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1 Introduction

When we speak of “hydrogen” we usually mean the simplest atom in which a single electron e− is
bound to a single proton p+ acting as the nucleus in the center of the atom. The Coulomb attraction
between these two particles binds the system into orbits with Bohr “radii”

RB = n2 4πε0h̄
2

µZe2
. (1)

While the size of orbits is seen to increases quadratically with the principal quantum number n, the
energy of these states decreases inverse-quadratically with n:

En =
µZ2e4

2(4πε0)2h̄2n2
. (2)

The µ in these expressions is the electron-proton reduced mass (which is nearly equals the electron’s
mass)

µ =
memp

me + mp
� 0.9995me. (3)

If we approximate µ by the electron mass in (1) and (2), we obtain the familiar numerical values

R∞ = n2 4πε0h̄
2

mee2
= n20.529172−10m, (4)

En =
hc

n2R∞
=

13.60569172(53)
n2

eV. (5)

Since the Coulomb attraction between the proton and the electron is responsible for binding in
hydrogen, if you replace the electron by some other negatively charged elementary particle you still
end up with an atomic bound state. For example, if replace the electron by a π−, µ− or a K−, you
get what is called a form of exotic hydrogen. Actually, since these other elementary particles are
much heavier than the electron, (1) tells us that the orbits of exotic hydrogen lie deep within the
electronic orbits, in which case there really is no need to replace the electron (the heavy particle just
slips in underneath).

Because the orbiting particle in exotic hydrogen decays, these atoms are always unstable and
decay with a finite lifetime τ . This finite lifetime means that we cannot be sure of the state’s precise
energy and shows itself in the decay spectrum by giving the energy levels a finite width Γ. The
uncertainty principle relates the level width and lifetime,

∆E =
h̄

∆t
. (6)

While at first one might think that a decaying state is quite different from an atom, since these
exotic atoms tend to hold together for millions or billions of orbits, they are very much like stable
bound states. Because they do eventually decay, exotic atoms are not truly bound states, and so
are called quasi-bound, Gamow, or resonance states.
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Figure 1: The sizes of various Bohr orbits for various kaonic atoms. The dot at the center is the size
of a carbon nucleus (in proportion).

Some of the interesting physics of exotic atoms arises from the fact that the electron’s replacement
is much heavier than an electron and so orbits much closer to the nucleus, as expected from the
inverse proportionality to mass in (1). For example, kaonic hydrogen is 633 times smaller than
electronic hydrogen:

mK− = 493.699MeV/c2 � 966me, (7)

⇒ µ =
mKmp

mK + mp
= 323MeV/c2 � 633me, (8)

⇒ R(K−p) � (0.529172−10m)/633 � 84 × 10−13cm = 84 Fermi. (9)

Likewise, the ground state energy for kaons is 633 times larger

E1S(K−p) � −8613 eV = −8.613 KeV. (10)

In Fig. 1 we show scaled values for the Bohr radii for various levels in different kaonic atoms as
well as the size of a 12C nucleus in proportion (the 1S electron is 51 feet away from the nucleus with
this scale). The 1/Z2 factor in the Bohr radius makes the orbits for heavier atoms smaller than for
hydrogen at the same time as the nucleus tends to grow in size with increasing Z. Since the Bohr
radii for kaonic hydrogen are so much smaller than electronic hydrogen, when a kaon is inserted into
an ordinary hydrogen atom, it tends to cascade down to an orbit deep within the electronic cloud
and is therefore unaffected by the electrons (which just remain in orbit).

Although it is clear from Fig. 1 that an orbiting kaon is not overlapping much with the nucleus,
they are close enough for the nuclear force to perturb the kaon and shift its energy slightly from the
Bohr value. In fact, there is also the possibility that the kaon gets captured by the proton and forms
a nuclear state from which it never returns, and this may affect the atomic state in an unusual way.

The nuclear reactions between a K− and a proton are particularly interesting, and for this lab
we consider three:

K−p −→



K−p atom open channel 1,
Σπ +100 MeV annihilation open channel 2,
K

0
n −5 MeV charge exchange closed channel 3.

(11)

We use a large brace in (11) to indicate that all three reactions are coupled with the probability flux
flowing among them. In analogy to the flow of a fluid through canals with open and closed gates, we
envision the flow of probability flux through“channels” representing different states of the system.
And just like the volume of a fluid is conserved, so the total probability is conserved. When a channel
in addition to the entrance channel opens, we envision an additional path for the probability fluid
to follow, and so a reduced likelihood of the system remaining in the entrance channel.

The reactions in (11) mean that even though the K−p system may be in a bound atomic state,
enough of the kaon’s wave function overlaps with the proton for the K−p atom to spontaneously
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Figure 2: The complex momentum k plane. The upper four octants here correspond to the top
complex energy (E = k2/2µ) sheet, while the lower four octants correspond to the bottom complex
energy sheet. The slashed strips represent the unitarity cut (which is where the two energy sheets
are joined).

transform into a Σπ system with the concordant release of 100 MeV. This is a large amount of
energy and literally blows the atom apart into Σ and π fragments. Since energy is released into the
Σπ channel, this channel is called “open”; any flux that makes here will flow out. In contrast, the
K

0
n channel is “closed” since it needs 5 MeV for the reaction to occur there, and the atom does not

have that type of energy to spare. So any probability flux that makes it to channel 3 will not flow
far. Nevertheless, the existence of a channel that is closed by only 5 MeV has a significant effect on
the nuclear interaction, and thus on the level shifts and widths.

1.1 Theory: Relation of Shift and Width to Complex Energy

The nuclear interaction of a kaon in its atomic orbit around a proton shifts and broadens the atomic
energy level. The shift occurs because the addition of the nuclear interaction leads to a net force than
is more or less attractive than the Coulomb force. The width occurs because the nuclear interaction
can remove the kaon from the incident channel, and this is what makes the kaonic atom decay. In
fact, this permits one to learn about nuclear forces by studying atomic spectra.

By convention, the atomic level shift ε is defines as the increase in binding relative to the Bohr
value En:

ε = En − Eatom. (12)

The values of ε for heavy kaonic atoms are approximately -(100-1000)eV’s, that is, uniformly to the
less bound (upwards). The value for hydrogen has been very hard to measure and the results have
been controversial; this was the motivation for the original research upon which the lab is based.

While conventional wisdom leads us to believe that a nuclear potential whose addition diminishes
the atomic binding must be repulsive, there is some unusual physics here. The existence of the open
channels in (11) means that any kaon that gets close to the proton will be annihilate and flow into
the open channel. This strong absorption of the wave function near the origin reduced the value
of the wave function there, much like would a repulsive force, and so even though the nuclear force
is attractive, the strong absorption produces the same shift to the less bound as would a repulsive
force.

