
2550 Garcia Avenue
Mountain View, CA 94043 USA
415 960-1300 fax 415 969-9131

A Sun Microsystems, Inc. Business

C User’s Guide

Part No.: 802-5777-10
Revision A, December 1996

SunSoft, Inc.

Please
Recycle

Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD
system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is
exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by
copyright and licensed from Sun’s suppliers.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-
14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

Sun, Sun Microsystems, the Sun logo, SunSoft, Solaris, OpenWindows, and Sun WorkShop are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. Intel is a registered trademark of Intel
Corporation. PowerPC is a trademark of International Business Machines Corporation.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

iii

Contents

Preface. xxi

1. Introduction to the C Compiler . 1

Operating Environments. 1

Standards Conformance . 1

Organization of the Compiler. 1

C-Related Programming Tools . 3

2. cc Compiler Options . 5

Option Syntax. 5

The cc Options. 6

-# . 6

-### . 6

-A name[(tokens)] . 7

-B[static|dynamic] . 7

-C . 7

-c . 7

iv C User’s Guide

-D name[= tokens] . 7

-d[y|n] . 8

-dalign . 9

-E . 9

-erroff= t . 9

-errtags= a . 10

-fast . 10

-fd . 11

-flags . 11

-fnonstd . 11

-fns . 12

-fprecision= <p>. 12

-fround= r . 12

-fsimple[= n] . 12

-fsingle . 13

-fstore . 14

-ftrap= t . 14

-G . 14

-g . 15

-H . 15

-h name . 15

-I dir . 16

-i . 16

-keeptmp . 16

Contents v

-KPIC . 16

-Kpic . 16

-L dir . 17

-l name . 18

-mc . 18

-misalign . 18

-misalign2 . 18

-mr . 19

-mr ,string . 19

-mt . 19

-native . 19

-nofstore . 19

-noqueue . 20

-O . 20

-o filename . 20

-P . 20

-p . 20

-Q[y|n] . 20

-qp . 21

-R dir[: dir] . 21

-S . 21

-s . 21

-U name . 21

-V . 21

vi C User’s Guide

-v . 22

-Wc, arg . 22

-w . 23

-X[a|c|s|t] . 23

-x386 . 23

-x486 . 24

-xa . 24

-xarch= a . 24

-xautopar . 27

-xcache= c . 28

-xCC . 29

–xcg[89|92] . 29

-xchip= c . 29

-xcrossfile . 30

-xdepend . 31

-xe . 31

-xexplicitpar . 31

-xF . 32

-xhelp= f . 32

-xildoff . 33

-xildon . 33

-xinline=[f1,..., fn] . 33

-xlibmieee . 34

-xlibmil . 34

Contents vii

-xlic_lib= l . 34

-Xlic_lib=sunperf . 34

-xlicinfo . 34

-xloopinfo . 34

-xM . 35

-xM1 . 36

-xMerge . 36

-xnolib . 36

-xnolibmil . 37

-xO[1|2|3|4|5] . 37

-xP . 39

-xparallel . 39

-xpentium . 40

-xpg . 40

-xprofile= p . 40

-xreduction . 42

-xregs= r . 42

-xrestrict= f. 43

-xs . 44

-xsafe=mem . 44

-xsb . 44

-xsbfast . 44

-xsfpconst . 45

-xspace . 45

viii C User’s Guide

-xstrconst . 45

-xtarget= t . 45

-xtemp= dir. 51

-xtime . 51

-xtransition . 51

-xunroll= n . 52

-xvpara . 52

-Y c, dir . 52

-YA, dir . 53

-YI, dir . 53

-YP, dir . 53

-YS, dir . 53

-Zll . 53

-Zlp . 53

-Ztha . 54

Options Passed to the Linker . 54

Localization of Error Messages . 54

3. Sun ANSI C Compiler-Specific Information. 57

Environment Variables . 57

TMPDIR . 57

SUNPRO_SB_INIT_FILE_NAME. 57

PARALLEL. 58

Global Behavior: Value versus unsigned Preserving 58

Keywords . 58

Contents ix

asm Keyword . 58

_Restrict Keyword . 59

long long Data Type . 61

Printing long long Data Types . 62

Usual Arithmetic Conversions . 62

Constants . 63

Integral Constants . 63

Character Constants . 64

Include Files . 64

Nonstandard Floating Point . 65

Preprocessing Directives . 66

Assertions . 66

Pragmas. 68

Predefined Names . 71

 MP C (SPARC) . 72

Overview . 73

Explicit Parallelization and Pragmas 74

Compiler Options . 82

4. cscope: Interactively
Examining a C Program . 83

The cscope Process . 83

Basic Use . 84

Step 1: Set Up the Environment . 84

Step 2: Invoke the cscope Program 85

x C User’s Guide

Step 3: Locate the Code . 86

Step 4: Edit the Code . 92

Command-Line Options . 93

View Paths . 95

cscope and Editor Call Stacks . 96

Examples. 97

Command-Line Syntax for Editors . 101

Unknown Terminal Type Error . 102

SourceBrowser . 102

5. lint Source Code Checker . 105

Overview of the lint Program . 105

Basic and Enhanced lint Functionality. 106

Using lint . 107

The lint Options . 108

–# . 108

–### . 109

–a . 109

–b . 109

–C filename . 109

–c . 109

–dirout= dir . 109

–err=warn . 109

-errchk= l . 109

–errfmt= f . 111

Contents xi

–errhdr= h . 111

–erroff= t . 112

–errtags= a . 113

–F . 113

–fd . 113

–flagsrc= file . 113

–h . 113

–I dir . 113

–k . 114

–Ldir . 114

–l x . 114

–m. 114

–Ncheck= c . 114

–Nlevel= n. 115

–n . 116

–ox . 116

–p . 116

–Rfile . 116

–s . 116

–u . 117

–V . 117

–v . 117

–Wfile . 117

–x . 117

xii C User’s Guide

–XCC=a . 117

–Xexplicitpar= a . 117

–Xkeeptmp= a . 118

–Xtemp= dir. 118

–Xtime= a . 118

–Xtransition= a . 118

–y . 118

lint Messages. 119

Options to Suppress Messages . 119

lint Message Formats . 120

lint Directives . 123

Predefined Values . 123

Directives . 124

lint Reference and Examples . 128

Checks Performed by lint . 128

lint Libraries . 133

lint Filters . 134

A. ANSI C Data Representations . 137

Storage Allocation . 137

Data Representations. 138

Integer Representations . 138

Floating-Point Representations . 140

Exceptional Values. 141

Hexadecimal Representation of Selected Numbers. 143

Contents xiii

Pointer Representation . 143

Array Storage . 144

Arithmetic Operations on Exceptional Values 144

Argument-Passing Mechanism . 146

B. Implementation-Defined Behavior . 151

Translation . 151

Environment . 152

Identifiers . 152

Characters . 153

Integers . 154

Floating-Point . 156

Arrays and Pointers . 157

Registers . 157

Structures, Unions, Enumerations, and Bit-Fields 157

Qualifiers. 159

Declarators . 159

Statements. 159

Preprocessing Directives . 159

Library Functions. 164

Signals . 167

Streams and Files . 169

errno . 171

Memory . 176

abort Function . 176

xiv C User’s Guide

exit Function . 176

getenv Function . 176

system Function . 177

strerror Function. 177

Locale Behavior . 177

C. -Xs Differences for Sun C
and ANSI C . 179

D. Performance Tuning (SPARC) . 181

Limits. 181

libfast.a Library. 182

Index . 183

xv

Figures

Figure 1-1 Organization of the C Compilation System. 2

xvi C User’s Guide

xvii

Tables

Table P-1 Summary of C Compiler Documentation and Its Location. . . xxii

Table P-2 C Man Pages and their Usage . xxiv

Table P-3 C-Related Man Pages . xxv

Table P-4 Typographic Conventions in This Manual xxix

Table P-5 Typographic Notations for Arguments xxix

Table P-6 Shell Prompts . xxx

Table 1-1 Components of the C Compilation System 2

Table 2-1 The -erroff Values . 9

Table 2-2 -fast selections across platforms . 10

Table 2-3 The -xarch Values . 25

Table 2-4 The -xcache Values . 28

Table 2-5 The -xchip Values. 30

Table 2-6 The -xregs Values. 42

Table 2-7 The -xtarget Values . 46

Table 2-8 The -xtarget Expansions . 47

Table 3-1 Data Type Suffixes. 63

xviii C User’s Guide

Table 3-2 Multiple-character Constant (ANSI). 64

Table 3-3 Multiple-character Constant (non-ANSI) 64

Table 3-4 Predefined Identifier . 71

Table 4-1 cscope Menu Manipulation Commands 86

Table 4-2 Commands for Use After an Initial Search 88

Table 4-3 Commands for Selecting Lines to be Changed 98

Table 5-1 The –errfmt Values . 111

Table 5-2 The –errhdr Values . 111

Table 5-3 The –erroff Values . 112

Table 5-4 The –Ncheck Values . 114

Table 5-5 lint Options and Messages Suppressed 120

Table 5-6 lint Directives . 125

Table A-1 Storage Allocation for Data Types . 137

Table A-2 Representation of short . 138

Table A-3 Representation of int and long . 139

Table A-4 Representation of long long . 139

Table A-5 float Representation . 140

Table A-6 double Representation . 140

Table A-7 long double Representation (SPARC) (PowerPC) 141

Table A-8 long double Representation (Intel) . 141

Table A-9 float Representations . 141

Table A-10 double Representations . 142

Table A-11 long double Representations . 142

Table A-12 Hexadecimal Representation of Selected Numbers (SPARC)
(PowerPC) . 143

Table A-13 Hexadecimal Representation of Selected Numbers (Intel) . . . 143

Tables xix

Table A-14 Automatic Array Types and Storage . 144

Table A-15 Abbreviation Usage. 145

Table A-16 Addition and Subtraction Results . 145

Table A-17 Multiplication Results . 145

Table A-18 Division Results . 146

Table A-19 Comparison Results . 146

Table B-1 Representations and Sets of Values of Integers 154

Table B-2 Values of Floating-Point Numbers . 156

Table B-3 Padding and Alignment of Structure Members 158

Table B-4 Character Sets Tested by isalpha , islower , Etc. 165

Table B-5 Values Returned on Domain Errors . 166

Table B-6 Semantics for signal Signals. 167

Table B-7 Error Messages Generated by perror 171

Table B-8 Names of Months . 178

Table B-9 Days and Abbreviated Days of the Week 178

Table C-1 -Xs Behavior . 179

xx C User’s Guide

xxi

Preface

This manual, the C User’s Guide describes the C 4.2 compiler. The standard
language is referred to as ANSI C. The notation K&R C refers to Kernighan and
Ritchie C, which is non-ANSI (or pre-ANSI) C.

Audience
This document is intended to assist software developers write programs in the
C language. This book does not discuss basic concepts of C programming.

Document Organization
This book contains the following chapters:

Chapter 1, “Introduction to the C Compiler,” provides an overview to C.

Chapter 2, “cc Compiler Options,” describes the compiler optionsfor the
Solaris™ operating system.

