobs and to setup
and drop communications tends to remove an parallel advantage.

. You can ask the system to check who is on some other machine (the names are in the

machines.solaris file) by invoking a remote shell and asking who. For examples, to
check on rose, rubin and albert:

> rsh rose who

> rsh rubin who

> rsh emma who

You can also make a script to check it for you. Here is one such script that checks
who is on the machines. You can copy this command to a file and then make the file
executable (chmod +x filename).

ksh ’for h in daphy albert chris david erik henri kirk paul pom
rose rubin tom tomek cortez cpug joe manuel silas emma; do rsh $h
who;done’

Try large and small values of matrix size and see how it affects the speedups. Remem-
ber, once your code is communications bound due to memory access, distributing it
over many processors should only make things worse!

14

8 A Good Example: PhaseMPI.java

PhaseMP1I.java
1: import java.io.x;
2: import mpi.x*;
3: //30 Apr 2002
4: //Au-Ni binary phase diagram
5: //Set Ni A component, Au B component, Solid A phase, Liquid B phase
6:
7:
8: public class PhaseMPI {
9: public static void main(String[] args) throws MPIException
10: {
11: PrintStream pfout = null;
12: PrintStream iout = null;
13: int guest_processor=1, host_processor=0, myrank, worldsize, con_res = 0, h=0;
14: double temp = O, T_STEP, T_MAX, T_START;
15: MPI.Init(args);
16: myrank = MPI.COMM_WORLD.Rank() ;
17: worldsize = MPI.COMM_WORLD.Size();
18: double timer_array[] = new double [2];
19: System.out.println("\n"+myrank+": Started");
20: MPI.COMM_WORLD.Barrier();
21: timer_array[0] = MPI.Wtime();
22:
23: if (myrank == host_processor)
24: //I am the host processor
25: {
26: System.out.println("\n\n MPI Started \n");
27: try
28: {
29: FileOutputStream fout = new FileOutputStream("AuNil.dat");
30: pfout = new PrintStream(fout);
31: FileOutputStream infoOut = new FileOutputStream("MPIinfoO.dat");
32: iout = new PrintStream(infoOut);
33: }
34: catch(I0Exception ioe)
35: {
36: System.err.println("Error in FileQOutput...."+ioe);
37: }
38: }
39: //these define the start and stop of the temperature loop in Kelvin
40: T_START = 300;
41: T_MAX = 1600;
42: T_STEP = 1;
43: //con_res defines the steps in consintration, the step size across
44 //the concentration axis is 1/con_res
45: con_res = 1000;
46: for (temp = T_START; temp < T_MAX; temp += T_STEP)
47: {
48: if (myrank == guest_processor) //Other computers
49: {
50: CALPHAD auni=new CALPHAD();
51: TestG test=new TestG();
52: test.setOmega(21689,0) ;
53: test.setT(temp);
54: double GOAa=auni.getGOAa(temp) ;

15

b5:
56:
b57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
T1:
72:
73:
T4:
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

test.setGOAa(GOAa);

double GOAb=auni.getGOAb(temp) ;

test.setGOAb(GOAD) ;

double GOBa=auni.getGOBa(temp) ;

test.setGOBa(GOBa) ;

double GOBb=auni.getGOBb(temp);

test.setGOBb(GOBb) ;

double results[]=test.runTest(con_res);
MPI.COMM_WORLD.Send(results,0,2*con_res,MPI.DOUBLE,host_processor,10);

}
if (myrank == host_processor) //Host Computer
{
double receive[] = new double [2*con_res];
if (temp%10==0){System.out.println(temp);}
double TdegC=temp-273.0;
MPI.COMM_WORLD.Recv(receive, O ,2*con_res, MPI.DOUBLE, guest_processor, 10);
while(receive [h] !=0)
{
pfout.println(receive[h] + "\t" + TdegC);
h++;
}
h=0;
}

//1f we reach the end of the processors,
//then reset the current processor to 1 otherwise advance
if (guest_processor == (worldsize-1))

guest_processor=1;

else

{

guest_processor++;

}

timer_array[1] = MPI.Wtime(Q);
MPI.Finalize();

if (myrank==0)

{
iout.println("\n\n\t Total Processors: "+worldsize+" (including host),\n");
iout.println("\t Processors computing: "+ (worldsize-1));
iout.println("\n\t MPI Total time: "+(timer_array[1]-timer_array[0])+"\n");
}

8.1 Introduction to PhaseMPI

Above is the listing of a program, PhaseMPI. java that calculates the binary phase diagram
for metallic alloys, that is, it plots the composition versus temperature. This type of program
permits a “nearly-trivial” parallelization in which the same code is run on different machines,
each with its own range of temperatures (a truly trivial parallelization would run the same
parameter set, as would happen, for example, with a Monte Carlo calculation).

