Physics 212	Final Exam		9 December 98
2:00-3:50 PM	Closed Book		No Notes
$p=p_{0}+\rho g h$	$1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}$	$A_{1} v_{1}=A_{2} v_{2}$	$p+\frac{1}{2} \rho v^{2}+\rho g y=\mathrm{C}$
$x=A \cos (\omega t+\phi)$	$a(x)=-\omega^{2} x$	$k=\frac{2 \pi}{\lambda}$	$\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{g}{L}}=\sqrt{\frac{m g h}{l}}$
$y(x, t)=A \sin (k x \mp \omega t)$	$c=\frac{\omega}{k}=\lambda f$	$c=\sqrt{\frac{\tau}{\mu}}=\sqrt{\frac{B}{\rho}}$	$P E=\frac{1}{2} k x^{2}$
$I=\frac{P}{A}$	$\beta=(10 \mathrm{~dB}) \log \frac{I}{I_{0}}$	$F_{\text {beat }}=F_{1}-F_{2}$	$f^{\prime}=f \frac{v \pm v_{d}}{v \tau_{d}}$
$\Delta L=L \alpha \Delta T$	$\Delta V=V \beta \Delta T$	$1 \mathrm{cal}=4.186 \mathrm{~J}$	$Q=C \Delta T=c m \Delta t$
$Q=L m$	$W=\int d W=\int p d V$	$Q=\Delta U+W$	$T_{K}=T_{C}+273^{\circ}$
		$\sin A \pm \sin B=$	$2 \sin \frac{1}{2}(A \pm B) \cos \frac{1}{2}(A \mp B)$
$N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$	$p V=n R T=N k T$	$R=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$	$T=T_{C}+273^{\circ}$
$1 \mathrm{cal}=4.186 \mathrm{~J}$	$Q=c m \Delta T=C n \Delta T$	$W=\int_{i}^{f} p d V$	$Q=W+\Delta U$
$\overline{K E_{\text {trans }}}=\frac{3}{2} k T$	$\frac{1}{2} k T /{ }^{\circ}$ freedom	$F_{c}=\frac{q_{1} q_{2}}{\left(4 \pi \epsilon_{0}\right) r^{2}}$	$V=\frac{q}{\left(4 \pi \epsilon_{0}\right) r}$
$E=F_{c} / q$	$E_{d}=2 k \frac{p}{z^{3}}$	$\vec{\tau}=\vec{p} \times \vec{E}$	$\kappa \epsilon_{0} \oint \vec{E} \cdot d \vec{A}=q$
$k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	$\frac{1}{4 \pi \epsilon_{0}}=\frac{8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2}}{C^{2}}$	$e=1.60 \times 10^{-19} \mathrm{C}$	$W_{\text {ext }}=q \Delta V$
$V=\frac{q}{4 \pi \epsilon_{0} r}$	$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$	$P E=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r}$	$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
$Q=C V$	$C=\frac{\epsilon_{0} A}{d}$	$C_{P}=C_{1}+C_{2}$	$\frac{1}{C_{s}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$
$U=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}$	$I=\frac{d q}{d t}=J A$	$\vec{J}=n e \vec{v}_{d}$	$V=I R$
$\vec{E}=\rho \vec{J}$	$R=\frac{\rho L}{A}$	$\mathcal{E}=\frac{d W}{d q}$	$\sum \mathcal{E}_{i}=0$
$\sum_{\text {in }} I=\sum_{\text {out }} I$	$R_{S}=R_{1}+R_{2}$	$\frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$	$Q=Q_{0} e^{-t / R C}$

A There are ?? questions. For full credit [n points] show physics-based reasoning, work, and units.
© Use no auxiliary aids. Calculators without stored equations are OK.
A Place all books, notes, packs, etc up front.
A All answer sheets must be handed in (do not separate them).
© The back of pages will not be graded unless you so indicate on the front.

1. mm