Chapter 3, “Sun ANSI C Compiler-Specific Information,” describes areas
specific to the Sun ANSI C compiler.

Chapter 4, “Cscope : Interactively Examine a C Program,” describes cscope ,
a C programming tool.

Chapter 5, Lint Source Code Checker,” describes how to use lint , another C
programming tool.

xxii C User’s Guide

This book also includes these appendices:

• Appendix A, “ANSI C Data Representations”
• Appendix B, “Implementation-Defined Behavior”
• Appendix C, “-Xs Differences for Sun C and ANSI C”
• Appendix D, “Performance Tuning (SPARC)”

This book concludes with an index.

C Compiler Documentation
Table P-1 summarizes the C compiler documentation provided with this
release, and identifies where that documentation is located.

Table P-1 Summary of C Compiler Documentation and Its Location

Document Online Books Online ASCII Online PostScript Hard Copy

C 4.2 README File /opt/SUNWspro
/READMEs/c

C 4.2 Quick Reference X

C User’s Guide X X

Error and Warning Messages file /opt/SUNWspro
/READMEs

/c_lint_errors

Incremental Link Editor (ild) X X

Installation and Licensing Guide X X

Making the Transition to ANSI C X

Man pages /opt/SUNWspro
/man

“MP C” white paper /opt/SUNWspro
/READMEs
/mpc.ps

Numerical Computation Guide X X

Performance Profiling Tools X X

Quick Install for Solaris X

Preface xxiii

Online Documentation

On-line documents are in the following formats:

• Online books
• Man pages (ASCII, formatted with nroff)
• Error and Warning Messages file (ASCII)
• C 4.x README file (ASCII)
• PostScript files

Online Books
Some of the C compiler documents are provided in online documentation
viewing tools. These online documents provide the following benefits:

• Take advantage of dynamically linked headings and cross-references.
• Search for topics by using a word or phrase.

See your platform-specific installation guide and README file for more
information on these tools.

The following C compiler documentation is provided in online books:

• C User’s Guide—Describes the features of the C 4.x compiler.
• Making the Transition to ANSI C—Shows how to port your C code from

previous versions of C to ANSI C.

Manual Pages
Each manual page (man page), discusses one subject, such as a user command
or library function. The C man pages are in /opt /SUNWspro/man.

To view a man page using the man command:

1. Insert the name of the directory in which you installed the C compiler at the
beginning of your search path.

2. Add a line to the .cshrc file with setenv MANPATH= at the start or, to the
.profile file with export MANPATH= at the start.

3. Now, view a man page by executing this command:

% man command_name

where command_name is cc , for example.

xxiv C User’s Guide

Table P-2 describes the C man pages, and identifies the best uses for each man
page.

Table P-2 C Man Pages and their Usage

Title Description Usage

cb Formats your source code. Makes the program more readable.

cc Describes the C compilation system. Provides C system information.

cflow Produces a flow graph of the external references
in C, lex , yacc , and assembly-language files.

Checks program dependencies.

cscope Interactively examines a C program. Searches and edits source files.

ctrace Traces C program execution, statement by
statement.

Checks program execution statements.

cxref Generates a C program cross-reference table. Checks program dependencies and
structure.

c89 Enables compliance with XPG4. Verifies XPG4 comopliance.

indent Indents and formats a C program source file.

lint The C program checker. Checks for code constructs that may
cause the program to not compile or
execute with unexpected results. Also
checks program portability and cross-
file consistency.

Preface xxv

Table P-3 Identifies the man pages containing C compiler related information.

The man man page describes the options available with the man command to
browse man pages. Other tools, such as tkman , provide search features and
hypertext links to the man pages listed in the “SEE ALSO” section of a man
page.

To print man pages with the lp command, type:

% man command_name | lp

where command_name is cc , for example.

Error and Warning Messages File
The Error and Warning Messages file, located in
/opt/SUNWspro/READMEs/c_lint_errors , contains C compiler error and
warning messages, and the lint program messages. Many of the messages are
self-explanatory. To obtain a description of these messages and code examples,
search the text file for a string from the generated message, or obtain its unique
tag and search on that (cc -errtags=yes).

Table P-3 C-Related Man Pages

Title Description

gprof Includes the prof functionality, and produces a callgraph profile
displaying a list of modules that call, or are called by, other modules.

ild Contains information on the incremental ild linker.

inline Contains information on inlining code.

m4 Preprocesses C and assembly language programs.

make Maintains, updates, and regenerates related programs and files.

ld Contains information on the ld linker.

lex Describes the lexical analysis program generator.

prof Reports time, percentage of time spent executing a program and number
of calls to functions.

sccs Provides a front end for the source code control system.

tcov Provides a line-by-line frequency profiler that produces a copy of the
source file, annotated to show which lines are used, and how often.

yacc Parses tokens passed by a lexical analyzer.

xxvi C User’s Guide

There are several methods to locate an error message and its description in the
file:

• Load the ASCII file into an editor and use the editor commands to search
the file.

• Use the grep command in a shell to search the file.
• Use the command cc -xhelp=errors to view the file.

For example, if this message is received during a compilation:

file: filename line: n empty constant expression after macro expansion

Obtain further explanation of this message by:

1. Loading the /opt/SUNWspro/READMEs/c_lint_errors file into an
editor.

2. Searching for a string from the message, for example, “empty constant.”

A more detailed description is displayed with the sample code generating the
error message, and the message ID, or tag:

To print the Error and Warning Messages file, type:

% lp /opt/SUNWspro/READMEs/c_lint_errors

When an error occurs, the error message is preceded by a file name and line
number. The line number is the line where a problem is diagnosed.
Occasionally, the compiler must read the next token before it can diagnose a
problem, in which case the line number in the message may be a higher line
number than that of the offending line.

empty constant expression after macro expansion

A #if or #elif directive contains an expression that, after macro
expansion, consists of no tokens.

#define EMPTY

#if EMPTY

 char *mesg = “EMPTY is non-empty”;

#end if

MESSAGE ID: E_EMPTY_CONST_EXP_AFTER_EXPAND

Preface xxvii

Note – The compiler displays many of the messages contained in this file only
when used with the cc -v option. With this option, the compiler performs
stricter semantics checking and, therefore, displays more diagnostic messages.

C 4.2 README file
The C 4.2 README file, located in /opt/SUNWspro/READMEs/c , contains
important information about the compiler, such as:

• New features in this release
• Changes to features
• Software incompatibilities
• Current software bugs
• Documentation errata

You can display this file online in your editor, print it using the lp command,
or view it using the command cc -xhelp=readme .

PostScript Files
The PostScript files include “white papers” such as “MP C” white paper,
MPC.ps. These files are located in /opt/SUNWspro/READMEs .

To view a PostScript file online, type:

% imagetool filename &

To print a PostScript file, type:

% lp filename

Hard-Copy Documentation

The following C documents are available in hard copy:

• C User’s Guide, describes the features accompanying the C 4.2 compiler.

• C 4.2 Quick Reference, summarizes the command-line options.

• The platform-specific installation guides, containing instructions for
installing the C compiler and other software on Solaris; as well as
information on licensing

xxviii C User’s Guide

Related Documentation

The following documents contain useful information on programming and
compiling.

• Performance Profiling Tools—Provides information on various profiling tools,
such as prof . Available in online books.

• Numerical Computation Guide—Describes floating-point software and
hardware. Available in online books.

• Linker and Libraries Guide—Provides information on the linker, ld , and on
linking libraries. See also the ld(1) man page. Part of the Solaris
programming documentation.

• Incremental Link Editor (ild)—Provides information on the incremental linker,
ild , which replaces the standard linker for incremental linking.

The following books are useful for information on the C language:

• The C Language, second edition, by Kernighan and Ritchie (Prentice-Hall,
1988)

• C: A Reference Manual, third edition, by Harbison and Steele (Prentice-Hall,
1991)

• The Standard C Library, by P. J. Plauger (Prentice-Hall, 1992)

For implementation-specific details not covered in this book, refer to the
Application Binary Interface for your machine.

Preface xxix

Typographic Conventions

Table P-4 describes the typographic conventions used in this book.

Table P-5 describes the typographic notations used for arguments to the
compiler and lint tool options.

Table P-4 Typographic Conventions in This Manual

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
onscreen computer output

Edit your .login file.
Use ls -a to list all files.
machine_name% You have mail.

AaBbCc123 What you type, contrasted
with onscreen computer
output

machine_name% su
 Password:

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Table P-5 Typographic Notations for Arguments

Notation Meaning Example

[] Square brackets contain arguments that can be optional or required. -d[y|n]

| The “pipe” or “bar” symbol separates arguments, only one of which may be
used at one time.

-d[y|n]

, The comma separates arguments, one or more of which may be used at one
time.

-xinline=[f1,...fn]

: The colon, like the comma, is sometimes used to separate arguments. -R dir[: dir]

... The ellipsis indicates omission in a series. -xinline=[f1,...fn]

% The percent sign indicates the word following it has a special meaning. -ftrap=%all

‘ The back quote indicates a command that is being executed. ‘uname -s‘

xxx C User’s Guide

Other Documentation Conventions

Operating Environments and Platform-Specific References
The C 4.2 documentation supports the following operating environments:

• The Solaris™ 2.x operating system on the following architectures:
• SPARC™ architectures
• Intel architectures, where Intel refers to the Intel implementation of one of

the following: Intel 80386, Intel 80486, Pentium, or the equivalent
• The RISC PowerPC architecture compliant with the Common Hardware

Reference Platform (CHRP) and the PowerPC Reference Platform (PReP)
specifications

The C 4.2 compiler documentation supports all the above operating systems
and platforms, unless otherwise specified. Anything unique to one or more
platforms is identified as “(SPARC),” “(Intel),” and/or “(PowerPC).”

Path Names
In the C compiler documentation, the pathname to many file locations is given
as /opt/SUNWspro . This is the default installation location. If you installed
the compiler in a different directory, substitute that directory name instead.

Shell Prompts in Command Examples
Table P-6 shows the system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell, used in the command examples.

Table P-6 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell
prompt

$

Bourne shell and Korn shell
superuser prompt

#

1

Introduction to the C Compiler 1

This chapter provides information on the C compiler, including operating
environments, standards conformance, organization of the compiler, and
C-related programming tools.

Operating Environments
For an explanation of the specific operating environments supported in this
release, refer to the README file.

Standards Conformance
The compiler conforms to the American National Standard for Programming
Language - C, ANSI/ISO 9899-1990. It also conforms to FIPS 160. Because the
compiler also supports traditional K&R C (Kernighan and Ritchie, or
pre-ANSI C), it can ease your migration to ANSI C.

Organization of the Compiler
The C compilation system consists of a compiler, an assembler, and a link
editor. The cc command invokes each of these components automatically
unless you use command-line options to specify otherwise.

Chapter 2, “cc Compiler Options,” discusses all the options available with cc .

2 C User’s Guide

1

Figure 1-1 shows the organization of the C compilation system.

Figure 1-1 Organization of the C Compilation System

Table 1-1 summarizes the components of the compilation system.