PhaseMPI. java is a good example of how some problems scale well as the number

of processors increases. It scales well since the computation is essentially a complicated

16

mapping in which you can run different parameter ranges on different machines and thereby
keep each machine busy for quite some time without any need to communicate.

Although the physics in PhaseMPI. java takes some explaining (see the section entitled
The Physics Problem), for those readers not taking the “advanced” course, you may just
want to run PhaseMPI.java to see the kind of speedup plot produced by a mapping. You
adjust the computational intensity of the problem simply by changing the step size T_STEP or
the temperature maximum T_MAX. Plots of composition versus temperature for Temperature
steps of 1 K, 10 K, and 200 K appear to work well.

Alternatively, the non advanced readers can get the same effect by modifying their
logistics program to scan over a very fine grid of growth parameters, and run the program
on an arbitrary number of processors. In either case, the results should scale better than
TuneMPI. But again be aware that your plot will change (for the worse) if other users are
on the same cluster machines as you are.

9 Advanced Computational Lab: the Physics Problem

The intermixing of several metals to form alloys is a common practice in metallurgy and
manufacturing, usually done to improve the structural qualities of the alloy. Rarely are
pure materials used for practical applications since are they expensive to manufacture and
often have less desirable properties than alloys.

The key to understanding the properties of alloys is the phase diagram, an example of
which is shown in Fig. 9. A phase diagram shows the different phases present in a material
as a function of temperature and composition. For pure materials, the phase diagram is
one dimensional, or uniary, showing just melting points. For an alloy containing a mixture
of two elements, the phase diagram is two dimensional or binary with the temperature as
the ordinate and the composition as the abscissa.

Our problem is to compute the binary phase diagram from the thermodynamic equa-
tions. While drawing a binary phase diagram by hand is tedious, it is a straight-forward
task for a computer.

10 Review: the Thermodynamic Equations for Alloys

Because manufacture of most alloys is done at constant pressure, we shall calculate constant
pressure phase diagrams. In particular, we shall compute the Gibbs free energy since it
determines the amount of and types of phases present as a function of composition and
temperature.

Consider a single component solid. Equilibrium thermodynamics tells us that a complete
description is possible by considering the Gibbs free energy G(7,p, N) as a function of
temperature T', pressure p, and the number of atoms IN. Temperature is convenient since
it is easier to measure and vary than the than the entropy S. Likewise, pressure is easier to

17

Sinple Binay Phase xgram

T=T1 \ a+p

_/
Temperature
B
a B
Na N A
Camposition

Figure 2: A simple binary phase diagram.

vary than volume V', and most crystalline metallic alloys are formed at constant pressure
(usually 1 atm). Finally, the number of atoms present N is easier to vary than the chemical
potential pu.

Recall from thermodynamics that for the Gibbs free energy,

G = F+pV, (2)
and dG = —S8dT + Vdp+ udN, (3)

where F' is the Helmholtz free energy.

Or in terms of the enthalpy
G=H-TS. (4)

Recall now from statistical mechanics that the entropy S is related to the probability P
by
S =klIn(P), (5)

where k is Boltzmanns constant (8.99 x 10%3).

18

10.1 Entropy of Mixing

Consider a box containing two ideal gasses, A and B. The total volume V of the box is
divided into two portions V4 and Vg,

V=V4+ Vg (6)

If the box was initially empty and an A atom was placed randomly in the box, the probability
of it being in V4 would be V4 /V. If a second A atom were placed in the box, the probability
of both atoms being on side A would be (V4/V)?. And so the probablity of n A atoms
being in volume V4 is (V4/V)™A. Likewise, the probablity of n B atoms being in volume
Vg is (Vg/V)"B.

Let us now populate the box with n A atoms and n B atoms, each confined totheir
respective sides by a partition. If we now remove the partition, the probability of finding
all A atoms in V4 and all B atoms in Vp is:

()" ()

where P; is the probability of the box being in the unmixed state. The probability of a
homogeneous mixture is Po =1 — P;.