As we indicated above, decaying bound states require an extension of the usual ideas of quantum
mechanics, specifically in regards to the time dependence of decaying bound states (Gamow, 1928;
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Blatt and Weisskopf, 1952; Kapur and Peirles, 1938; Kwon and Tabakin, 1978; Hernandez and
Mondragon, 1984; Landau, 1983). We know that a stationary state (quantum eigenstate) has the
time dependence

Ψn(x, t) ∝ exp(−iEnt)ψ(x). (13)

We also know that a decaying state with lifetime τ has the time dependence

Ψn(x, t) ∝ exp(−t/τ) exp(−iEnt)ψ(x). (14)

We combine these two notions by postulating that a decaying state can be thought of as an gener-
alization of a stationary state to a complex energy

E = En − iΓ/2, (15)
EI = −Γ/2, ER = En. (16)

The wave function Ψ and probability density |Ψ|2 for a state with complex energy theqwn have the
time dependences:

Ψ ∝ e−iEt = e−iEn)t e−Γt/2, (17)
|Ψ|2 ∝ e−Γt = e−t/τ . (18)

As desired, the probability density of a resonance decays exponentially in time with a time constant
or lifetime

τ =
1
Γ

≡ h̄

Γ
. (19)

Decaying states were introduced into quantum mechanics by Gamow in 1928 while developing a
model for alpha-particle emission from nuclei. The equivalent concept of resonant states having a
complex energy was further developed by Kapur and Peirles in 1938. Both models envision a confined
state which decays slowly in time by emitting particles. Since this state is radiating probability, for
large r it must look like an outgoing wave eikr in space. In fact, since only certain energies will
produce outgoing waves for a given potential, it is this extra outgoing-wave constraint that turns
this into an eigenvalue problem with discrete, complex energies. (Equivalently, a complex potential
might also produce complex eigenvalues.)

The combined requirements that a solution of the Schrödinger equation decay in time as e−Γt

and radiate in space like eikr for large r is hard to meet. For a state to decay exponentially in time,
that is, be described by (17) with Γ > 0, we must have the imaginary part of the energy negative.
This, in turn, requires the k which appears in the outgoing wave eikr be complex:

k2 = 2µE = (k2
R − k2

I ) + 2ikRkI , (20)
⇒ kR > 0, kI < 0, or kR < 0, kI > 0. (21)

For a given energy there are usually two solutions (here in the large r region), one corresponding to
a resonance, and the other to a bound state:

ψ =
{

ψres ∼ eikRre|kI |r, with kR > 0, kI < 0,
ψbs ∼ e−i|kR|re−kIr, with kR < 0, kI > 0.

(22)

We identify the outgoing wave state ψres as a resonant state if its momentum is in the eighth
octant of the complex-momentum plane in Fig. 2 and close to the real axis. We identify the incoming
wave state ψbs containing a decaying exponential in space, as an unstable bound state if its momentum
is in the third octant of the complex-momentum plane and close to the imaginary axis. Notice that
the bound state wave function is normalizable, but that a resonance wave function is not.

The program you run in this lab searches throughout the complex momentum and energy space
for complex energy eigenstates. There can be many such solutions. After the solution is found, we
must be careful to ensure that it is a physically significant state by checking that all these conditions
have been met.
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1.2 Theory: Gamow States Momentum Spaces

Since we will deal with nonnormalizable quasi-bound states, we do not have the standard eigenvalue
problem to solve. Instead, we use the Lippmann-Schwinger equation, a form of the Schrödinger
equation usually used to describe scattering[14], and then search for the poles of the scattering
matrix T . Actually, this makes some sense because these exotic atomic states are resonances in the
scattering part of the spectrum. The Lippmann-Schwinger equation for our problem has the form

T (k′, k;E) = V (k′, k) +
2
π

∫ ∞

0

dp p2 V (k′, p)GE(p)T (p, k;E), (23)

where T (k′, k;E) is the transition matrix, V (k′, k) is the potential matrix,

GE(p) =
1

E − H0(p)
(24)

is the Green’s function, and all these operators are evaluated in the momentum representation.
The coupled-channels physics described by (11) is included by making T , V and G super matrices
composed of submatrices for each channel:

V ≡

 V11 V12 V13

V21 V22 V23

V31 V32 V33


 , T ≡


 T11 T12 T13

T21 T22 T23

T31 T32 T33


 , (25)

G =


 [E − E1(p)]−1 0 0

0 [E + iε + ∆M12 − E2(p)]−1 0
0 0 [E + ∆M13 − E3(p)]−1


 . (26)

Here ∆Mij is the mass difference between channels [the energies listed in (11)], and the iε in the
channel 2 part of G guarantee outgoing-wave boundary conditions in that open channel, and leads
to the energies having imaginary parts.

The connection between these integral equations and exotic atom states follows from examining
the operator (equivalent to matrix) form of the Lippmann Schwinger equation (23)

T = V + V GET. (27)

As you have seen in linear algebra, this equation has the formal solution

T = (1 − V GE)−1V. (28)

As is known from scattering theory[14], the condition for a Hamiltonian to have a bound state at
some energy is the same as for the scattering or T matrix to have a pole at that energy. We see that
(28) has poles when the denominator vanishes, and for this matrix problem, that is equivalent to

det(1 − V GE) = 0. (29)

We can make a connection here with the more familiar eigenvalue form of the Schrödinger equa-
tion, by writing the Schrödinger equation in terms of bras and operators:

< ψ|(E − H0) =< ψ|V. (30)

If we right multiply by GE = (E − H0)−1, we obtain Schrödinger equation as

< ψ|(E − H0)(E − H0)−1 = < ψ|V GE (31)
< ψ|1̃ = < ψ|V GE (32)

⇒ < ψ|(1̃ − V GE) = 0. (33)

Yet for this to make sense, either we have the trivial solution < ψ| = 0, or the inverse operator we
used does not exist (i.e., we divided by zero). The condition for the inverse operator not to exist is
just (29), the condition for a bound state.
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2 Computation

Our computational problem is to search for complex energies (momenta) that solve (29) with V a
large, complex, momentum-space matrix. The particular version given here looks only for S (l = 0)
states, with no restriction on the n value. When these momenta are on the positive imaginary k
axis they are conventional bound states. When the energies are complex, we view as the energies of
Gamow states with widths Γ given by (16). Whether these poles are “bound states” or “resonances”
depends on its location on the complex energy sheets. States with negative imaginary energies
(positive lifetimes), are always be in the lower half of the energy planes. They are resonances if their
home is on the second sheet, and bound states if their home is on the first energy sheet.

Below we outline the theory upon which the code is based. Most of this is explained in some
detail in QMII[14], and we recommend you look there for a more thorough treatment.

To handle the nonlocal nature of the nuclear potential, we need to solve the dynamical equations
in momentum space. Yet handling the Coulomb potential there is a problem since the long range of
the potential in coordinate space translates into a momentum-space singularity at k = k′:

< �k|V C |�k′ > =
−Ze2

2π2(�k − �k′)2
, (34)

V C
l=0(k

′, k) = − Ze2

2kk′ ln
∣∣∣∣k + k′

k − k′

∣∣∣∣ , (35)

where the second form is in the partial-wave basis.
Way back in 1935, Fock[5] was able to solve the momentum-space Schrödinger equation directly

for hydrogen. He found that the 1S wave function has the form (with h̄ = c = 1)

ψ1S(p) =
1

(p2R2
B + 1)2

. (36)

Although we will solve for a mixed Coulomb plus nuclear state, and thus have a more complicated
wave function than this, the form will be similar. On the one hand, we see that the Coulomb
wave function decays rather slowly in momentum space; for this reason we will have to have our
integration points cover a large region of momentum space. On the other hand, we note that the
wave function has a pole when

p2 = − 1
R2

B

, ⇒ p =
+i

RB
(bound state), p =

−i

RB
(virtual bound state). (37)

This is just the bound state pole we have been talking about, and, as expected, it occurs at the
Bohr energy.