Table 1-1 Components of the C Compilation System

Component Description Notes on Use

cpp Preprocessor -Xs

acomp Compiler (preprocessor built in for non-Xs
modes)

iropt Code optimizer (SPARC) -O,
-xO [2-5], -fast

cg386 Intermediate language translator (Intel) Always invoked

cgppc Intermediate language translator (PowerPC) Always
invoked

inline Inline expansion of assembly language
templates

.i l file specified

mwinline Automatic inline expansion of functions (Intel) (PowerPC)
-xO4 , -xinline

fbe Assembler

cc

a.out
C source and
header files

Compiler
preprocessor

Compiler
proper

Optimizer
(optional) Code generator/ Link

editor

Libraries

Assembler

Introduction to the C Compiler 3

1

The C compiler optimizer removes redundancies, optimally allocates registers,
schedules instructions, and reorganizes code. Select from multiple levels of
optimization to obtain the best balance between application speed and use of
memory.

C-Related Programming Tools
There are a number of tools available to aid in developing, maintaining, and
improving your C programs. The two most closely tied to C, cscope and
lint , are described in this book. Others are described in the Solaris reference
or programming documentation and/or Performance Profiling Tools. In addition,
a man page exists for each of these tools. Refer to the preface of this book for a
list of all the associated man pages.

cg Code generator, inliner, assembler (SPARC)

codegen Code generator (Intel) (PowerPC)

ld Linker

ild Incremental linker (SPARC) -g,
-xildon

Table 1-1 Components of the C Compilation System (Continued)

Component Description Notes on Use

4 C User’s Guide

1

5

cc Compiler Options 2

This chapter describes the C compiler options. It includes sections on option
syntax, the cc options, and options passed to the linker.

If you are porting a K&R C program to ANSI C, make special note of the
section on compatibility flags, “-X[a|c|s|t]” on page 23. Using them makes
the migration to ANSI C easier. Also, Refer to the book titled Making the
Transition to ANSI C.

Option Syntax
The syntax of the cc command is:

% cc [options] filenames [libraries]...

where:

• options represents one or more of the options described in “The cc Options”
on page 6

• filenames represents one or more files used in building the executable
program

cc accepts a list of C source files and object files contained in the list of files
specified by filenames. The resulting executable code is placed in a.out ,
unless the -o option is used. In this case, the code is placed in the file
named by the -o option.

6 C User’s Guide

2

Use cc to compile and link any combination of the following:
• C source files, with a .c suffix
• C preprocessed source files, with a .i suffix
• Object-code files, with .o suffixes
• Assembler source files, with .s suffixes

After linking, cc places the linked files, now in executable code, into a file
named a.out , or into the file specified by the -o option.

• libraries represents any of a number of standard or user-provided libraries
containing functions, macros, and definitions of constants.

See option -Y P, dir to change the default directories used for finding libraries.
dir is a colon-separated path list. The default library search order for cc is:

/opt/SUNWspro/SC4.2/lib

/usr/ccs/lib

/usr/lib

cc uses getopt to parse command-line options. Options are treated as a single
letter or a single letter followed by an argument. See getopt (3c).

The cc Options
This section describes the cc options, arranged alphabetically. These
descriptions are also available in the man page, cc (1). See the C 4.x Quick
Reference or the -flags option for a one-line summary of these descriptions.

Options noted as being unique to one or more platforms are accepted without
error and ignored on all other platforms. For an explanation of the typographic
notations used with the options and arguments, refer to Table P-5 on page xxix.

-#

Turns on verbose mode, showing each component as it is invoked.

-###

Shows each component as it would be invoked, but does not actually execute
it.

cc Compiler Options 7

2

-A name[(tokens)]

Associates name as a predicate with the specified tokens as if by a #assert
preprocessing directive.Preassertions:

• system (unix)
• machine(sparc) (SPARC)
• machine(i386) (Intel)
• cpu(sparc) (SPARC)
• cpu(i386) (Intel)
• cpu(ppc) (PowerPC)

These preassertions are not valid in -Xc mode.

-B[static|dynamic]

Specifies whether bindings of libraries for linking are static or dynamic ,
indicating whether libraries are non-shared or shared, respectively.

–Bdynamic causes the link editor to look for files named lib x.so and then for
files named lib x.a when given the -l x option.

–Bstatic causes the link editor to look only for files named lib x.a. This
option may be specified multiple times on the command line as a toggle. This
option and its argument are passed to ld .

-C

Prevents the C preprocessor from removing comments, except those on the
preprocessing directive lines.

-c

Directs cc to suppress linking with ld (1) and to produce a .o file for each
source file. You can explicitly name a single object file using the -o option.

-D name[= tokens]

Associates name with the specified tokens as if by a #define preprocessing
directive. If no =tokens is specified, the token 1 is supplied.

8 C User’s Guide

2

Predefinitions (not valid in -Xc mode):

• sun
• unix
• sparc (SPARC)
• i386 (Intel)

The following predefinitions are valid in all modes.

_ _sun

_ _unix

_ _SUNPRO_C=0x400

_ _‘uname -s‘_‘uname -r‘ (example: _ _SunOS_5_4)

_ _sparc (SPARC)

_ _i386 (Intel)

_ _BUILTIN_VA_ARG_INCR

_ _SVR4

_ _LITTLE_ENDIAN (PowerPC)

_ _ppc (PowerPC)

The following is predefined in -Xa and -Xt modes only:

 _ _RESTRICT

The compiler also predefines the object-like macro

 _ _PRAGMA_REDEFINE_EXTNAME,

to indicate the pragma will be recognized.

-d[y|n]

-dy specifies dynamic linking, which is the default, in the link editor.

-dn specifies static linking in the link editor.

This option and its arguments are passed to ld (1).

cc Compiler Options 9

2

-dalign

 Allows compiler to generate double-word load/store instructions wherever
profitable for improved performance. Assumes that all double and long
long type data are double-word aligned. Do not use this option when correct
alignment is not assured.

-E

Runs the source file through the preprocessor only and sends the output to
stdout .1 Includes the preprocessor line numbering information. See also the
–P option.

-erroff= t

Suppresses cc warning messages. Has no effect on error messages.

t is a comma-separated list that consists of one or more of the following: tag,
no%tag, %all , %none. Order is important; for example, %all,no% tag
suppresses all warning messages except tag.

The default is -erroff=%none . Specifying -erroff is equivalent to
specifying -erroff=%all .

1. The preprocessor is built directly into the compiler, except in -Xs mode, where /usr/ccs/lib/cpp is
invoked.

Table 2-1 The -erroff Values

Value Meaning

tag Suppresses the warning message specified by this tag. You can
display the tag for a message by using the -errtags=yes option.

no%tag Enables the warning message specified by this tag

%all Suppresses all warning messages

%none Enables all warning messages (default)

10 C User’s Guide

2

-errtags= a

Displays the message tag for each error message.

a can be either yes or no . The default is -errtags=no . Specifying -errtags
is equivalent to specifying -errtags=yes .

-fast

Selects the optimum combination of compilation options for speed. This
should provide close to the maximum performance for most realistic
applications. Modules compiled with –fast must also be linked with –fast .

The –fast option is unsuitable for programs intended to run on a different
target than the compilation machine. In such cases, follow -fast with the
appropriate xtarget option. For example:

cc -fast -xtarget=ultra ...

For C modules that depend on exception handling specified by SVID, follow
-fast by -nolibmil :

% cc -fast -nolibmil

With -xlibmil , exceptions may not be noted by setting errno or calling
matherr (3m).

The –fast option is unsuitable for programs that require strict conformance to
the IEEE 754 Standard.

The set of options selected by -fast differ across platforms:

Table 2-2 -fast selections across platforms

Option SPARC Intel PowerPC

-dalign X — —

-fns X X X

-fsimple=1 X — X

-ftrap=%none X X X

-libmil X X X

-native X X X

cc Compiler Options 11

2

–fast acts like a macro expansion on the command line. Therefore, the
optimization level and code generation option aspects can be overridden by
following –fast with the desired optimization level or code generation
option. As far as optimization level is concerned, compiling with the
-fast -xO4 pair is like compiling with the -xO2 -xO4 pair. The latter
specification takes precedence.

In previous releases, the -fast macro option included -fnonstd ; now it
includes -fns instead.

You can usually improve performance for most programs with this option.

-fd

Reports K&R-style function definitions and declarations.

-flags

Prints a summary of each compiler option.

-fnonstd

Causes nonstandard initialization of floating-point arithmetic hardware. In
addition, the –fnonstd option causes hardware traps to be enabled for
floating-point overflow, division by zero, and invalid operations exceptions.
These are converted into SIGFPE signals; if the program has no SIGFPE
handler, it terminates with a memory dump.

By default, IEEE 754 floating-point arithmetic is nonstop, and underflows are
gradual. (See “Nonstandard Floating Point” on page 65 for a further
explanation.)

(SPARC) Synonym for -fns -ftrap=common .

-nofstore — X —

-xO4 X X X

-fsingle X X X

Table 2-2 -fast selections across platforms

12 C User’s Guide

2

-fns

(SPARC) Turns on the SPARC nonstandard floating-point mode.

The default is the SPARC standard floating-point mode.

If you compile one routine with -fns , then compile all routines of the program
with the –fns option; otherwise, you can get unexpected results.

-fprecision= <p>

(Intel) -fprecision={single, double , extended} Initializes the rounding precision
mode bits in the Floating-point Control Word to single (24 bits), double (53
bits), or extended (64 bits), respectively. The default floating-point rounding-
precision mode is extended.

Note that on Intel, only the precision, not exponent range is affected by the
setting of floating-point rounding precision mode.

-fround= r

Sets the IEEE 754 rounding mode that is established at runtime during the
program initialization.

r must be one of: nearest , tozero , negative , positive .

The default is -fround=nearest .

The meanings are the same as those for the ieee_flags subroutine.

If you compile one routine with -fround= r, compile all routines of the
program with the same –fround= r option; otherwise, you can get unexpected
results.

-fsimple[= n]

Allows the optimizer to make simplifying assumptions concerning floating-
point arithmetic.

If n is present, it must be 0, 1, or 2. The defaults are:

• With no -fsimple [=n], the compiler uses -fsimple=0
• With only -fsimple , no =n, the compiler uses -fsimple=1

cc Compiler Options 13

2

-fsimple=0

Permits no simplifying assumptions. Preserve strict IEEE 754 conformance.

-fsimple=1

Allows conservative simplifications. The resulting code does not strictly
conform to IEEE 754, but numeric results of most programs are unchanged.

With -fsimple=1 , the optimizer can assume the following:
• IEEE 754 default rounding/trapping modes do not change after process

initialization.
• Computations producing no visible result other than potential floating

point exceptions may be deleted.
• Computations with Infinity or NaNs as operands need not propagate

NaNs to their results; e.g., x*0 may be replaced by 0.
• Computations do not depend on sign of zero.

With -fsimple=1 , the optimizer is not allowed to optimize completely
without regard to roundoff or exceptions. In particular, a floating-point
computation cannot be replaced by one that produces different results with
rounding modes held constant at runtime. -fast implies -fsimple=1 .