Consider now one mole of gas evenly divided between types A and B and with equal
volumes V4 = Vp = V/2. The probability of an unmixed state is then

Po= (1/2)19% x (1/2)19" ~ 10719" ~ 0, (8)

Even for 125 atoms, the probability of an unmixed state is (1/2)!2® ~ 2 x 10738, the limit
of precision for sinfle precision. So to a good approximation,

P ~0, Py~1. (10)

We now calculate the entropy of mixing gases A and B by calculating the difference in
entropy between the mixed and the unmixed states:

AS = SQ—Sl—kln<%)’:kln (%) =—klnP; (11)
Va\™ [/ V"B
~ km (7A) (73) (12)
= —bnain (12) ~ ki (42 (13)
Because we are dealing with ideal gasses at constant temperature and presssure,
% = %4 =Ny and (14)
o= Ny =N, (15)

19

where N4 and Np are the concentrations of A and B atoms. The entropy of mixing is,
accordingly,

AS = —R[NoaInNy— Npln Np| (16)
= —R[NoAInNyg — (1 —Ny)ln(1 — Ny)J, (17)

where R = nk is the gas constant 8.314.

10.2 Ideal Gases

The entropy of mixing for ideal gases A and B is
G = GYNs + G% +TAS iy (18)
where N4 is the concentration of A atoms, Npg is the concentration of B atoms, T is the

absolute temperature, AS i is the entropy of mixing, and G% and G% are the Gibbs free
energies for atoms A and B. Substituting for the entropy of mixing gives

G =GYNs+GYN + RT (Naln Nac+ Npln Np) . (19)

If we take a differential of G with respect to Ny or Np we obtain the partial molar free
energies:

dGA A o 0
m—GA = GA+RT1HNA, (20)
dGB - 0
— = = TIn Np. 21
iNg GB Gp+ RT'InNp (21)
The total Gibbs free energy is now
G:NAGA—FNBGB. (22)

Note, in the ideal, non-interacting case, the heat of mixing (also known as the enthalpy of
mixing) is zero.

10.3 Non-Ideal Gases

We need now to include the interaction between A and B and atoms. We use the “regular
solution” for the enthalpy of mixing,

AH

mix = QN4Ng, (23)

where € is the weight for any given phase. The total free energy for any given phase now
becomes
G =GYNs+GYNg + RT (NAIn N4y + Ngln Ng) + QN4 Np. (24)

20

The partial molar free energies are

Gs = GY+RTInN4+ Q1 — Ny)?, (25)
Gp = G% 4+ RTInNg+Q(1 - Np)2. (26)

10.4 Determining Phase Equilibrium

We assume that each phase of our alloy has its own Gibbs free energy. In a binary alloy these
are functions of temperature and composition. As shown in Fig. 10.4, a plot is next made
of the free energies at constant temperature for each phase as functions of composition. At
any point along the free energy curve for one of the phases, a tangent line is drawn to a
point on the curve and continured to the two vertical axes. The point where the tangent
lines intersect the axes of the graph determines the partial molar free energy of the phase
and element.

Equilibrium between phases occurs when:

1. the partial molar free energy of component A in phase « equals the partial molar free
energy of component A in phase 5, and

2. the partial molar free energy of component B in phase « equals the partial molar free
energy of component B in phase (.

Graphically, this occurs when two tangent lines lie on top of one another. The com-
position where this “common” tangent line touches each of the two phases is the critical
composition at a constant temperature. These compositions NG and N g are then trans-
ferred to the phase diagram. Repeating this process point-by-point eventually determines
the entire phase diagram.

11 Computational Solution

The repetitive nature of converting one plot into another process clearly makes it an excellent
candidate for computational methods, especially since several thousand points are needed
to construct a single phase diagram. Yet the graphical process of drawing common tangent
lines, while straight forward for people, does not automate well on a computer. However,
we are aided by having set of strict rules for the computer to follow.

The algorithm is straightforward:

1. A temperature T is set.

2. The composition N¢ of the o phase is set.

3. The composition N g of the 8 phase and the partial molar free energies are compared
until a match is found.

21

Gibbs Free Energy Curves for phases a and B.
AtT=T1

Sinple Binay Phase agram

+
T=T1 ap

Temperature

—a_—
Energy G, = Gi

beta alpha+beta alpha

a
Na
Composition Camposttion

Figure 3: Gibbs free energy curves and binary phase diagram.