To solve an integral equation numerically, we must remove the logarithmetic singularity in the
Coulomb potential V C . We do that[2, 6, 7] by subtracting off the singularity in the Coulomb
potential while simultaneously solving the integral equation:

T(k
′, k) = V C(k′, k) +

2
π

∫
dpV C(k′, p)

[
p2GE(p)T (p, k) − k

′2G(k′)T (k′, k;E)
Pl(zk′p)

]

+
2
π

k
′2GE(k′)T (k′, k)S(k′) (38)

S(k′) =
∫ ∞

0

V C(k′, p)
Pl(zk′p)

dp, zk′p = (k′2 + p2)/2k′p. (39)

Here Pl is the Legendre polynomial of the first kind, the subtracted term in square brackets makes
the integrand nonsingular, and the GTS term corrects for the subtraction. With 40 integration
points, we obtain six–place accuracy for the analytically–known pure Coulomb E1S for K−p.

The Green’s function GE for an open channel also has a singularity since the channel is open, and
that too must be modified to permit a numerical solution. We make that singularity computable by
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separating the integral of V GET into delta function and principal value parts, and then evaluating
the principal value part with a subtraction[8]∫

dpp2 V (k′, p)T (p, k)
E + iε − E(p)

= P

∫
dpp2 V (k′, p)T (p, k)

E − E(p)
− iπµk0V (k′, k0)T (k0, k) (40)

=
∫

dp


p2 V (k′, p)T (p, k)

E − E(p)
− k2

0

V (k′, k0)T (k0, k)
k2
0

2µ − p2

2µ




− iπµk0V (k′, k0)T (k0, k), (41)

where µ is (still) the effective mass.
Explicit linear equations for the T-matrix’s poles are obtained by replacing the integral in equa-

tion 23 by a discrete sum over grid points[14]. If we leave off the angular momentum and E
subscripts (for clarity), the linear equations are

T (ki, kj) = V (ki, kj) +
2
π

N∑
n=1

wnp2
n

V (ki, pn)T (pn, ki)
E − E(pn) + iε

(42)

The weight function wn is determined by the particular integration method used, in our case Gaussian
quadrature.

Equation (42) can be rewritten in a convenient form by using subscripts to show the dependence
on grid points, and by defining

Mij =
2
π

wjp
2
jVijGj . (43)

Equation (42) then becomes

Tij = Vij +
N∑

n=1

MinTnj . (44)

This can now be viewed as a matrix equation that we solve for T

T = V + MT (45)
(1 − M)T = V (46)

⇒ T = (1 − M)−1V. (47)

The condition for a pole of the T-matrix then has the same form as the operator equation (29)

det(1 − M) = 0. (48)

We solve (48) numerically in the code.

3 The Code BS.f

The code BS.f is divided into two source files of fortran subroutines. BSmain.f contains the main
program as well as most key subroutines. BSlibe.f contains the library routines to do the matrix
manipulations and to search for the zero of the determinant. We recommend that you browse
BSmain.f to get a feel for the program. Here’s a list of the major subroutines:

program bsmain The main program (where execution begins).

detcal Sets up the major parts of calculation needed to calculate the determinant.

gausbs, gauss Computes and scales the integration points and weights.

optpbs Sets up the matrix 1 − GV .

snsq Nonlinear Search for zero.

vcoulb Coulomb potential in momentum space for bound states (calls vcdiag fpr diagonal terms).
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3.1 Source Code Libraries

Some common tasks come up repeatedly in scientific programming. Solving a system of equations,
evaluating elementary function, finding eigenvalues, interpolating and extrapolating are examples.
It is a great idea to have a package of subroutines to accomplish such tasks and which can be used
in all the programs you write. The key is to have experts write these subroutines so that they are
optimized, reliable, and robust. It is not uncommon to have execution times dropped by an order
or magnitude after taking advantage of a good scientific subroutine library. That can mean running
a day instead of a month!

The program BS.f incorporates subroutines from the SLATEC (Sandia, Los Alamos, Air Force
Weapons Laboratory Technical Exchange Committee) library [www.netlib.org]. These subroutines
are identified in the comment fields. We use these routines in BS.f to evaluate the determinant of
(1 − GV ) and then to search for the zeros of the determinant.

Now let’s look through the code and see if we can make some sense of it.

3.2 Subroutine Listings (edited)
program bsmain

c 1=output,tape4=64,tape8=64,tape7,debug=output)
c bound states via det(1-gv)=0
c ridge32 version july 85

implicit real*8 (a-h,o-z)
external detcal
real*8 xeri(2),w(31),drr(10),dri(10),detri(2)
common/det/ar11,alfanz

c the open stmts are c’ed out so files spefied on run card
open(5,file=’runbs3’,status=’unknown’)
open(6,file=’outbs’,status=’unknown’)
open(7,status=’scratch’,access=’sequential’,

1 form=’unformatted’)
i=signal(119,dumsub,1)
write(6,879)

879 format(’ BOUND STATE calculation via det(1-GV)=0, 8/86’)
10 read(5,*,end=233)drr(1),eim,(drr(i),i=2,7)

read(5,*)tol,aitmax
880 format(8f10.6)

write(6,882)drr(1),eim,(drr(i),i=2,7)
write(6,882)tol,aitmax

882 format(’ input Es, tol, max iterations’,/8f15.6)
maxit = aitmax
nrei=2
if(eim.ge.0.d+00)nrei=1

l=0
c calculate point coulomb b.e. for sch eqtn or kge
c no dirac yet, i.e. no spin
c fj=l +- 1/2....i.e.fj=l for these cases

fj=l
ekge=0.

226 format(24h nbohr,e(se),e(kge1,2)= ,i3,3(1pe20.10),6h eta= ,
1 e20.8)

c--------do loop over energies
do 213 ix=1,7
if(drr(ix).eq.0.d+00) go to 213
xeri(1)=drr(ix)
xeri(2)=eim/ix
write(6,880)xeri(1),xeri(2)
call snsqe(detcal,jac,2,2,xeri,detri,tol,-1,info,w,31,maxit)

if (info .eq. 0)then
write(6,100)

100 format(1h0,’improper input parameters in search’)
else if (info .eq. 1) then

write(6,101) tol
101 format(1h0,’normal termination, relative error is at most’,

1 f13.10)
else if (info .eq. 2)then

write(6,102) maxit
102 format(1h0,’iterations exceed ’,i4)

else if (info .eq. 3) then
write(6,103) tol

103 format(1h0,f13.10,’tol too small.no further
1improvement possible in xeri’)

else if (info .eq. 4) then
write(6,104)

104 format(1h0,’iteration not making good pr
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1ogress’)
endif

nmin=l+1
if(ix.ne.1) go to 211
do 223 nbohr=nmin,4
esch=(-ar11/2.)*(alfanz/nbohr)**2
dri(nbohr)=esch
eta=nbohr-(fj+.5d+00)+sqrt((fj+.5d+00)**2-(alfanz)**2)
wron1=(alfanz/eta)**2
eta=sqrt(1.+wron1)
wron2=ar11*(-.5*wron1+wron1**2/8.-5.*wron1**3/16.)
ekge=ar11*(1./eta-1.)
write(6,226) nbohr,esch,ekge,wron2,eta

223 continue
211 epsev=(dri(ix)-xeri(1))

gamev=-xeri(2)*2.
esch=-epsev
write(6,881) xeri(1),xeri(2),epsev,gamev,esch,xeri(2)

881 format(’0E(MeV)=’,2f16.14,’ eps,gamma(eV)=’,2(6pf10.1)/
1 ’ Del E(ev)=’,2(6pf10.1))

213 continue
go to 10

233 write(6,841)
841 format(’ **************eof in main***********’)

stop
end

C=================================================================
subroutine detcal(nrei,xeri,detri,iflag)

c version modified sept85 for antiproton bs, 8/86 for reltv
implicit real*8 (a-h,o-y)
integer mypvt(192)
complex*16 detin(2),work(192)
complex*16 h, x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,