-fsimple=2

Permits aggressive floating point optimizations that may cause many
programs to produce different numeric results due to changes in rounding.
For example, permit the optimizer to replace all computations of x/y in a
given loop with x*z , where x/y is guaranteed to be evaluated at least once
in the loop, z=1/y , and the values of y and z are known to have constant
values during execution of the loop.

-fsingle

(-Xt and -Xs modes only) Causes the compiler to evaluate float expressions
as single precision rather than double precision. This option has no effect if the
compiler is used in either -Xa or -Xc modes, as float expressions are already
evaluated as single precision.

14 C User’s Guide

2

-fstore

(Intel) Causes the compiler to convert the value of a floating-point expression
or function to the type on the left-hand side of an assignment, when that
expression or function is assigned to a variable, or when the expression is cast
to a shorter floating-point type, rather than leaving the value in a register. Due
to roundoffs and truncation, the results may be different from those that are
generated from the register value. This is the default mode.

To turn off this option, use the -nofstore option.

-ftrap= t

 Sets the IEEE 754 trapping mode.

t is a comma-separated list that consists of one or more of the following: %all ,
%none, common, [no%]invalid , [no%]overflow , [no%]underflow ,
[no%]division , [no%]inexact .

The default is -ftrap=%none .

This option sets the IEEE 754 trapping modes that are established at program
initialization. Processing is left-to-right. The common exceptions, by definition,
are invalid, division by zero, and overflow.

Example: -ftrap=%all,no%inexact means set all traps, except inexact .

The meanings are the same as for the ieee_flags subroutine, except that:

• %all turns on all the trapping modes.
• %none, the default, turns off all trapping modes.
• A no% prefix turns off that specific trapping mode.

If you compile one routine with -ftrap= t, compile all routines of the program
with the same -ftrap= t option; otherwise, you can get unexpected results.

-G

Passes the option to the link editor to produce a shared object rather than a
dynamically linked executable. This option is passed to ld (1), and cannot be
used with the -dn option.

cc Compiler Options 15

2

-g

Produces additional symbol table information for the debugger.

This option also uses the incremental linker; see -xildon and
-xildoff .

 When used with the -O option, a limited amount of debugging is available.
The combination, -xO4 -g , turns off the inlining that you usually get with
-xO4 .

-H

Prints to standard output, one per line, the path name of each file included
during the current compilation. The display is indented so as to show which
files are included by other files.

Here, the program sample.c includes the files, stdio.h and math.h ;
math.h includes the file, floatingpoint.h , which itself includes functions
that use sys/ieeefp.h :

-h name

Assigns a name to a shared dynamic library as a way to have different versions
of a library. In general, the name after -h should be the same as the file name
given after the -o option. The space between -h and name is optional.

The linker assigns the specified name to the library and records the name in the
library file as the intrinsic name of the library. If there is no -h name option,
then no intrinsic name is recorded in the library file.

When the runtime linker loads the library into an executable file, it copies the
intrinsic name from the library file into the executable, into a list of needed
shared library files. Every executable has such a list. If there is no intrinsic
name of a shared library, then the linker copies the path of the shared library
file instead.

% cc -H sample.c
/usr/include/stdio.h
/usr/include/math.h
 /usr/include/floatingpoint.h
 /usr/include/sys/ieeefp.h

16 C User’s Guide

2

-I dir

Adds dir to the list of directories that are searched for #include files with
relative file names, that is, those not beginning with a / (slash).

The preprocessor first searches for #include files in the directory containing
sourcefile, then in directories named with –I options, if any, and finally, in
/usr/include or the directory specified by -YI .

-i

 Passes the option to the linker to ignore any LD_LIBRARY_PATH setting.

-keeptmp

Retains temporary files created during compilation instead of deleting them
automatically.

-KPIC

Produces position-independent code for use in shared libraries. Each reference
to a global datum is generated as a dereference of a pointer in the global offset
table. Each function call is generated in pc -relative addressing mode through
a procedure linkage table.

(SPARC) (PowerPC) With this option, the global offset table spans the range of
32-bit addresses in those rare cases where there are too many global data
objects for –Kpic .

(Intel) -KPIC is identical to -Kpic .

-Kpic

Produces position-independent code for use in shared libraries.

(SPARC) (PowerPC) It is similar to –KPIC , but the size of the global offset table
is limited to 8Kbytes.

There are two nominal performance costs with –Kpic and –KPIC :

cc Compiler Options 17

2

• A routine compiled with either –Kpic or –KPIC executes a few extra
instructions upon entry to set a register to point at a table
(_GLOBAL_OFFSET_TABLE_) used for accessing a shared library’s global or
static variables.

• Each access to a global or static variable involves an extra indirect memory
reference through _GLOBAL_OFFSET_TABLE_. If the compile is done with
–KPIC , there are two additional instructions per global and static memory
reference.

When considering the above costs, remember that the use of -Kpic and
–KPIC can significantly reduce system memory requirements, due to the effect
of library code sharing. Every page of code in a shared library compiled
–Kpic or –KPIC can be shared by every process that uses the library. If a page
of code in a shared library contains even a single non-pic (that is, absolute)
memory reference, the page becomes nonsharable, and a copy of the page must
be created each time a program using the library is executed.

The easiest way to tell whether or not a .o file has been compiled with -Kpic
or –KPIC is with the nm command:

A .o file containing position-independent code contains an unresolved
external reference to _GLOBAL_OFFSET_TABLE_, as indicated by the letter U.

To determine whether to use –Kpic or –KPIC , use nm to identify the number of
distinct global and static variables used or defined in the library. If the size of
_GLOBAL_OFFSET_TABLE_ is under 8,192 bytes, you can use -Kpic .
Otherwise, you must use –KPIC .

-L dir

Adds dir to the list of directories searched for libraries by ld (1). This option
and its arguments are passed to ld .

% nmfile.o | grep _GLOBAL_OFFSET_TABLE_
U _GLOBAL_OFFSET_TABLE_

18 C User’s Guide

2

-l name

Links with object library lib name.so , or lib name.a. The order of libraries
in the command-line is important, as symbols are resolved from left to right.

This option must follow the sourcefile arguments.

-mc

Removes duplicate strings from the .comment section of the object file. When
you use the -mc flag, mcs -c is invoked.

-misalign

(SPARC, PowerPC) Informs the compiler that the data in your program is not
properly aligned, as in the following code:

Thus, very conservative loads and stores must be used for data, one byte at a
time. Using this option can cause significant degradation in the performance
when you run the program. If you compile and link in separate steps,
compiling with the -misalign option requires the option on the link step as
well.

-misalign2

(SPARC, PowerPC) Like -misalign , assumes that data is not properly aligned,
but that data is at least halfword-aligned. Though conservative uses of loads
and stores must be used for data, the performance degradation when running
a program is less than that seen for -misalign . If you compile and link in
separate steps, compiling with the -misalign2 option requires the option on
the link step as well.

char b[100];
int f(int *ar){
return *(int *)(b +2) + *ar;
}

cc Compiler Options 19

2

-mr

 Removes all strings from the .comment section. When you use this flag, mcs
-d is invoked.

-mr ,string

Removes all strings from the .comment section and inserts string in that
section of the object file. If string contains embedded blanks, it must be
enclosed in quotation marks. A null string results in an empty .comment
section. This option is passed as -d “string” to mcs.

-mt

Passes -D_REENTRANT to the preprocessor. Appends
-lthread . If you are doing your own multithread coding, you must use this
option in the compile and link steps. To obtain faster execution, this option
requires a multiprocessor system. On a single-processor system, the resulting
executable usually runs more slowly with this option.

-native

Ascertains which code-generation options (SPARC) or which processor (Intel)
(PowerPC) are available on the machine running the compiler, and directs the
compiler to generate code targeted for that machine.

This option is a synonym for -xtarget=native .

The -fast macro includes -native in its expansion.

-nofstore

(Intel) Does not convert the value of a floating-point expression or function to
the type on the left-hand side of an assignment, when that expression or
function is assigned to a variable or is cast to a shorter floating-point type;
rather, it leaves the value in a register. See also “-fstore” on page 14.

20 C User’s Guide

2

-noqueue

Instructs the compiler not to queue this compile request if a license is not
available. Under normal circumstances, if no license is available, the compiler
waits until one becomes available. With this option, the compiler returns
immediately.

-O

Same as -xO2 .

-o filename

Names the output file filename (as opposed to the default, a.out) . filename
cannot be the same as sourcefile, since cc does not overwrite the source file.
This option and its arguments are passed to ld (1).

-P

Runs the source file through the C preprocessor only. It then puts the output in
a file with a .i suffix. Unlike -E , this option does not include preprocessor-
type line number information in the output. See also the -E option.

-p

Prepares the object code to collect data for profiling with prof (1). This option
invokes a runtime recording mechanism that produces a mon.out file at
normal termination.

-Q[y|n]

 Emits or does not emit identification information to the output file. -Qy is the
default.

If -Qy is used, identification information about each invoked compilation tool
is added to the .comment section of output files, which is accessible with mcs.
This option can be useful for software administration.

-Qn supresses this information.

cc Compiler Options 21

2

-qp

Same as -p .

-R dir[: dir]

Passes a colon-separated list of directories used to specify library search
directories to the runtime linker. If present and not null, it is recorded in the
output object file and passed to the runtime linker.

 If both LD_RUN_PATH and the -R option are specified, the -R option takes
precedence.

-S

Directs cc to produce an assembly source file but not to assemble the program.

-s

Removes all symbolic debugging information from the output object file. This
option cannot be specified with -g .

Passed to ld (1).

-U name

Removes any initial definition of the preprocessor symbol name. This option is
the inverse of the -D option. You can give multiple -U options.

-V

Directs cc to print the name and version ID of each pass as the compiler
executes.

22 C User’s Guide

2

-v

Directs the compiler to perform stricter semantic checks and to enable other
lint -like checks. For example, the code:

compiles and executes without problem. With -v , it still compiles; however,
the compiler displays this warning:

"solipsism.c", line 5: warning: function has no return
statement: main

-v does not give all the warnings that lint (1) does. Try running the above
example through lint .

-Wc, arg

Passes the argument arg to a specified component c. Each argument must be
separated from the preceding only by a comma. All -W arguments are passed
after the regular command-line arguments. A comma can be part of an
argument by escaping it by an immediately preceding \ (backslash) character.

c can be one of the following:

#include <stdio.h>
main(void)
{

printf("Solipsism isn't for everybody.\n");
}

a Assembler: (fbe) ; (gas)

c C code generator: (cg) (SPARC); (codegen) (Intel)(PowerPC)

l Link editor (ld)

m mcs (Solaris 2.x)

p Preprocessor (cpp)

0 Compiler (acomp and ssbd)

2 Optimizer: (iropt) (SPARC); intermediate code translator: (cg386) (Intel),
(cgppc) (PowerPC)

cc Compiler Options 23

2

-w

Suppresses compiler warning messages.

-X[a|c|s|t]

The -X (note uppercase X) options specify varying degrees of compliance to the
ANSI C standard. -Xa is the default mode.