4. Once a match is found, the compositions of o and (§ phases and the temperature are
written to a file.

5. The cycle repeats until all temperatures have been checked.

6. The point N§ = N g = 0 is avoided due to mathematical problems. (However, this
point should match the single-element phase transformations, for example, a melting
point.)

There are various insights that this computation provides regarding the alloying process.
We can “tune” the code by adjusting the number of temperature steps, as well as the number
of composition steps. Additional control comes from comparing partial molar free energies
with each other. This latter tuning is called the fuzz factor because it determines how fuzzy
the lines in the phase diagram will be. Best results were obtained using 1 K temperature
steps, 0.1% composition changes, and + 20 fuzz.

12 Parallel Implementation

Even the rather crude calculations needed to do a homework problem for temperatures
ranging from room temperature to 1800 C, required three hours of computing time. More
realistic computations, of the type needed in industrial settings, could take orders of mag-
nitude more time. Because of the independent steps in the process, it is straightforward to
break the computation up so that it will run in parallel.

22

PhaseMPI has all the basics features that we have seem in tuneMPI in addition to two
new features: file IO and looping. The free energy graphs are determined from previously
published tables, and these must be read in. The looping over parameters is what we
distribute over machines.

There are a number of ways to paralellize this code. One is to send each processor a
temperature value, and have it run through the composition calculations. Another is to
divide the temperature range by the number of processors, and have each processor work
on a specific range of temperatures. Because our solution only exists in some regions, we
chose the first approach.

Some of the challenges encountered in parallelizing the code were data sharing and MPI
communications. Having each processor work on the solution for individual temperatures
was easy enough, but the results for different temperatures had to be collected into one
place. We solved this problem by having one processor open a file for writing, and all the
other processors send the temperature information to the processor with the open file.

Of course, doing this file IO means dealing with MPI communications, and that is a
challenge. In MPI, a processor will wait at a send call until the data are sent, and likewise at
a recetve call until it gets the data. For example, if processor 4 sends processor 1 information,
and processor 1 does not have a receive call for it, then processor 4 will wait indefinitely for
processor 1. This all means that you must have the right processors sending and receiving
to avoid such a lock up. We solved this problem by using a simple for loop as described
below.

The final challenge would be to truly optimize the code. To do that we should set up
a temperature queue where processors simply take the next available temperature rather
than deal with fixed numbers. We leave this challenge for the reader.

12.1 Algorithm

The basic algorithm is simple: loop over the desired temperature range and increment the
processor doing the computations. The main advantage, as you can see from the code, is
that all the processors are computing at the same time. Processor 10, for example, skips
through the first nine loops and starts right away on its temperature. When it is done, it
waits for a receive command from the host processor. There is a possible chance for lockup
condition here, but in test cases the computations took 95 percent of the time, while the
sending and receiving took 5 percent.

The complete program is in the Appendix. It has six steps:
1. initialize the variables and MPI

2. host processor initializes an output file

3. all processors loop over the desired temperature range

4. processors compute the free energy

23

5. each processor sends its data to the host

6. the host receives and records the data

12.1.1 Step 1. Initialization

On lines 1 and 2 we import the basic java input/output libraries and MPI libraries. We
then define the class and main method, with the args variable passed to the main routine
(line 9). The value for args is entered when the user issues the run command and is passed
to the MPI.Init routine.

1: import java.io.x;

2: import mpi.*;

3: //30 Apr 2002

4: //Au-Ni binary phase diagram

5: //Set Ni A component, Au B component, Solid A phase, Liquid B phase
6:

7:

8: public class PhaseMPI {

9: public static void main(String[] args) throws MPIException

10: {

The next part of the program sets up output file and variables. MPI differentiates
between host and guest processors by using a variable called rank. The host processor has
rank 0, and each guest processor has a unique integer rank greater than 0. Thus we initialize
guest_processor at 1 and host_processor at 0. The variable myrank is a local variable
that holds the rank of the individual processor. The variable worldsize is the total number
of processors assigned to the program, which means that 1 - worldsize is the total number
of guest processors.