1 x13,x14,x15,x16,x17
complex*16 zi,zw(10), za(192,192),zdet

1 ,den(192,3),sum1,sum2,sum3,zk22,zk33,zk11,zk2,zk1,zk3
2 ,ze,zs,ar11,ar22,ar33
real*8 kapg,mn,mn2,k0,ko,ko2,k,k2,kk,mpi,mpi2,mr,k02

1, imtij,bnuc,bn,retij,xbarc,xi,xpi,xn,xgam,zcm,zch,theta,
1dsig,bnucf,bnf,dflip,dnof,wsp, achp, acmp,ymin1,
2ymin2

c NB NEED MATCH DIMEN AND NO ENTRIES IN DATA STM FOR IBM
dimension ... intger(192),mm1(192),

4 mm2(192),xeri(2),detri(2)
dimension kk(130),u(36864,2),f(36864),gp(66),wt(66)

1,ptptw(66),wa(130)...
common, equivalence...

c revised constants and masses nov 81 for bound s problem
data alfa /7.29735d-3/,an,ap,akmn,ak0,asig,ndim/

1 939.5731d+00,938.2796d+00,493.699d+00,497.67d+00,1193.35d+00,
2 192/,ix/1/
data hbarc,api,pi/197.3289d+0,139.5669d+0,3.14159265d+0/,
...
if(ix.ne.1) go to 150

10 continue
C MN HERE REFERS TO NUCLEUS MASS,XN (IN COMMON) TO NUCLEON
C
READ MOMENTA IN CENTRE _OF_MASS C NR.LE.0 IS
NONRELATIVISTIC NR .GT. 0 > RELATIVISTIC CASe

read(5,*,end=650) nr,lxmax
write (6,740) nr,lxmax
read (5,*) ngp,kode,b,nang,ymin1,ymin2
if (nang.eq.0) nang = 3
write (6,760) ngp,kode,b,nang,ymin1,ymin2
if (ngp.le.0) go to 650
write (6,790) ngp

C -----READ IN DATA
read (5,*) nz,na,(nifty(n),n=1,20)
write (6,830) nz,na,(nifty(n),n=1,20)
nifty(15)=abs(nifty(15))

C PRINT OUT NIFTY
...

25 continue
read (5,*) nes,nwaves,b0r,b0i,c0r,c0i
write (6,910) nes,nwaves,b0r,b0i,c0r,c0i
...
write (6,910) nes,nwaves,b0r,b0i,c0r,c0i

if (nwaves.lt.0)write(6,884)nwaves
884 format(’ Nwaves lt 0 for % partial absorption, Nwaves=’,i4)
40 continue

mpi=api
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if ((nifty(1).eq.7).or.(nifty(1).eq.8).or.(nifty(1).eq.-1)) mpi =
1 akmn
if(nifty(1).eq.10.or.nifty(1).eq.11)mpi=akmn

if (nifty(1).eq.12)mpi=ap
zcm = acmp
amass=na
zch = achp
zws = wsp
nifty1 = nifty(1)

c
c DEFINE MASSES WHICH DONT CHANGE WITH ENERGY
c
...
c-----------come here directly on all but 1st call-----------------

150 continue
C bs ENERGY IS ke IN com FOR BOTH rEL AND nR
c need redefine for scatt where KE is lab KE

e=xeri(1)
eimin =xeri(2)
zdet=zi*eimin

ze=e+zdet
e2=e+e12
e3=e+e13

if(nr.gt.0)goto 156
c calc complex*16 e s and momenta for chan 2

zk11= (e+zdet)*2.*mr
zk22=(e2+zdet)*ar222
zk33=(e3+zdet)*ar332

go to 157
c RELATIVISTIC ENERGY
c take sqrt(s) = e + m1 +m2 as def of E, same in all channels
c zk11 is now k2 in channel 1, NOT energy, ar is complex mr

156 ze = e + zdet +mn +mpi
zs = ze**2
zk11 = (zs-am12)*(zs-am1m)/4./zs
zk22 = (zs-am22)*(zs-am2m)/4./zs
zk33 = (zs-am32)*(zs-am3m)/4./zs
ar11 = sqrt((zk11 + mn2)*(zk11+mpi2))/ze
ar22 = sqrt((zk22 + a21)*(zk22+a22))/ze
ar33 = sqrt((zk33 + a31)*(zk33+a32))/ze
if(ix.eq.1)write(6,781) ar11,ar22,ar33

157 continue
c place complex momentum in quadrant II for BS analytic continuation
c place complex momentum in quadrant IV for Resonance (nif(3)=1)

x = zk11
yi = -zi*zk11
th = atan2(yi,x) + 2.*pi
if(nifty(3).eq.1) th = atan2(yi,x)
zk1 = sqrt(sqrt(x**2 + yi**2))*(cos(th/2.) + zi*sin(th/2.))
x = zk22
yi = -zi*zk22
th = atan2(yi,x) +2.*pi
if(nifty(3).eq.1) th = atan2(yi,x)
zk2 = sqrt(sqrt(x**2 + yi**2))*(cos(th/2.) + zi*sin(th/2.))
x = zk33
yi = -zi*zk33
th = atan2(yi,x) +2.*pi
if(nifty(3).eq.1) th = atan2(yi,x)
zk3 = sqrt(sqrt(x**2 + yi**2))*(cos(th/2.) + zi*sin(th/2.))
if(ix.eq.1)

1 write(6,108) e,eimin,e2,eimin,e3,eimin,zk1,zk2,zk3
c theta(1),(2) used in call to optpbs if whant complex momentum

theta(1)=zk2
theta(2)=-zi*zk2

c
C-----------SET UP GRID POINTS---------------------------------------
c

n1 = ngp+1
n2 = n1+n1
a = zk2
a=abs(a)

c special check if b=0,use different distrb of points
if(ix.gt.1)go to 89
if (b.eq.0.) a = 200.
if(kode .lt. 0) go to 84
if(ngp.gt.48) go to 82
call gauss (ngp,kode,a,b,gp,wt)
go to 83

c ngp gt 48,redistrb pts, 0-ko ,k0-inf(half up to 10*ko)
82 npt1=24

npt2=ngp-npt1

11



b=a
call gauss(npt1,011,0.d+00,b,gp,wt)
if(npt2.gt.48)write(6,107)
b=8.*a
call gauss(npt2,041,b,a,dflip,dnof)
ngp=npt1+npt2
write(6,730)ngp,npt1,npt2
do 81 i=1,npt2
ii=i + npt1
gp(ii)=dflip(i)

81 wt(ii)=dnof(i)
go to 83

107 format(20h NPT2 GT 48 IN MAIN )
c special bs point distb for kode lt 0-
84 cpmax=10.d+00**(-kode)

catom=b
write(6,883) kode,catom

883 format(’ kode < 0, use bs points,cpmax=10**-kode, ’
1 ,’catom <,>0 :gausbs-rhl mod of kt’,
2 ’gausbs-kt version ,kode,catom=’,i4,e12.4)
nnuc=nang
if(nang.eq.3)nnuc=0
cnucl=ymin2
csize=ymin1
write(6,104) ngp,nnuc,catom,csize,cnucl,cpmax

104 format(40h Ngp,Nnuc,Catom,Csize,Cnucl,Cpmax(MeV)= ,2i4,4e12.4/)
if(catom.ge.0.)

1call gausb2(ngp,nnuc,catom,csize,cnucl,cpmax,gp,wt,ptptw)
if(catom.lt.0.)