-Xa

(a = ANSI) ANSI C plus K&R C compatibility extensions, with semantic
changes required by ANSI C. Where K&R C and ANSI C specify different
semantics for the same construct, the compiler issues warnings about the
conflict and uses the ANSI C interpretation. This is the default compiler mode.

-Xc

(c = conformance) Issues errors and warnings for programs that use non-
ANSI C constructs. This option is maximally conformant ANSI C, without
K&R C compatibility extensions.

-Xs

(s = K&R C) Attempts to warn about all language constructs that have
differing behavior between ANSI C and K&R C. The compiler language
includes all features compatible with K&R C. This option invokes
/usr/ccs/lib/cpp for preprocessing. __STDC__ is not defined in this
mode. Differences between ANSI C and K&R C are discussed in the C 4.2
Transition Guide.

-Xt

(t = transition) This option uses ANSI C plus K&R C compatibility
extensions without semantic changes required by ANSI C. Where K&R C
and ANSI C specify different semantics for the same construct, issues
warnings about the conflict and uses the K&R C interpretation.

-x386

(Intel) Optimizes for the 80386 processor.

24 C User’s Guide

2

-x486

(Intel) Optimizes for the 80486 processor.

-xa

Inserts code to count how many times each basic block is executed. This option
is the old style of basic block profiling for tcov . See -xprofile=p for
information on the new style of profiling and the tcov (1) man page for more
details. See also the Profiling Tools manual.

Invokes a runtime recording mechanism that creates a .d file for every .c file
at normal termination. The .d file accumulates execution data for the
corresponding source file. tcov (1) can then be run on the source file to
generate statistics about the program. Since this option entails some
optimization, it is incompatible with -g .

If set at compile-time, the TCOVDIR environment variable specifies the
directory where the .d files are located. If this variable is not set, the .d files
remain in the same directory as the .c files.

The -xprofile=tcov and the -xa options are compatible in a single
executable. That is, you can link a program that contains some files which have
been compiled with -xprofile=tcov , and others with -xa . You cannot
compile a single file with both options.

-xarch= a

Specifies the set of instructions the compiler may use.

a must be one of: generic , v7 , v8a , v8 , v8plus , v8plusa, 386,
pentium_pro, ppc, ppc_nofma.

Although this option can be used alone, it is part of the expansion of the
-xtarget option; its primary use is to override a value supplied by the
-xtarget option.

This option limits the instructions generated to those of the specified
architecture, and allows the specified set of instructions. The option does not
guarantee the specified set is used; however, under optimization, the set is
usually used.

cc Compiler Options 25

2

If this option is used with optimization, the appropriate choice can provide
good performance of the executable on the specified architecture. An
inappropriate choice can result in serious degradation of performance.

v7 , v8 , and v8a are all binary compatible. v8plus and v8plusa are binary
compatible with each other and forward, but not backward. For any particular
choice, the generated executable can run much more slowly on earlier
architectures (to the left in the above list).

Table 2-3 The -xarch Values

Value Meaning

generic Gets good performance on most Intel, PowerPC and SPARC
architectures, major degradation on none.

This is the default. This option uses the best instruction set for
good performance on most Intel, PowerPC, and SPARC
processors without major performance degradation on any of
them. With each new release, this best instruction set will be
adjusted, if appropriate.

v7 Limits instruction set to V7 architecture.

This option uses the best instruction set for good performance on
the V7 architecture, but without the quad-precision floating-
point instructions. This is equivalent to using the best
instruction set for good performance on the V8 architecture, but
without the following instructions:
 The quad-precision floating-point instructions
 The integer mul and div instructions
 The fsmuld instruction

Examples: SPARCstation 1, SPARCstation 2

v8a Limits instruction set to the V8a version of the V8 architecture.
By definition, V8a means the V8 architecture, but without:
 The quad-precision floating-point instructions
 The fsmuld instruction
This option uses the best instruction set for good performance on
the V8 architecture.

Example: Any machine based on MicroSPARC™I chip
architecture.

26 C User’s Guide

2

v8 Limits instruction set to V8 architecture.

This option uses the best instruction set for good performance on
the V8 architecture, but without quad-precision floating-point
instructions.

Example: SPARCstation 10

v8plus Limits instruction set to the V8plus version of the V9
architecture.

By definition, V8plus, or V8+, means the V9 architecture, except:
 Without the quad-precision floating-point instructions
 Limited to the 32-bit subset defined by the V8+ specification
 Without the VIS instructions

This option uses the best instruction set for good performance on
the V8+ architecture. In V8+, a system with the 64-bit registers
of V9 runs in 32-bit addressing mode, but the upper 32 bits of
the i and l registers must not affect program results.

Example: Any machine based on UltraSPARC™chip
architecture.

Use of this option also causes the .o file to be marked as a V8+
binary; such files will not run on a v7 or v8 machine.

v8plusa Limits instruction set to the V8plusa version of the V9
architecture.
By definition, V8plusa means the V8plus architecture, plus:
 The UltraSPARC-specific instructions
 The VIS instructions
This option uses the best instruction set for good performance on
the UltraSPARC architecture but limited to the 32-bit subset
defined by the V8+ specification.

Example: Any machine based on UltraSPARC chip architecture.

Use of this option also causes the .o file to be marked as a Sun-
specific V8+ binary; such files will not run on a v7 or v8
machine.

Table 2-3 The -xarch Values (Continued)

Value Meaning

cc Compiler Options 27

2

-xautopar

(SPARC) Turns on automatic parallelization for multiple processors. Does
dependence analysis (analyze loops for inter-iteration data dependence) and
loop restructuring. If optimization is not at -xO3 or higher, optimization is
raised to -xO3 and a warning is emitted.

Avoid -xautopar if you do your own thread management.

Parallelization options require a WorkShop license. To get faster execution, this
option requires a multiple processor system. On a single-processor system, the
resulting binary usually runs slower.

To determine how many processors you have, use the psrinfo command:

To request a number of processors, set the PARALLELenvironment variable.
The default is 1.

• Do not request more processors than are available.

• If N is the number of processors on the machine, then for a one-user,
multiprocessor system, try PARALLEL=N-1 .

If you use -xautopar and compile and link in one step, then linking
automatically includes the microtasking library and the threads-safe C runtime
library. If you use -xautopar and compile and link in separate steps, then you
must also link with -xautopar .

386 Limits instruction set to the Intel x86 architecture.

pentium_pro Limits instruction set to the Intel pentium_pro architecture.

ppc Limits instruction set to the PowerPC architecture.

ppc_nofma Same as ppc but will not issue “fused multipy-add” instruction.

% psrinfo
0 on-line since 01/12/95 10:41:54
1 on-line since 01/12/95 10:41:54
2 on-line since 01/12/95 10:41:54
3 on-line since 01/12/95 10:41:54

Table 2-3 The -xarch Values (Continued)

Value Meaning

28 C User’s Guide

2

-xcache= c

Defines the cache properties for use by the optimizer.

c must be one of the following:

• generic (SPARC, Intel)
• s1/ l1/ a1
• s1/ l1/ a1: s2/ l2/ a2
• s1/ l1/ a1: s2/ l2/ a2: s3/ l3/ a3

The si/ li/ ai are defined as follows:

Although this option can be used alone, it is part of the expansion of the
-xtarget option; its primary use is to override a value supplied by the
-xtarget option.

This option specifies the cache properties that the optimizer can use. It does not
guarantee that any particular cache property is used.

si The size of the data cache at level i, in kilobytes

li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i

Table 2-4 The -xcache Values

Value Meaning

generic Define the cache properties for good performance on most Intel, PowerPC, and SPARC
architectures.

This is the default value which directs the compiler to use cache properties for good
performance on most Intel, PowerPC, and SPARC processors, without major
performance degradation on any of them.

With each new release, these best timing properties will be adjusted, if appropriate.

s1/ l1/ a1 Define level 1 cache properties.

s1/ l1/ a1: s2/ l2/ a2 Define levels 1 and 2 cache properties.

s1/ l1/ a1: s2/ l2/ a2: s3/ l3/ a3 Define levels 1, 2, and 3 cache properties.

cc Compiler Options 29

2

Example: -xcache=16/32/4:1024/32/1 specifies the following:

-xCC

Accepts the C++-style comments. In particular, // can be used to indicate the
start of a comment.

–xcg[89|92]

(SPARC).

-xcg89 is a macro for: -xarch=v7 -xchip=old -xcache=64/32/1 .

-xcg92 is a macro for:
-xarch=v8 -xchip=super -xcache=16/32/4:1024/32/1.

-xchip= c

 Specifies the target processor for use by the optimizer.

c must be one of the following: generic , old , super , super2 , micro ,
micro2 , hyper , hyper2 , powerup , ultra,386,486,pentium,
pentium_pro , 603 , 604 .

Although this option can be used alone, it is part of the expansion of the
-xtarget option; its primary use is to override a value supplied by the
-xtarget option.

This option specifies timing properties by specifying the target processor.

Some effects are:

• The ordering of instructions, that is, scheduling

Level 1 cache has:
 16K bytes
 32 bytes line size
 4-way associativity

Level 2 cache has:
 1024K bytes
 32 bytes line size
 Direct mapping associativity

30 C User’s Guide

2

• The way the compiler uses branches

• The instructions to use in cases where semantically equivalent alternatives
are available

-xcrossfile

(SPARC) Enables optimization and inlining across source files.

Only effective with -xO4 or -xO5 , the compiler is allowed to analyze all the
files on the command line as if they had been concatenated into a single file.

Table 2-5 The -xchip Values

Value Meaning

generic Use timing properties for good performance on most Intel,
PowerPC, and SPARC architectures.

This is the default value that directs the compiler to use the best
timing properties for good performance on most processors,
without major performance degradation on any of them.

old Uses timing properties of pre-SuperSPARC™ processors.

super Uses timing properties of the SuperSPARC chip.

super2 Uses timing properties of the SuperSPARC II chip.

micro Uses timing properties of the microSPARC chip.

micro2 Uses timing properties of the microSPARC II chip.

hyper Uses timing properties of the hyperSPARC™ chip.

hyper2 Usse timing properties of the hyperSPARC II chip.

powerup Uses timing properties of the Weitek® PowerUp™ chip.

ultra Uses timing properties of the UltraSPARC chip.

386 Uses timing properties of the Intel 386 architecture.

486 Uses timing properties of the Intel 486 architecture

pentium Uses timing properties of the Intel pentium architecture

pentium_pro Uses timing properties of the Intel pentium_pro architecture

603 Uses timing properties of the PowerPC 603 chip.

604 Uses timing properties of the PowerPC 604 chip.

cc Compiler Options 31

2

-xdepend

(SPARC) Analyzes loops for inter-iteration data dependencies and does loop
restructuring. Loop restructuring includes loop interchange, loop fusion, scalar
replacement, and elimination of “dead” array assignments. If optimization is
not at -xO3 or higher, optimization is raised to -xO3 and a warning is issued.

Dependency analysis is also included with -xautopar or -xparallel . The
dependency analysis is done at compile time.

Dependency analysis may help on single-processor systems. However, if you
try -xdepend on single-processor systems, you should not use either
-xautopar or -xexplicitpar . If either of them is on, then the -xdepend
optimization is done for multiple-processor systems.