The next set of variables are for the computation part of the program. con_res is the
number of steps between 0 and 1 for the concentration axis, which means that 1/con_res
is the concentration step size. Thus if you wanted to determine the phase diagram to 100
parts per million, you need to set con_res to 10,000. Note that we use h as an integer step
for receiving and printing files. The doubles temp, T_STEP, T_MAX and T_START are used for
temperature controls. temp is the loop variable, T_STEP is the temperature step size, T_MAX
is the maximum temperature, andT_START is the starting temperature.

11: PrintStream pfout = null;

12: PrintStream iout = null;

13: int guest_processor=1, host_processor=0, myrank, worldsize, con_res = 0, h=0;
14: double temp = 0, T_STEP, T_MAX, T_START;

On line 15 MPI is initialized. At the end of the main method you will also find a call
to MPI.Finilize (), which terminates MPI in a nice way. Remember that each processor
is running in parallel after the MPI.Init argument, and so you need to ensure that there
are no job left running on these other computers.

24

Line 16 sets myrank for each of the processors. This is critical. Line 17 sets worldsize
to the total number of processors. Because all the processes are now running in parallel,
line 19 causes each one of them to print out their rank on the host terminal. Because all
the processes are independent and some may be busy with other jobs as well, the ranks
may appear to be out of order. If things need to be done in a particular order, then use the
MPI.COMM_WORLD.Barrier() command to make the processors wait until all the processors
are to that point in the program.

156: MPI.Init(args);

16: myrank = MPI.COMM_WORLD.Rank();

17: worldsize = MPI.COMM_WORLD.Size();

18: double timer_array[] = new double [2];

19: System.out.println("\n"+myrank+": Started");
20: MPI.COMM_WORLD.Barrier();

21: timer_array[0] = MPI.Wtime();

12.1.2 Step 2. Host Initializes Output File

Next the host initializes the output file for just itself.

23: if (myrank == host_processor)

24: //I am the host processor

25: {

26: System.out.println("\n\n MPI Started \n");

27: try

28: {

29: FileOutputStream fout = new FileOutputStream("AuNil.dat");
30: pfout = new PrintStream(fout);

31: FileOutputStream infoOut = new FileQutputStream("MPIinfoO.dat");
32: iout = new PrintStream(infoOut);

33: }

34: catch(I0Exception ioe)

35: {

36: System.err.println("Error in FileQutput...."+ioe);

37: }

38: }

12.1.3 Step 3. Temperature Loop

Next we define the temperature values to be looped over. The variable T_STEP is the
temperature step size or increment. The con_res variable on line 45 is for the scanning of
the compositions in the later part of the program.

39: //these define the start and stop of the temperature loop in Kelvin
40: T_START = 300;

41: T_MAX = 1600;

42: T_STEP = 1;

43: //con_res defines the steps in concentration, the step size across

25

44: //the concentration axis is 1/con_res
45: con_res = 1000;

The next piece of code is at the heart of the parallel processing. Line 40 sets up
the temperature loop from T_START to T_MAX in steps of T_STEP. Remember that all the
processes will run this same code simultaneously, but will use their individual values of
myrank to decide on which part to work.

46: for (temp = T_START; temp < T_MAX; temp += T_STEP)
47: {

12.1.4 Step 4. Number Crunching

The if statement on line 48 determines which part of the computation will be done by each
processor as the variable guest_processor loops from 1 to the total number of processors.
For example, if guest_processor = 3, then when the processor with myrank = 3 gets to
this point in the program, it will enter the if loop. Other processors will simply repeat the
if loop doing no computations until their rank matches guest_processor.

48: if (myrank == guest_processor) //Other computers
49: {

50: CALPHAD auni=new CALPHAD();

51: TestG test=new TestG();

52: test.setOmega(21689,0) ;

53: test.setT(temp);

54: double GOAa=auni.getGOAa(temp);

55: test.setGOAa(GOAa) ;

56: double GOAb=auni.getGOAb(temp);

57: test.setGOAb(GOAD) ;

58: double GOBa=auni.getGOBa(temp) ;

59: test.setGOBa(GOBa) ;

60: double GOBb=auni.getGOBb(temp) ;

61: test.setGOBb(GOBb) ;

62: double results[]=test.runTest(con_res);

12.1.5 Step 5. Processor Sends Data to Host

Line 63 sends data from each guest_processor processor to the host_processor. Note
that the variable send is an array containing the data, with 2*con_res as the size of the
array, with MPI.DOUBLE indicating that the data are doubles, with host_processor the
rank of the destination, and with 10 a unique identifier for this particular message.