1call gausbs(ngp,nnuc,-catom,csize,cnucl,cpmax,gp,wt,ptptw)
83 continue

write(6,105)(gp(i),i=1,ngp)
write(6,106)(wt(i),i=1,ngp)

105 format(8h points= ,10e12.4)
106 format(8h weight= ,10e12.4)
89 continue

sum1=0.
sum2=0.
sum3=0.
if (nr.gt.0) go to 100

c -----------------------------------------------------------------
c NONRELATIVISTIC DENOMINATOR
c -----------------------------------------------------------------

do 90 i1=1,ngp
k = gp(i1)
kk(i1) = k
k2 = k*k
ak2w=k2*wt(i1)
den(i1,1)=ak2w/(k2-zk11)*rhl2
if(nifty(15).eq.0) go to 90
den(i1,2)=ak2w/(k2-zk22)*rhl22
den(i1,3)=ak2w/(k2-zk33)*rhl23

c 2 closed channels, replace den2 with den3 and dont use channel 3
c closed channels: (K-p,Kobar-n) or (p-pbar,n-nbar)

if(nifty(15).eq.3)den(i1,2)=den(i1,3)
if(nifty(15).eq.3)den(i1,3)=0.

c include Prin Value sum in denom for open channel
if(e .gt.0.)sum1 = sum1 +wt(i1)/(k2-zk11)
if(e2.gt.0.)sum2 = sum2 +wt(i1)/(k2-zk22)
if(e3.gt.0.)sum3 = sum3 +wt(i1)/(k2-zk33)

90 continue
c SET DEN(N1) WITH DEN2 CONTAINING BOTH I EPS AND p SUBTRN
c can use this procedure for any real/complex energy, here use reE>0 switch

if(e .lt.0.)den(n1,1)=0.
if(e2.lt.0.)den(n1,2)=0.
if(e3.lt.0.)den(n1,3)=0.
kk(n1)=zk1
if(nifty(15).eq.0.and.e.lt.0.) go to 120

c channel 2 (usually the only open one)
if(e2.gt.0.)then

c channel 2 open
kk(n1)=zk2
zw(1)= - sum2*rhl22*zk22
zw(2)= + zi*ar222*zk2
den(n1,2)= zw(1) +zw(2)
endif
if(e3.gt.0.)then

c channel 3 open
zw(1)= - sum3*rhl23*zk33
zw(2)= + zi*ar332*zk3
den(n1,3)= zw(1) +zw(2)
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endif
if(e.gt.0.)then

c channel 1 open
zw(1)= - sum1*rhl2*zk11
zw(2)= + zi*ar2*zk1
den(n1,1)= zw(1) +zw(2)
endif

c for closed channels set den(n1,channel)=0
c for 2 channel case (nbar-n or kobar-n) switch channel 3 to 2

if(nifty(15).eq.3)then
den(n1,2)=den(n1,3)
den(n1,3)=0.
endif

go to 120
c ---------------------------------------------------------------
c RELATIVISTIC DENOMINATOR
c ---------------------------------------------------------------
100 ...

c---------------end relativistic denom-------------------------------
120 if(ix.eq.1.or.e.gt.0..or.e2.gt.0..or.e3.gt.0.)

1 write(6,91) (den(n1,i),i=1,3)
if(ix.ne.1)go to 203
ii=3
if(nifty(15).eq.0)ii=1
do 202 i=1,ii

202 write(6,102) (den(i1,i),i1=1,n1)
102 format(’ Zden(3/1,i)=’,10e12.4)

c
C----- DO LOOP OVER L FOR THIS E AND STATE
c
203 l = ldmax-1

if(ix.eq.1)write (6,1070) l
c
C BOUND STATE OR EIGENENERGY CALCULATION ( A* RESONANCES )
c calc bound state e’s only for ldmax
c

theta(3)=10.
call optpbs(kk,n1,wt,ldmax,ldmax,lborn,theta,e,eimin)

c for three coupled channels possible, need 3*maxngp as dimen
c nunit=ngp or n1 is size of block matrix

nunit=ngp
if(nifty(15).eq.1.or.nifty(15).eq.2)nunit=ngp+1
nn=nunit
ng2=nunit*2
if(nifty(15).eq.2)nn=3*nunit
if(nifty(15).eq.1.or.nifty(15).eq.3)nn=ng2

c WRITE OUT MATRICs
if(ix.ne.1)go to 208
write(6,229)
i=nn-1
if (nn .lt.6) then

do 9995 ii = 1,nn
9995 write(6,227) ii,(za(ii,ij),ij=1,nn)

else
do 217 ii=1,nn,i

217 write(6,227) ii,(za(ii,ij),ij=1,nn)
endif
ii=nn

228 format(1h0,’ 1-G(complex*16)*V matrix before determinant’
1 ,’ found’)

229 format(1h0,’ complex*16 potential matrix before 1-GV formed’)
227 format(1h0,i3,8e15.6/200(3x,8e15.6/))
208 continue

C Determine Channel For Den + Row Of Submatrx
irow=1
do 219 ii=1,nn
if(ii.gt.nunit)irow=2
if(ii.gt.ng2)irow=3
do 216 ij=1,nn
jjj=ij
if(ij.gt.nunit)jjj=ij-nunit
if(ij.gt.ng2)jjj=ij-ng2
icol=1

c revised version with g1 and g2 switched
if(ij.gt.nunit)icol=2
if(ij.gt.ng2)icol=3
za(ii,ij)=za(ii,ij)*den(jjj,icol)

2140 continue
if(ii.eq.ij)za(ii,ii)=za(ii,ii)+1.

216 continue
219 continue
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C----------DO LOOP OVER II,IJ ENDs
c write out matrics

if(ix.gt.1)go to 298
write(6,228)
i=nn-1
if (nn .lt. 6)then
do 9996 ii=1,nn

9996 write(6,227) ii,(za(ii,ij),ij=1,nn)
else
do 297 ii=1,nn,i

297 write(6,227) ii,(za(ii,ij),ij=1,nn)
endif
if(nifty(6).eq.6.or.nifty(6).eq.7)go to 298

298 continue
212 continue

C SEARCH FOR det=0 WITH LANDE SUBRTN IN VCOUL
call cgefa(za,192,nn,mypvt,info)
call cgedi(za,192,nn,mypvt,detin,work,10)

c calculate deter
zdet=(1.,0.)
do 223 i=1,nn
ipvt=wa(i)
if(ipvt.ne.i)zdet=-zdet
zdet=zdet*za(i,i)

223 continue
if(ix.eq.1)ix=2
rpow = detin(2)
zdet = detin(1)*(10.d00**rpow)
detri(1)=zdet
detri(2)=-zi*zdet
write(6,224)zk1,e,eimin,zdet

224 format(’ zk1=’,2(1pE11.3),’ Er,Ei=’,
1 2(1pe18.8),’ zdet=’,2(e15.3)/)
return

C _______________ FORMATS
650 write(6,841)

stop
c...

end

As is often the case with working research codes, BS.f reads like a work in progress. In fact, this
code was originally one that calculated scattering and was then merged with a bunch of scientific
library subroutines to compute bound states by searching for the poles of the scattering matrix.
Some of this history is evident in the different sytles of BS.f.

Recall that the purpose of this code is to the complex energies that solve det(1−GEV ) = 0. The
main program, bsmain.f starts by reading in (and writing out) the initial guess for the energies,
drr(i), i=2,7, the tolerance required for convergence of the search tol, and the maximum number
of iterations permitted before aborting the search aitmax. Given the initial guesses (usually the
analytic Bohr energies), the search for the solution of det(1−GV ) = 0 is initiated by the call to the
snsqe. The subroutine snsqe, and the myriad of other subroutines that it spawns, is in BSlibe.f.