-xe

Performs only syntax and semantic checking on the source file, but does not
produce any object or executable code.

-xexplicitpar

(SPARC) Generates parallelized code based on specification of #pragma MP
directives. You do the dependency analysis: analyze and specify loops for
inter-iteration data dependencies. The software parallelizes the specified loops.
If optimization is not at -xO3 or higher, optimization is raised to -xO3 and a
warning is issued. Avoid -xexplicitpar if you do your own thread
management.

Parallelization options require a WorkShop license. To get faster code, this
option requires a multiprocessor system. On a single-processor system, the
generated code usually runs slower.

If you indentify a loop for parallelization, and the loop has dependencies, you
can get incorrect results, possibly different ones with each run, and with no
warnings. Do not apply an explicit parallel pragma to a reduction loop. The
explicit parallelization is done, but the reduction aspect of the loop is not done,
and the results can be incorrect.

In summary, to parallelize explicitly:

• Analyze the loops to find those that are safe to parallelize.

32 C User’s Guide

2

• Insert #pragma MP to parallelize a loop. See the Section , “Explicit
Parallelization and Pragmas” in Chapter , “Sun ANSI C Compiler-Specific
Information,” for more information.

• Use the -xexplicitpar option.

An example of inserting a parallel pragma immediately before the loop is:

If you use -xexplicitpar and compile and link in one step, then linking
automatically includes the microtasking library and the threads-safe C runtime
library. If you use -xexplicitpar and compile and link in separate steps, then
you must also link with -xexplicitpar .

-xF

Enables performance analysis of the executable using the Analyzer. (See the
analyzer (1) man pages.) Produces code that can be reordered at the function
level. Each function in the file is placed in a separate section; for example,
functions foo() and bar() are placed in the sections .text%foo and
.text%bar , respectively. Function ordering in the executable can be
controlled by using -xF in conjunction with the -M option to ld (see ld (1)).
This option also causes the assembler to generate some debugging information
in the object file, necessary for data collection.

-xhelp= f

Displays on-line help information.

f must be one of: flags , readme , or errors .

-xhelp=flags displays a summary of the compiler options.

-xhelp=readme displays the README file.

-xhelp=errors displays the Error and Warning Messages file.

#pragma MP taskloop
 for (j=0; j<1000; j++){
 ...
 }

cc Compiler Options 33

2

-xildoff

Turns off the incremental linker and forces the use of ld . This option is the
default if you do not use the -g option, or you do use the -G option, or any
source files are present on the command line. Override this default by using
the -xildon option.

-xildon

Turns on the incremental linker and forces the use of ild in incremental mode.
This option is the default if you use the -g option, and you do not use the -G
option, and there are no source files present on the command line. Override
this default by using the -xildoff option.

-xinline=[f1,..., fn]

Tries to inline only those named in the list f1 to fn for user-written routines.
The list is a comma-separated list of functions and subroutines.

If you are compiling with -xO3 , you can use this option to increase
optimization by inlining some routines. The -xO3 option does not inline by
itself.

If you are compiling with -xO4 , using this option can decrease optimization by
restricting inlining to only those routines in the list. With -xO4 , the compiler
normally tries to inline all user-written subroutines and functions. When
xinline= is specified with an empty rlst , it indicates that none of the
routines in the source file are to be inlined.

A routine is not inlined if any of the following conditions apply. No warning
is issued.

• Optimization is less than -xO3 .
• The routine cannot be found.
• Inlining the routine does not look practicable to the optimizer.
• Source for the routine is not in the file being compiled (however, see

–xcrossfile).

34 C User’s Guide

2

-xlibmieee

Forces IEEE 754 style return values for math routines in exceptional cases. In
such cases, no exception message is printed, you should not rely on errno .

-xlibmil

Inlines some library routines for faster execution. This option selects the
appropriate assembly language inline templates for the floating-point option
and platform for your system.

-xlic_lib= l

(SPARC, Intel) Links in the Sun-supplied licensed libraries specified in l, where
l is a comma-separated list of libraries.

-Xlic_lib=sunperf

Links with specified Sun-supplied licensed libraries. Specifies a
comma-separated list of license-controlled libraries to link with. For example:

cc -o pgx pgx.c -xlic_lib=sunpref

This option, like -l , should appear at the end of the command line, after
source or object filenames.

-xlicinfo

Returns information about the licensing system. In particular, this option
returns the name of the license server and the IDs of users who have checked
out licenses. When you give this option, the compiler is not invoked, and a
license is not checked out.

-xloopinfo

(SPARC) Shows which loops are parallelized and which are not. Gives a short
reason for not parallelizing a loop. The -xloopinfo option is valid only if
-xautopar , or -xparallel , or -xexplicitpar is specified; otherwise, the
compiler issues a warning.

cc Compiler Options 35

2

Parallelization options require a WorkShop license. To get faster code, this
option requires a multiprocessor system. On a single-processor system, the
generated code usually runs slower.

-xM

Runs only the macro preprocessor on the named C programs, requesting that it
generate makefile dependencies and send the result to the standard output (see
make(1) for details about makefiles and dependencies).

For example:

generates this output:

#include <unistd.h>
void main(void)
{}

e.o: e.c
e.o: /usr/include/unistd.h
e.o: /usr/include/sys/types.h
e.o: /usr/include/sys/machtypes.h
e.o: /usr/include/sys/select.h
e.o: /usr/include/sys/time.h
e.o: /usr/include/sys/types.h
e.o: /usr/include/sys/time.h
e.o: /usr/include/sys/unistd.h

36 C User’s Guide

2

-xM1

Collects dependencies like -xM , but excludes /usr/include files.For
example:

Compilng with -xM1 does not report header file dependencies:

-xMerge

Merges data segments into text segments. Data initialized in the object file
produced by this compilation is read-only and (unless linked with ld -N) is
shared between processes.

-xnolib

Does not link any libraries by default; that is, no -l options are passed to ld .
Normally, the cc driver passes -lc to ld .

When you use -xnolib , you have to pass all the -l options yourself. For
example:

% cc test.c -xnolib -Bstatic -lm -Bdynamic -lc

links libm statically and the other libraries dynamically.

more hello.c
#include<stdio.h>
main()
{
 (void)printf(“hello\n”);
}
cc –xM hello.c
hello.o: hello.c
hello.o: /usr/include/stdio.h

cc –xM1 hello.c
hello.o: hello.c

cc Compiler Options 37

2

-xnolibmil

Does not inline math library routines. Use it after the
–fast option. For example: %cc –fast –xnolibmil....

-xO[1|2|3|4|5]

Optimizes the object code. Specifying -xO is equivalent to specifying -xO2 .

When -O is used with the -g option, a limited amount of debugging is
available.

The levels (1, 2, 3, 4, or 5) you can use with -xO differ according to the
platform you are using.

(SPARC)

-xO1
Does basic local optimization (peephole).

-xO2
Does basic local and global optimization. This is induction variable
elimination, local and global common subexpression elimination,
algebraic simplification, copy propagation, constant propagation, loop-
invariant optimization, register allocation, basic block merging, tail
recursion elimination, dead code elimination, tail call elimination, and
complex expression expansion.

The -xO2 level does not assign global, external, or indirect references or
definitions to registers. It treats these references and definitions as if they
were declared volatile . In general, the -xO2 level results in minimum
code size.

-xO3
Performs like -xO2 , but also optimizes references or definitions for
external variables. Loop unrolling and software pipelining are also
performed. This level does not trace the effects of pointer assignments.
When compiling either device drivers, or programs that modify external
variables from within signal handlers, you may need to use the
volatile type qualifier to protect the object from optimization. In
general, the -xO3 level results in increased code size.

38 C User’s Guide

2

-xO4
Performs like -xO3 , but also automatically inlines functions contained in
the same file; this usually improves execution speed. This level traces
the effects of pointer assignments, and usually results in increased code
size.

-xO5
Generates the highest level of optimization. Uses optimization
algorithms that take more compilation time or that do not have as high a
certainty of improving execution time. Optimization at this level is more
likely to improve performance if it is done with profile feedback. See
-xprofile=p .

(Intel) (PowerPC)

-xO1
Preloads arguments from memory, cross-jumping (tail-merging), as well
as the single pass of the default optimization.

-xO2
Schedules both high- and low-level instructions and performs improved
spill analysis, loop memory-reference elimination, register lifetime
analysis, enhanced register allocation, and elimination of global common
subexpressions.

-xO3
Performs loop strength reduction, induction variable elimination, as well
as the optimization done by level 2.

-xO4
Performs loop unrolling, avoids creating stack frames when possible, and
automatically inlines functions contained in the same file, as well as the
optimization done by levels 2 and 3. Note that this optimization level
can cause stack traces from adb and dbx to be incorrect.

-xO 5
Generates the highest level of optimization. Uses optimization
algorithms that take more compilation time or that do not have as high a
certainty of improving execution time. Some of these include generating
local calling convention entry points for exported functions, further
optimizing spill code and adding analysis to improve instruction
scheduling.

cc Compiler Options 39

2

If the optimizer runs out of memory, it tries to recover by retrying the current
procedure at a lower level of optimization and resumes subsequent procedures
at the original level specified in the command-line option.

If you optimize at -xO3 or -xO4 with very large procedures (thousands of
lines of code in the same procedure), the optimizer may require a large amount
of virtual memory. In such cases, machine performance may degrade.

-xP

Prints prototypes for all K&R C functions defined in this module.

produces this output:

-xparallel

(SPARC) Parallelizes loops both automatically by the compiler and explicitly
specified by the programmer. The -xparallel option is a macro, and is
equivalent to specifying all three of -xautopar , -xdepend , and
-xexplicitpar . With explicit parallelization of loops, there is a risk of
producing incorrect results. If optimization is not at -xO3 or higher,
optimization is raised to -xO3 and a warning is issued.

Avoid -xparallel if you do your own thread management.

f()
{
}

main(argc,argv)
int argc;
char *argv[];
{
}

int f(void);
int main(int, char **);

40 C User’s Guide

2

Parallelization options require a WorkShop license. To get faster code, this
option requires a multiprocessor system. On a single-processor system, the
generated code usually runs slower.

If you compile and link in one step, -xparallel links with the microtasking
library and the threads-safe C runtime library. If you compile and link in
separate steps, and you compile with -xparallel , then link with
-xparallel

-xpentium

(Intel) Optimizes for the Pentium™ processor.

-xpg

Prepares the object code to collect data for profiling with gprof (1). It invokes
a runtime recording mechanism that produces a gmon.out file at normal
termination.

-xprofile= p

 Collects data for a profile or uses a profile to optimize.

(SPARC) p must be collect [:name], use [:name], or tcov .

(Intel) (PowerPC) p must be tcov .

This option causes execution frequency data to be collected and saved during
execution, then the data can be used in subsequent runs to improve
performance. This option is only valid when you specify a level of
optimization.

collect [: name]

Collects and saves execution frequency data for later use by the optimizer
with –xprofile=use . The compiler generates code to measure statement
execution frequency.

