Physics 212	Midterm II		18 November 98
7:30-8:50 PM	Closed Book	· · · · · · · · · · · · · · · · · · ·	No Notes
$N_A = 6.02 \times 10^{23} mol^{-1}$	$pV = \overline{nRT} = NkT$	$R = 8.31 J/mol \cdot K$	$T = T_C + \overline{273^o}$
$\frac{1cal = 4.186J}{2}$	$Q = cm\Delta T = Cn\Delta T$	$W=\int_i^f p dV$	$Q = W + \Delta U$
$\overline{KE_{trans}} = \frac{3}{2}kT$	$rac{1}{2}kT/^{o}freedom$	$F_c = \frac{q_1 q_2}{(4\pi\epsilon_0)r^2}$	$V = \frac{q}{(4\pi\epsilon_0)r}$
$E = F_c/q$	$E_d = 2k \frac{p}{z^3}$	$ec{r}=ec{p} imesec{E}^{'}$	$\epsilon \oint \kappa \vec{E} \cdot d\vec{A} = q$
$k = 1.38 \times 10^{23} J/K$	$\frac{1}{4\pi\epsilon_0} = \frac{8.99 \times 10^9 N m^2}{C^2}$	$e = 1.60 \times 10^{-19} C$	$W_{ext} = q\Delta V$
$V = \frac{q}{4\pi\epsilon_0 r}$	$x = x_0 + v_0 t + \frac{1}{2} a t^2$	$PE = \frac{q_1 q_2}{4\pi\epsilon_0 r}$	$m_{\rm e} = 9.11 \times 10^{-31} kg$

- ♠ There are 4 questions. For full credit [n points] show physics-based reasoning, work, and units.
- ♠ Use no auxiliary aids. Calculators without stored equations are OK.
- A Place all books, notes, packs, etc up front.
- ▲ All answer sheets must be handed in (do not separate them).
- ♠ The back of pages will not be graded unless you so indicate on the front.
 - 1. For a certain ideal gas C_V is $6.00cal/mol \cdot K$. The temperature of 7.0 moles of the gas is raised 25 K by each of three different processes: at constant volume, at constant pressure, and by an adiabatic expansion. Complete the table (on your answer sheet) showing for each process the heat Q added (or subtracted), the work W done by the gas, the change ΔU in internal energy of the gas, and the change ΔK in total translational kinetic energy of the gas.

Part	Process	\overline{Q}	\overline{W}	ΔU	ΔK
(a) [9]	Constant \overline{V}				
(b) [9]	Constant p				_
(c) [9]	Adiabatic	_	_		_

- 2. Two charges $+2 \times 10^{-6}$ C and -1×10^{-6} C are separated by a distance of 300 cm.
 - (a) Determine the point (other than at infinity) at which the electric field vanishes. [12]
 - (b) Sketch the electric field lines and the equipotential surfaces in the plane of the page for these charges (indicate the $\vec{E} = 0$ point). [12]
- 3. A uniform electric field exists in a region between two oppositely-charged horizontal plates. An electron is released from rest at the surface of the negatively charged upper plate and strikes the surface of the lower plate, 5.0 cm below, in a time 2.0 × 10⁻⁶ s.
 - (a) Explain why you can ignore gravity for this problem. [2]
 - (b) What is the speed of the electron as it strikes the second plate? [6]
 - (c) What is the magnitude and direction of the electric field \vec{E} ? [6]
 - (d) If the top plate is grounded (set to V=0) and the bottom plate placed at 6 volts, draw three equipotential surfaces for this device and label with potential values. [8]
- 4. A hollow spherical conducting shell with inner radius a and an outer radius b has a charge -4q on it. A point charge +q is placed at the center of this conductor.
 - (a) What charge appears on the inner surface of the shell? [4]
 - (b) What charge appears on the outer surface of the shell? [4]
 - (c) Draw the electric field lines for all regions of space. [4]
 - (d) Deduce expressions for the net electric field for the three regions [9]

$$r > b$$
,
 $r < a$,
 $a < r < b$.

(e) Draw a graph showing the electric potential V(r) as a function of r (explain your reasoning). [6]