Go look at snsqe now to see how this type of library program is set up. Notice how all the
documentation for the program is given as comments, and the use of many, simple subroutines.
Now if you go back to bsmain you will notice that the first argument in the call to snsqe is detcal.
Actually detcal is not a variable, but rather the name of a subroutine that computes det(1 − GV )
as a function of energy. snsqe calls detcal as many times as needed as it searches for a zero of the
determinant.

If you look at the subroutine detcal in BSmain.f, you will notice that it is the largest subroutine
in the program. In fact, it was once the main program for the scattering computation. detcal reads
in the data needed to control the calculation, calls the gauss subroutines to compute the integration
points and weights, and then sets up the integral equations to solve. detcal also calls the subroutine
optpbs (optical potential for bound states) that computes the coupled-channels potential matrix,
and then sets up the matrix 1−GV . It then calls the library routines routines cgefa and cgedi to
compute the complex determinant, and these are returned to snsqe.

3.3 File Read Parameters (runbs)

The parameters needed to run BS are read in from a text file runbs in the same directory as the
program (the output from the program is placed in the file outbs also in this same directory). This
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allows the user to make changes between consecutive runs without altering and recompiling the code.
A typical example of runbs is:

-0.008715 -0.00080 -0. -0. -0. -0. -0. -0.
0.0001 64.0
0 1
40 -8 -2.4 08 100. 2400.
1 1 10 +0 0 1 7 0 0 0 0 5 0 0 0 0 +2 0 0 0 0 0
002 +14 0. 0. 0. 0.

representing the coded variables:

drr(1) eim drr(2) drr(3) drr(4) drr(5) drr(6) drr(7)
tol aitmax
nr lxmax
ngp kode catom nnuc csize cnuc
achp acmp wsp achn acmn wsn rcoul rcut
nz na nifty(1) nifty(2) nifty(3) ... nifty(20)
nes nwaves b0r b0i c0r c0i

Decimal points in the input data help ensure that the number is interpreted as floating point. Some
of the entries above are:

• drr(1): The initial guess for the real part of the energy at which the search starts. drr(2-7) are further guesses.

• eim: The initial guess for the imaginary part of the energy at which the search starts.

• tol: The energy for which det 1 − GV = 0 i searched for until the changes in energy are less than tol.

• aitmax: The maximum number of iterations permitted in search.

• ngp: Number of grid points used in the solution of the integral equation. You need to try values up to 66.

• catom, csize, cnuc: Integration points are distributed over the nuclear and Coulomb regions in momentum space
using these values (in fermis) to set the scale.

• achp, acmp, wsp: Not used.

• achn, acmn, wsn: Not used.

• rcoul: Not used.

• rcut: A large radius, beyond which the Coulomb potential is assumed to vanish.

• nz=1: For a proton as the nucleus

• na=1: For a proton as the nucleus.

• nifty(1)=10: An incident K−.

• nifty(2)=0: Not used.

• nifty(3)=0: Specifies quadrant in which to search for poles; determines whether solution is bound state or resonance.
nifty(3)=0 for bound state, = 1 for resonance.

• nifty(4,5)=0: Not used.

• nifty(6)=0: include strong force.

• nifty(6)=6: turn off strong force (leave Coulomb if requested).

• nifty(7,8,9): Not used.

• nifty(10)=5: Bound state calculation with point Coulomb (use this).

• nifty(10)=6: Bound state calculation with Coulomb sphere.

• nifty(10)=8: Bound state calculation with no Coulomb force.

• nifty(11,12,13,14)=0: Not used.

• nifty(15): Specifies the number of open channels:

0 one channel, K−p

1 three channels, K−p, Σπ, K
0
n

nifty(16,17)=0: Not used

• nes=2 Sets potential parameters. Negative values used for pure K−p in vkbarp, i.e., to look for strong bound state.

• nwaves=14 Negative values used to scale channel coupling.
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3.4 Execution

Compile and link BS.f to form the executeable BS:

f77 BSmain.f BSlibe.f -o BS

The -o flag places the executeable in the file name that follows (BS). The program is run by entering
the BS at the prompt.

3.5 Interpretation of Output

Output is placed in the file outbs in the same directory as the executeable. The beginning of the
output is mostly an echo of input parameters, some of which were discussed above. Echoing is a
valuable technique that shows that these data were read in correctly, as well as showing that the
program has executed up to that point (or beyond it if there is an abnormal ending since some
output gets left in a buffer). It is also useful for later reference.

The program next prints out some of the masses that it uses in the various channels. These are
all in MeV/c2 and start with the line Mproj, At, MA = (we use the variable M and a for masses).
There is the projectile mass Mproj, the target mass number At, the target mass MA, and the reduced
masses in channels 1, 2, and 3. This is followed by the real and imaginary parts of the energy and
the momentum in each channel.

Next, there is a table headed by the line Ngp,Nnuc,Catom,Csize,Cnucl ... that gives all
the integration points and weights. This is followed by lines with Zden(3/1,i)= which give the
denominator (Green’s function) in channel 3. Since it is easy to make errors in setting up large
matrices, it is good to check that the end values look reasonable.

The next major section of output begins with the heading opt poten for k =k0(k1-bs)=
0.78480E-03and l=0(1-bs). This tabulates the actual potential computed by BS.f and its various
components. In the units we are using (energies in MeV, lengths in inverse MeV), most of the values
for the potential will be less than 1, with values of 1000 or so occurring when we get get the Coulomb
singularity, k′ � k.

The indication that the program is actually searching through a complex energy space is given
by lines of the form

zk1= -1.089E-01 2.377E+00 Er,Ei= -8.715E-03 -8.0E-04 zdet= 4.382E-05 -1.987E-05
We see here the values for the complex momentum, energy, and determinant. Of particular impor-
tance is how the value of the determinant decreases from 10−5 to 10−12, and passes through zero.
The latter value is what we accept as zero. We clearly have started with a pretty good guess of the
energy to get det(1−GV ) = 10−5, but since we are looking for a small perturbation to a very large
number, high precision is required.

The output terminates by giving all pure Coulomb atomic energies for both nonrelativistic and
relativistic cases, as well as the level shift from the Bohr value, and its width.

3.6 Sample outbs
BOUND STATE calculation via det(1-GV)=0, ridge32, 8/86, program bsdetr, detcal

-0.008715 -0.000800 0.000000 0.000000 0.000000
0.000000

0.000100 64.000000
-0.008715 -0.000800
Nr Lmax = 1 1

66 -8 2.40 3 100. 2400.
No of grid points= 66

1.550 1.550 0.000 1.5500 1.550 0.000 3.000 7.00
1 1 10 001700005 0 0 0 0 2 0 0 0 0 0

Nifty( 1)= 10 k-
Nifty( 2)= 0 *5=be shift
Nifty( 3)= 0 bs not res
Nifty( 4)= 1 nlsp-g(p)
Nifty( 5)= 7 e3b, aay
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Nifty( 6)= 0 no spin ms
Nifty( 7)= 0 no abs/s-f
Nifty( 8)= 0 no del/fld
Nifty( 9)= 0 no pauli
Nifty(10)= 5 bs,pt coul
Nifty(11)= 0 pi0,pi-,k+ shift
Nifty(12)= 0 pi+,ko,k0b shift
Nifty(13)= 0 pi-channel shift
Nifty(14)= 0 pi+channelshift
Nifty(15)= 2 3 chn=ppin
Nifty(16)= 0 rhog,rho2g
Nifty(17)= 0 kmt
Nes,Nwaves,b0r,b0i,c0r,c0i= 2 14 0.00000 0.00000 0.00000 0.00000
Nes,Nwaves,b0r,b0i,c0r,c0i= 2 14 -0.04000 0.04000 0.00000 0.08000