The name is the name of the program that is being analyzed. This name is
optional. If name is not specified, a.out is assumed to be the name of the
executable.

cc Compiler Options 41

2

At runtime a program compiled with -xprofile=collect: name will
create the subdirectory name.profile to hold the runtime feedback
information. Data is written to the file feedback in this subdirectory. If you
run the program several times, the execution frequency data accumulates in
the feedback file; that is, output from prior runs is not lost.

use [: name]

Uses execution frequency data to optimize strategically.

As with collect: name, the name is optional and may be used to specify the
name of the program.

The program is optimized by using the execution frequency data previously
generated and saved in the feedback files written by a previous execution
of the program compiled with –xprofile=collect .

The source files and other compiler options must be exactly the same as
those used for the compilation that created the compiled program that
generated the feedback file. If compiled with -xprofile=collect: name,
the same program name name must appear in the optimizing compilation:
 -xprofile=use: name.

tcov

Basic block coverage analysis using “new” style tcov .

The -xprofile=tcov option is the new style of basic block profiling for tcov .
It has similar functionality to the -xa option, but correctly collects data for
programs that have source code in header files. See -xa for information on the
old style of profiling, the tcov (1) man page, and the Performance Profiling Tools
manual for more details.

Code instrumentation is performed similarly to that of the -xa option, but .d
files are no longer generated. Instead, a single file is generated, the name of
which is based on the final executable. For example, if the program is run out
of /foo/bar/myprog.profile , the data file is stored in
/foo/bar/myprog.profile/myprog.tcovd .

The -xprofile=tcov and the -xa options are compatible in a single
executable. That is, you can link a program that contains some files that have
been compiled with -xprofile=tcov , and others with -xa . You cannot
compile a single file with both options.

42 C User’s Guide

2

When running tcov , you must pass it the -x option to make it use the new
style of data. If not, tcov uses the old .d files, if any, by default for data, and
produces unexpected output.

Unlike the -xa option, the TCOVDIR environment variable has no effect at
compile-time. However, its value is used at program runtime. See tcov (1) and
the Performance Profiling Tools manual for more details.

-xreduction

(SPARC) Turns on reduction recognition during automatic parallelization.
-xreduction must be specified with -xautopar , or -xparallel .

Parallelization options require a WorkShop license.

When reduction recognition is enabled, the compiler parallelizes reductions
such as dot products, maximum and minimum finding. These reductions yield
different roundoffs than obtained by unparallelized code.

-xregs= r

(SPARC) Specifies the usage of registers for the generated code.

r is a comma-separated list that consists of one or more of the following:
[no%]appl , [no%]float .

Example: -xregs=appl,no%float

Table 2-6 The -xregs Values

Value Meaning

appl Allows using the registers g2 , g3 , and g4 .

In the SPARC ABI, these registers are described as application registers.
Using these registers can increase performance because fewer load and
store instructions are needed. However, such use can conflict with some
old library programs written in assembly code.

cc Compiler Options 43

2

The default is -xregs=appl,float .

-xrestrict= f

(SPARC) Treats pointer-valued function parameters as restricted pointers. f is a
comma-separated list that consists of one or more function parameters, %all ,
or %none.

If a function list is specified with this option, pointer parameters in the
specified functions are treated as restricted; if -xrestrict=%all is specified,
all pointer parameters in the entire C file are treated as restricted. Refer to
Chapter 3, “Sun ANSI C Compiler-Specific Information”, “_Restrict Keyword”
on page 59, for more information.

This command-line option can be used on its own, but it is best used with
optimization. For example, the command:

%cc -xO3 -xrestrict=%all prog.c

treats all pointer parameters in the file prog.c as restricted pointers. The
command:

%cc -xO3 -xrestrict=agc prog.c

treats all pointer parameters in the function agc in the file prog.c as restricted
pointers.

The default is %none; specifying -xrestrict is equivalent to specifying
-xrestrict=%all .

no%appl Does not use the appl registers.

float Allows using the floating-point registers as specified in the SPARC ABI.
You can use these registers even if the program contains no floating-
point code.

no%float Does not use the floating-point registers.

With this option, a source program cannot contain any floating-point
code.

Table 2-6 The -xregs Values

Value Meaning

44 C User’s Guide

2

-xs

Disables Auto-Read for dbx . Use this option in case you cannot keep the .o
files around. It passes the -s option to the assembler.

No Auto-Read is the older way of loading symbol tables. It places all symbol
tables for dbx in the executable file. The linker links more slowly and dbx
initializes more slowly.

Auto-Read is the newer and default way of loading symbol tables. With Auto-
Read, the information is distributed in the .o files, so that dbx loads the
symbol table information only if and when it is needed. Hence, the linker links
faster, and dbx initializes faster.

With -xs , if you move the executables to another directory, then to use dbx ,
you can ignore the object (.o) files.

Without -xs , if you move the executables, you must move both the source files
and the object (.o) files, or set the path with the dbx pathmap or use
command.

-xsafe=mem

(SPARC) Allows the compiler to assume no memory-based traps occur.

This option grants permission to use the speculative load instruction on V9
machines.

-xsb

Generates extra symbol table information for the SourceBrowser.This option is
not valid with the –Xs mode of the compiler.

-xsbfast

Creates the database for the SourceBrowser. Does not compile source into an
object file. This option is not valid with the –Xs mode of the compiler.

cc Compiler Options 45

2

-xsfpconst

Represents unsuffixed floating-point constants as single precision, instead of
the default mode of double precision. Not valid with -Xc .

-xspace

Does no optimizations or parallelization of loops that increase code size.

Example: The compiler will not unroll loops or parallelize loops if it increases
code size.

-xstrconst

Inserts string literals into the read-only data section of the text segment instead
of the default data segment.

-xtarget= t

Specifies the target system for instruction set and optimization.

46 C User’s Guide

2

t must be one of: native , generic , system-name (SPARC, Intel, ppc).

The -xtarget option is a macro that permits a quick and easy specification of
the -xarch , -xchip , and -xcache combinations that occur on real systems.
The only meaning of -xtarget is in its expansion.

The performance of some programs may benefit by providing the compiler
with an accurate description of the target computer hardware. When program
performance is critical, the proper specification of the target hardware could be
very important. This is especially true when running on the newer SPARC
processors. However, for most programs and older SPARC processors, the
performance gain is negligible and a generic specification is sufficient.

Each specific value for -xtarget expands into a specific set of values for the
-xarch , -xchip , and -xcache options. See Table 2-8 for the values. For
example:

-xtarget=sun4/15 is equivalent to:
-xarch=v8a -xchip=micro -xcache=2/16/1

Table 2-7 The -xtarget Values

Value Meaning

native Gets the best performance on the host system.

The compiler generates code for the best performance on the host
system. It determines the available architecture, chip, and cache
properties of the machine on which the compiler is running.

generic Gets the best performance for generic architecture, chip, and cache.

The compiler expands -xtarget=generic to:
 -xarch=generic -xchip=generic -xcache=generic

This is the default value.

system-name Gets the best performance for the specified system.

You select a system name from Table 2-8 that lists the mnemonic
encodings of the actual system name and numbers.

cc Compiler Options 47

2

Table 2-8 The -xtarget Expansions

-xtarget -xarch -xchip -xcache

sun4/15 v8a micro 2/16/1

sun4/20 v7 old 64/16/1

sun4/25 v7 old 64/32/1

sun4/30 v8a micro 2/16/1

sun4/40 v7 old 64/16/1

sun4/50 v7 old 64/32/1

sun4/60 v7 old 64/16/1

sun4/65 v7 old 64/16/1

sun4/75 v7 old 64/32/1

sun4/110 v7 old 2/16/1

sun4/150 v7 old 2/16/1

sun4/260 v7 old 128/16/1

sun4/280 v7 old 128/16/1

sun4/330 v7 old 128/16/1

sun4/370 v7 old 128/16/1

sun4/390 v7 old 128/16/1

sun4/470 v7 old 128/32/1

sun4/490 v7 old 128/32/1

sun4/630 v7 old 64/32/1

sun4/670 v7 old 64/32/1

sun4/690 v7 old 64/32/1

sselc v7 old 64/32/1

ssipc v7 old 64/16/1

ssipx v7 old 64/32/1

sslc v8a micro 2/16/1

sslt v7 old 64/32/1

48 C User’s Guide

2

sslx v8a micro 2/16/1

sslx2 v8a micro2 8/16/1

ssslc v7 old 64/16/1

ss1 v7 old 64/16/1

ss1plus v7 old 64/16/1

ss2 v7 old 64/32/1

ss2p v7 powerup 64/32/1

ss4 v8a micro2 8/16/1

ss4/85 v8a micro2 8/16/1

ss4/110 v8a micro2 8/16/1

ss5 v8a micro2 8/16/1

ss5/85 v8a micro2 8/16/1

ss5/110 v8a micro2 8/16/1

ssvyger v8a micro2 8/16/1

ss10 v8 super 16/32/4

ss10/hs11 v8 hyper 256/64/1

ss10/hs12 v8 hyper 256/64/1

ss10/hs14 v8 hyper 256/64/1

ss10/20 v8 super 16/32/4

ss10/hs21 v8 hyper 256/64/1

ss10/hs22 v8 hyper 256/64/1

ss10/30 v8 super 16/32/4

ss10/40 v8 super 16/32/4

ss10/41 v8 super 16/32/4:1024/32/1

ss10/50 v8 super 16/32/4

ss10/51 v8 super 16/32/4:1024/32/1

ss10/61 v8 super 16/32/4:1024/32/1

Table 2-8 The -xtarget Expansions (Continued)

-xtarget -xarch -xchip -xcache

cc Compiler Options 49

2

ss10/71 v8 super2 16/32/4:1024/32/1

ss10/402 v8 super 16/32/4

ss10/412 v8 super 16/32/4:1024/32/1

ss10/512 v8 super 16/32/4:1024/32/1

ss10/514 v8 super 16/32/4:1024/32/1

ss10/612 v8 super 16/32/4:1024/32/1

ss10/712 v8 super2 16/32/4:1024/32/1

ss20 v8 super 16/32/4:1024/32/1

ss20/hs11 v8 hyper 256/64/1

ss20/hs12 v8 hyper 256/64/1

ss20/hs14 v8 hyper 256/64/1

ss20/hs21 v8 hyper 256/64/1

ss20/hs22 v8 hyper 256/64/1

ss20/50 v8 super 16/32/4

ss20/51 v8 super 16/32/4:1024/32/1

ss20/61 v8 super 16/32/4:1024/32/1

ss20/71 v8 super2 16/32/4:1024/32/1

ss20/151 v8 hyper 512/64/1

ss20/152 v8 hyper 512/64/1

ss20/502 v8 super 16/32/4

ss20/512 v8 super 16/32/4:1024/32/1

ss20/514 v8 super 16/32/4:1024/32/1

ss20/612 v8 super 16/32/4:1024/32/1

ss20/712 v8 super 16/32/4:1024/32/1

ss600/41 v8 super 16/32/4:1024/32/1

ss600/51 v8 super 16/32/4:1024/32/1

ss600/61 v8 super 16/32/4:1024/32/1

Table 2-8 The -xtarget Expansions (Continued)