63: MPI.COMM_WORLD.Send(results,0,2*con_res,MPI.DOUBLE,host_processor,10);
64: }

26

12.1.6 Step 6. Host Receives and Outputs Data

This if statement on line 65 selects the computer with rank = 0, that is, the host_processor,
to execute the following block of code. Here the host_processor sets up an array to receive
the data from processor guest_processor, and then converts the temperature from Kelvin
to degrees Celsius. The host then receives an array from the guest_processor and writes
it to file. The if statement on line 80 makes the guest_processor loop again. A simple
mod operation would also work, but this seems clearer to us. Line 90 terminates MPI and
closes the main routine and the PhaseMPI class.

65: if (myrank == host_processor) //Host Computer

66: {

67: double receivel[] = new double [2*con_res];

68: if (temp’10==0) {System.out.println(temp) ; }

69: double TdegC=temp-273.0;

70: MPI.COMM_WORLD.Recv(receive, 0O ,2*con_res, MPI.DOUBLE, guest_processor, 10);
71: while(receive[h] '=0)

72: {

73: pfout.println(receive[h] + "\t" + TdegC);
74: h++;

75: }

76: h=0;

77 ¥

78: //If we reach the end of the processors,
79: //then reset the current processor to 1 otherwise advance

80: if (guest_processor == (worldsize-1))
81: {

82: guest_processor=1;

83: }

84: else

85: {

86: guest_processor++;

87: }

88: }

89: timer_array[1] = MPI.Wtime();
90: MPI.Finalize();

13 Results

The initial speedup results are quite good. As shown in Fig. 13, for up to 15 processors the
speedup increases linearly with the number of processors. This means that there is little
time lost to communications.

13.1 Accuracy

Essentially this program transforms data from one form into another. Its accuracy is only
as good as accuracy of the input free energy data and the thermodynamic equations. The

27

)
T
1

n/time 1

Speedup (time

Number of Processors

Figure 4: Speedup wersus the number of processors for PhaseMPI.

easiest verification we have made is to check with the large number of published phase
diagrams, and especially those that are adopted as industrial standards. Other checks
include comparisons with the melting temperature of the pure elements.

For parallel computing, we should also discuss consistency, that is, whether the same
results are obtained as the problem is spread over more processors. For this program, we
found no change.

13.2 Multi-Phase Extensions

Up until now, the program calculates only single-phase binary alloys. Clearly this can be
extended to multi-phase systems. Where for a single-phase alloy we had two phases, liquid
and solid, that needed to be checked for equilibrium, in a three-phase system, for example
a liquid FCC solid and BCT solid, we would need to check for equilibrium between all the
I-FCC, 1-BCT, and FCC-BCT phases. This means running the program three additional
times. For a four-phase system we would need to run six additional times. For five phases
we run the program ten times, and so on.

14 References and Other Reading

Physical Metallurgy Principles, 3rd ed.: Robert E. Reed-Hill, Reza Abbaschian, PWS pub-
lishing, Boston 1992.

Phase Transformations in Metals and Alloys, 2nd ed.: D.A. Porter, K.E. Easterling, Chap-
man & Hall, London 1992.

28

ASM Handbook v. 3, Alloy Phase Diagrams: ASM International, Materials Park, Ohio
1992.

Binary Alloy Phase Diagrams, 2nd ed.: editor T.B. Massalski, ASM International, Materials
Park, Ohio 1990.

“Notes for PH 641/642 Statistical Thermophysics”: H.J.F. Jansen, Physics Department,
Oregon State University. Corvallis, OR 2002 (Unpublished).

“mpiJava 1.2 API Specification”: B. Carpenter,G. Fox, S. Ko, S. Lim, Northeast Parallel
Architectures Centre, Syrcause University. Syracuse, NY.

(On manuel on the beowulf cluster: /usr/local/mpiJava/doc)

15 For Further Information

You should be well on your way to understanding and writing parallel code. For more
information there are two web sites that are constantly updated:

1. mpiJava home page: http://www.npac.syr.edu/projects/pcrc/mpiJava/mpiJava.html

2. MPI home page: http://www-unix.mcs.anl.gov/mpi/index.html

29