RELATIVISTIC CALCULATION
1 1 10 001700005 0 0 0 0 2 0 1 0 0 0
Mproj, At, MA = 493.699 1.000 938.280
ar11, ar22, ar33= 323.488 0.00 158.450 0.0 325.343 0.0
ar11, ar22, ar33= 323.485 0.00 190.017 0.0 323.648 0.0

zE1, zE2, zE3 = -0.8715E-02 -0.8E-03 0.9905E+02 -0.8E-03 -0.5273E+01 -0.80E-03
zk1, zk2, zk3 = -0.1089E+00 0.2377E+01 -0.1772E+03 0.8580E-03 -0.4426E-02 0.5850E+02
kode < 0, use bs points,cpmax=10**-kode, catom <,>0, kode,catom= -8 0.2400E+01
Ngp,Nnuc,Catom,Csize,Cnucl,Cpmax(MeV)= 66 0 0.2400E+01 0.1000E+03 0.2400E+04 0.1000E+09

points= 0.7848E-03 0.4139E-02 0.1019E-01 0.1896E-01 0.3050E-01 0.4486E-01 0.6209E-01 0.8229E-01
points= 0.1617E+00 0.1948E+00 0.2316E+00 0.2721E+00 0.3167E+00 0.3654E+00 0.4187E+00 0.4768E+00

...
weight= 0.2199E+01 0.2678E+01 0.3306E+01 0.4147E+01 0.5299E+01 0.6920E+01 0.9275E+01 0.1283E+02
weight= 0.4518E+02 0.8009E+02 0.1626E+03 0.4109E+03 0.1580E+04 0.1884E+05

den(n1,1-3) (P, Del parts) = 0.0000E+00 0.0000E+00 -0.1294E+06 -0.6732E+05 0.0000E+00
Zden(3/1,i)= 0.8988E-07 -0.8251E-08 0.5830E-05 -0.5352E-06 0.5570E-04 -0.5113E-05 0.2644E-03

----- Angular Momentum = 0-----
opt poten for k =k0(k1-bs)= 0.78480E-03and l=0(1-bs)

kp rev vc rabs(n0 flip) rabs(flip) -imv imvabs(noflip),imabs(flip)

ibag,iset,b0= 0 3 0.55600D+01 0.00000D+00acoup,i1chanl= 1.000 1
l0/b0(1,2,3 )= -0.32600D+03 0.00000D+00 -0.11200D+03 0.000D+00 -0.41200D+03 0.00D+00
b1,l1(iset)= 0.20000D+01 0.00000D+00 -0.30800D+02 -0.22400D+02

now in mev units,b=b*b,l=4pi*l--for lpt pot
ibag,iset,b0= 0 3 0.12037D+07 0.00000D+00acoup,i1chanl= 1.000 1
l0/b0(1,2,3 )= -0.44946D+07 0.00000D+00 -0.15442D+07 0.000D+00 -0.56803D+07 0.0D+00
b1,l1(iset)= 0.15575D+06 0.00000D+00 -0.76375D+05 -0.55545D+05

0opt poten for k =k0(k1-bs)= 0.78480E-03and l=0(1-bs)
kp rev vc rabs(n0 flip) rabs(flip) -imv imvabs(noflip),imabs(flip)

0.7848E-03 -0.9875E+04 -0.9875E+04 0.000E+00 0.000E+00
2 -0.3920E-05 0.0000E+00
4 -0.7536E-06 0.0000E+00
3 -0.3125E-05 -0.1145E-05
5 -0.2316E-07 -0.1145E-05
6 0.7536E-06 0.0000E+00

0.4139E-02 -0.4312E+03 -0.4312E+03 0.000E+00 0.000E+00 -0.1145E-05
0.1019E-01 -0.7043E+02 -0.7043E+02 0.000E+00 0.000E+00 -0.1145E-05
0.3050E-01 -0.7845E+01 -0.7845E+01 0.000E+00 0.000E+00 -0.1145E-05
0.4486E-01 -0.3627E+01 -0.3627E+01 0.000E+00 0.000E+00 -0.1145E-05
0.6209E-01 -0.1893E+01 -0.1893E+01 0.000E+00 0.000E+00 -0.1145E-05
0.8229E-01 -0.1078E+01 -0.1078E+01 0.000E+00 0.000E+00 -0.1145E-05

...

0 complex*16 potential matrix before 1-GV formed
0 1 -0.987532E+04 -0.114482E-05 -0.431196E+03 -0.114482E-05 -0.704304E+02 -0.114482E-05 -0.203036E+02

-0.784506E+01 -0.114482E-05 -0.362693E+01 -0.114482E-05 -0.189268E+01 -0.114482E-05 -0.107756E+01
-0.222670E-05 -0.598368E-06 -0.162372E-05 -0.312208E-06 -0.676893E-06 -0.709222E-07 -0.368166E-07

1-G(complex*16)*V matrix before determinant found

1 0.999112E+00 0.814766E-04 -0.251387E-02 0.230762E-03 -0.392295E-02 0.360104E-03 -0.536756E-02
-0.683909E-02 0.627695E-03 -0.834162E-02 0.765449E-03 -0.988091E-02 0.906399E-03 -0.114631E-01

zk1= -1.089E-01 2.377E+00 Er,Ei= -8.71500000E-03 -8.00000000E-04 zdet= 4.382E-05 -1.987E-05

den(n1,1-3) (P, Del parts) = 0.0000E+00 0.0000E+00 -0.1294E+06 -0.6732E+05 0.0000E+00 0.0000E+00
zk1= -1.089E-01 2.377E+00 Er,Ei= -8.71499987E-03 -8.00000000E-04 zdet= 4.382E-05 -1.987E-05

den(n1,1-3) (P, Del parts) = 0.0000E+00 0.0000E+00 -0.1294E+06 -0.6732E+05 0.0000E+00 0.0000E+00
zk1= -1.089E-01 2.377E+00 Er,Ei= -8.71500000E-03 -7.99999988E-04 zdet= 4.382E-05 -1.987E-05
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Figure 3: The level shift and width for the 1S level in kaonic hydrogen as a function of the strength
of coupling to the Σπ channel (as published by Landau). At Λ � 0.65 a nuclear bound state is first
formed.

den(n1,1-3) (P, Del parts) = 0.0000E+00 0.0000E+00 -0.1294E+06 -0.6733E+05 0.0000E+00 0.0000E+00
zk1= -1.923E-02 -2.318E+00 Er,Ei= -8.30331482E-03 1.37798748E-04 zdet= 7.762E-06 2.900E-06

den(n1,1-3) (P, Del parts) = 0.0000E+00 0.0000E+00 -0.1294E+06 -0.6734E+05 0.0000E+00 0.0000E+00
zk1= -4.517E-02 -2.328E+00 Er,Ei= -8.37590845E-03 3.25078934E-04 zdet= 1.232E-07 2.860E-06

den(n1,1-3) (P, Del parts) = 0.0000E+00 0.0000E+00 -0.1294E+06 -0.6734E+05 0.0000E+00 0.0000E+00
zk1= -4.464E-02 -2.337E+00 Er,Ei= -8.44150430E-03 3.22558220E-04 zdet= -7.893E-07 4.548E-07

den(n1,1-3) (P, Del parts) = 0.0000E+00 0.0000E+00 -0.1294E+06 -0.6734E+05 0.0000E+00 0.0000E+00
zk1= -4.167E-02 -2.338E+00 Er,Ei= -8.44451178E-03 3.01134572E-04 zdet= -5.031E-08 1.686E-08

den(n1,1-3) (P, Del parts) = 0.0000E+00 0.0000E+00 -0.1294E+06 -0.6734E+05 0.0000E+00 0.0000E+00
zk1= -4.149E-02 -2.338E+00 Er,Ei= -8.44441201E-03 2.99806773E-04 zdet= -3.288E-11 4.268E-10

den(n1,1-3) (P, Del parts) = 0.0000E+00 0.0000E+00 -0.1294E+06 -0.6734E+05 0.0000E+00 0.0000E+00
zk1= -4.149E-02 -2.338E+00 Er,Ei= -8.44442175E-03 2.99801698E-04 zdet= 6.129E-12 -7.789E-12

0normal termination, relative error is at most 0.0001000000
nbohr,e(se),e(kge1,2)= 1 -8.6130774298E-03 -8.6136508160E-03 -8.6138801937E-03 eta= 1.00002663E+00
nbohr,e(se),e(kge1,2)= 2 -2.1532693574E-03 -2.1533625309E-03 -2.1533768655E-03 eta= 1.00000666E+00
nbohr,e(se),e(kge1,2)= 3 -9.5700860331E-04 -9.5703833353E-04 -9.5704116498E-04 eta= 1.00000296E+00
nbohr,e(se),e(kge1,2)= 4 -5.3831733936E-04 -5.3833032970E-04 -5.3833122553E-04 eta= 81.00000166E+00

0E(MeV)=-.008444421752510.00029980169841 eps,gamma(eV)= -168.7 -599.6
Del E(ev)= 168.7 299.8
**************eof in main***********

4 Exploration

4.1 Electronic Hydrogen

While BS.f can clearly do some fancy computations, we need to believe its results before we can
use it to study new physics. As a way of both tuning up and checking the code, we first try to
calculate ordinary electronic hydrogen. We know that for a nonrelativistic computation, the bound
state energies should be the Bohr values (2) with µ the ep reduced mass.

To have BF.f compute electronic hydrogen with no nuclear forces acting (not something it was
written for), make the following changes (after saving the original in a different file):

1. drr(n)th should be near, but not too near, to the electronic values for hydrogen.

2. eim=0.0 since there is no decay and the levels have no width.

3. catom=0.01 for a smaller scale factor for integration grid.
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4. nifty(1)=10 sets K− as orbiting particle.

5. nifty(6)=6 turnf on only the Coulomb force.

6. nifty(15)=0 uses only channel 1, the incident channel.

7. Replace the numerical value 493.699 for the kaon mass (in MeV/c2) by the electron’s value,
0.51072075.

1. Vary the number of grid points from 8 to 66 to see the effect upon the accuracy.

2. Notice that if the initial guesses that start the search are not close the energy for a particular
nS level, the program may end its search at a neighboring level instead.

3. Based on the known properties of the hydrogen spectrum, what would you expect to happen
as you search for large nS levels?

4.2 Pure Coulomb Kaonic Hydrogen

Now change the rest mass of the electron back up to that of a K−, 493.699 MeV, and run through
the series of integration point again. Check that you obtain energies that agree with the Bohr values
using the appropriate reduced mass. If needed, adjust catom for a better distribution of integration
points.

4.3 Kaonic Hydrogen with Strong Interaction

Because of the much smaller Bohr radius for the more massive K−, the strong, but short-ranged
nuclear force significantly affects the 1S state of kaonic hydrogen. The higher orbits are affected to
a much smaller degree. Although not yet the full calculation, let’s turn on the nuclear force, still
with just one channel open.

Set nifty(6) = 0 to turn on the strong force. This should be the attractive strong force, but
without the open channel in (11) that causes absorption. Accordingly, the level should become more
bound. Is it more bound, and if so, by how much?

4.4 Include Additional Channels

We now make the problem realistic by including the open channel 2 and the charge exchange channel
3. Set nifty(15) = 2 for three channels. This should the absorption that gives the level a finite width.

1. Take note of the change in the 1S level width and whether its shift is to the more or less bound.
Explain.

2. Take note of the effect of including the open channel 2 on the 2S and 3S levels. Is the shift
inversely proportional to the distance from the nucleus, ε ∝ R−1?

4.5 Importance of Relativity

The equations in BS.f are written so that the relativistic or nonrelativistic definitions of energy can
be used:

Enonrel(p) =
p2

2m1
+

p2

2m2
≡ p2

2µ
, (49)

Erel(p) =
√

p2 + m2
1 +

√
p2 + m2

2. (50)

The input variable Nr =0, 1 controls whether a nonrelativistic or relativistic computation is per-
formed. It may well be that the effect of relativity is more important in kaonic hydrogen than in
electronic hydrogen. Let’s see.
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1. Explore the effect of relativity on the 1S energy level in electronic hydrogen. You will need to
run the calculation for a single channel with the kaon mass set equal to the electronic mass,
and with no nuclear forces.

2. Compare the size of the relativistic effect that you found with your computation for electronic
hydrogen to that which is predicted by the Klein-Gordon equation (a relativistic generalization
of the Schrödinger equation)[14]. The energy for the hydrogen levels in the Klein-Gordon
equation has the form

E =
mc2√

1 + γ2

[n−(l+ 1
2+

√
(l+ 1

2 )2−γ2]2

� mc2 − Ry
n2

− Ryγ2

n3

(
1

l + 1
2

− 3
4n

)
, (51)

γ =
Ze2

h̄c
, Ry = 13.605692eV. (52)

3. Now look at the full kaonic hydrogen computation with the strong interaction present in
three channels. Does the relative importance of relativity increase or decrease as compared to
electronic hydrogen?

4.6 Map the Energy Space Search

The search that BS.f uses is nonlinear (in contrast to the bisection algorithm, that is linear).
Typically it will start with large steps, and then switch its technique when it gets closer to a zero.
The aim is to make the search fast and flexible. In our case the search is also complicated by its
need to make a 2D search for the best values for both the real and imaginary parts of the energy.

In this section we want you to map the convergence of the search routine. Draw up the path
taken through complex energy space for several searches that succeed, as well as for ones that fail.
Label each energy point by the corresponding value of zdet. Note that you may need to employ
logarithmic scales to visualize the search best. Describe in words what is happening for a successful
and unsuccessful search.

4.7 Complex Energy Shift vs Coupling Strength

In Fig. 3 we show the shift and width of the 1S level in kaonic hydrogen as a function of the strength
Λ of coupling between the incident channel 1 and the open channel 2. As expected for an attractive
interaction, for small values of Λ the shift is towards the more bound, but for Λ � 0.65% something
happens and the shift changes sign. That “something” is that the nuclear interaction has become
strong enough to form a K−p nuclear bound state (a new elementary particle) deep within the 1S
atomic bound state. In this part of the lab you should try to reproduce Fig. 3 and to find the energy
of the nuclear bound state.

1. The subroutine vkbarp computes the coupled channels, strong interaction potential for the
K−p system. Browse through that subroutine and take note of the use of the coupling strength
variable acoup. This is the value of Λ. As indicated there, negative values of the input variable
nwaves change acoup according to

acoup = - nwaves/100.

This means that a value of nwaves = -60 corresponds to Λ = 0.6. Vary the value read in for
nwaves to generate your own version of Fig. 3.

2. If you obtain a sign change in ε, this means there is a nuclear bound state being formed. Search
for that state. You will need to change the sign of nes, say from 2 to nes = -2. You then
need to try initial energy guesses in the Million eV range.
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