-xtarget -xarch -xchip -xcache

50 C User’s Guide

2

ss600/120 v7 old 64/32/1

ss600/140 v7 old 64/32/1

ss600/412 v8 super 16/32/4:1024/32/1

ss600/512 v8 super 16/32/4:1024/32/1

ss600/514 v8 super 16/32/4:1024/32/1

ss600/612 v8 super 16/32/4:1024/32/1

ss1000 v8 super 16/32/4:1024/32/1

sc2000 v8 super 16/32/4:2048/64/1

cs6400 v8 super 16/32/4:2048/64/1

solb5 v7 old 128/32/1

solb6 v8 super 16/32/4:1024/32/1

ultra v8 ultra 16/32/1:512/64/1

ultra2 v8 ultra2 16/32/1:512/64/1

ultra1/140 v8 ultra 16/32/1:512/64/1

ultra1/170 v8 ultra 16/32/1:512/64/1

ultra1/200 v8 ultra 16/32/1:512/64/1

ultra2/1170 v8 ultra 16/32/1:512/64/1

ultra2/1200 v8 ultra 16/32/1:1024/64/1

ultra2/1300 v8 ultra2 16/32/1:2048/64/1

ultra2/2170 v8 ultra 16/32/1:512/64/1

ultra2/2200 v8 ultra 16/32/1:1024/64/1

ultra2/2300 v8 ultra2 16/32/1:2048/64/1

entr2 v8 ultra 16/32/1:512/64/1

entr2/1170 v8 ultra 16/32/1:512/64/1

entr2/2170 v8 ultra 16/32/1:512/64/1

entr2/1200 v8 ultra 16/32/1:512/64/1

entr2/2200 v8 ultra 16/32/1:512/64/1

Table 2-8 The -xtarget Expansions (Continued)

-xtarget -xarch -xchip -xcache

cc Compiler Options 51

2

For PowerPC: –xtarget= accepts generic or native .

For Intel: –xtarget= accepts:
• generic or native
• 386 (equivalent to –386 option) or 486 (equivalent to –486 option)
• pentium (equivalent to –pentium option) or pentium_pro

-xtemp= dir

Sets the directory for temporary files used by cc to dir. No space is allowed
within this option string. Without this option, temporary files go into /tmp .
-xtemp has precedence over the TMPDIR environment variable.

-xtime

Reports the time and resources used by each compilation component.

-xtransition

Issues warnings for the differences between K&R C and Sun ANSI C. The
following warnings no longer appear unless the -xtransition option is
used:

\a is ANSI C “alert” character
\x is ANSI C hex escape
bad octal digit
base type is really type tag: name
comment is replaced by “##”
comment does not concatenate tokens

entr150 v8 ultra 16/32/1:512/64/1

entr3000 v8 ultra 16/32/1:512/64/1

entr4000 v8 ultra 16/32/1:512/64/1

entr5000 v8 ultra 16/32/1:512/64/1

entr6000 v8 ultra 16/32/1:512/64/1

Table 2-8 The -xtarget Expansions (Continued)

-xtarget -xarch -xchip -xcache

52 C User’s Guide

2

declaration introduces new type in ANSI C: type tag
macro replacement within a character constant
macro replacement within a string literal
no macro replacement within a character constant
no macro replacement within a string literal
operand treated as unsigned
trigraph sequence replaced
ANSI C treats constant as unsigned: operator
semantics of operator change in ANSI C; use explicit cast

-xunroll= n

Suggests to the optimizer to unroll loops n times. n is a positive integer. When
n is 1, it is a command, and the compiler unrolls no loops. When n is greater
than 1, the -xunroll= n merely suggests to the compiler that it unroll loops n
times.

-xvpara

(SPARC) Warns about loops that have #pragma MP directives specified when
the loop may not be properly specified for parallelization. For example, when
the optimizer detects data dependencies between loop iterations, it issues a
warning.

Parallelization options require a WorkShop license.

Use -xvpara with the -xexplicitpar option or the -xparallel option and
the #pragma MP . See the Section , “Explicit Parallelization and Pragmas” in
Chapter , “Sun ANSI C Compiler-Specific Information,” for more information.

-Y c, dir

Specifies a new directory dir for the location of component c. c can consist of
any of the characters representing components that are listed under the -W
option.

If the location of a component is specified, then the new path name for the tool
is dir/tool. If more than one -Y option is applied to any one item, then the last
occurrence holds.

cc Compiler Options 53

2

-YA, dir

Changes the default directory searched for components.

-YI, dir

Changes the default directory searched for include files.

-YP, dir

Changes the default directory for finding libraries files.

-YS, dir

Changes the default directory for startup object files.

-Zll

(SPARC) Creates the program database for lock_lint , but does not actually
compile. Refer to the lock_lint (1) man page for more details.

-Zlp

(SPARC) Prepares object files for the loop profiler, looptool . The
looptool (1) utility can then be run to generate loop statistics about the
program. Use this option with -xdepend ; if -xdepend is not explicitly or
implicitly specified, turns on -xdepend and issues a warning. If optimization
is not at -xO3 or higher, optimization is raised to -xO3 and a warning is
issued. Generally, this option is used with one of the loop parallelization
options: -xexplicitpar , -xautopar , or -xparallel .

Parallelization options require a WorkShop license. To get faster code, this
option requires a multiprocessor system. On a single-processor system, the
generated code usually runs slower.

If you compile and link in separate steps, and you compile with -Zlp , then be
sure to link with -Zlp .

54 C User’s Guide

2

If you compile one subprogram with -Zlp , you need not compile all
subprograms of that program with -Zlp . However, you get loop information
only for the files compiled with -Zlp , and no indication that the program
includes other files.

-Ztha

(SPARC) Prepares code for analysis by the Thread Analyzer, the performance
analysis tool for multithreaded code. The -Ztha instrumentation performs
two actions. It inserts calls to the profiling library at all procedure entries and
exits in much the same way the -p does. However, instead of linking with the
profiled libraries in /usr/lib/libp , code compiled with
-Ztha links with the library libtha.so .

Options Passed to the Linker
cc recognizes -a , -e , -r , -t , -u , and -z and passes these options and their
arguments to ld . cc passes any unrecognized options to ld with a warning.

Localization of Error Messages
The messages from the C compiler, and lint , can be localized using gencat .
See gencat(1) and catges(3C) for more information on message catalogs.

The C compiler message text source file can be found relative to where the C
compiler is installed. Using the default installation directory, the C compiler
message text source files can be found in
/opt/SUNWspro/SC4.2/lib/locale/C/LC_MESSAGES .

The C compiler message text source files are named:

SUNW_SPRO_SC_acomp.msg (C front end components acomp and ssbd)
SUNW_SPRO_SC_cc.msg (cc and lint command)

After translating the messages, the gencat utility can be used to create the
formatted message database catfiles. The C compiler uses these catfiles when
issuing messages. In order for the C compiler to use the formatted message
database catfiles, they must be:

• Named corretly
• Installed in the default location for the locale being used
• Referenced via the correct path in the environment variable NLSPATH

cc Compiler Options 55

2

The formatted message database catfiles must be named:

SUNW_SPRO_SC_acomp.cat (c front end components acomp & ssbd)
SUNW_SPRO_SC_cc.cat (cc and lint command)

To enable all users to use the message database catfiles, they should be
installed in the proper location based on the locale. For example, if the locale is
French (fr), and using the default installation of the C compiler, these files
must reside in the directory:
/opt/SUNWspro/SC4.2/lib/locale/fr/LC_MESSAGES and the
environment variable LC_MESSAGES must be set to “fr ” prior to invoking the
cc command:

using csh shell:

% setenv LC_MESSAGES fr

Using sh shell:

$ LC_MESSAGES= fr
$ export LC_MESSAGES

Alternatively, they can be installed in a directory of choice and accessed by the
C compiler by setting NLSPATH prior to invoking the C compiler. For example,
if they are installed in /usr/local/MyMessDir.NLSPATH can be set as
follows:

Using csh shell:

% setenv NLSPATH /usr/local/MyMessDir/%N.cat:$NLSPATH

Using sh shell:

$ NLSPATH=/usr/local/MyMessDir/%N.cat:$NLSPATH
$ export NLSPATH

Note – These formatted message database catfiles are shared between the cc
and lint commands. For messages not translated, the default C locale
translation is used.

cflow(1) and cxref(1) have their own message catalogs:

SUN_SPRO_SC_cflow.msg SUNW_SPRO_SC_cflow.cat cflow command

SUNW_SPRO_SC_cxref.msg SUNW_SPRO_SC_cxref.cat cxref command

56 C User’s Guide

2

57

Sun ANSI C Compiler-Specific
Information 3

The Sun ANSI C compiler is compatible with the C language described in the
American National Standard for Programming Language--C, ANSI/ISO 9899-
1990. This chapter documents those areas specific to the Sun ANSI C compiler.

Environment Variables

TMPDIR

cc normally creates temporary files in the directory /tmp . You can specify
another directory by setting the environment variable TMPDIR to the directory
of your choice. However, if TMPDIR is not a valid directory, cc uses /tmp . The
-xtemp option has precedence over the TMPDIR environment variable.

If you use a Bourne shell, type:

$ TMPDIR=dir; export TMPDIR

If you use a C shell, type:

% setenv TMPDIR dir

SUNPRO_SB_INIT_FILE_NAME

The absolute path name of the directory containing the .sbinit (5) file. This
variable is used only if the -xsb or -xsbfast flag is used.

58 C User’s Guide

3

PARALLEL

(SPARC) Refer to Environment Variable on page 73 for details.

Global Behavior: Value versus unsigned Preserving
A program that depends on unsigned preserving arithmetic conversions
behaves differently. This is considered to be the most serious change made by
ANSI C.

In the first edition of K&R, The C Programming Language (Prentice-Hall, 1978),
unsigned specified exactly one type; there were no unsigned chars ,
unsigned shorts , or unsigned longs , but most C compilers added these
very soon thereafter.

In previous C compilers, the unsigned preserving rule is used for promotions:
when an unsigned type needs to be widened, it is widened to an unsigned
type; when an unsigned type mixes with a signed type, the result is an
unsigned type.

The other rule, specified by ANSI C, came to be called “value preserving,” in
which the result type depends on the relative sizes of the operand types.
When an unsigned char or unsigned short is widened, the result type is
int if an int is large enough to represent all the values of the smaller type.
Otherwise, the result type is unsigned int . The value preserving rule
produces the least surprise arithmetic result for most expressions.

Only in the -Xt and -Xs modes does the compiler use the unsigned
preserving promotions; in the other modes, -Xc and -Xa , the value preserving
promotion rules are used. When the -xtransition option is used, the
compiler warns about each expression whose behavior might depend on the
promotion rules used.

Keywords

asm Keyword

The _asm keyword is a synonym for the asm keyword. asm is available under
all compilation modes, although a warning is issued when it is used under the
–Xc mode.

Sun ANSI C Compiler-Specific Information 59

3

The asm statement has the form:

where string is a valid assembly language statement.

For example:

asm statements must appear within function bodies.

_Restrict Keyword

For a compiler to effectively perform parallel execution of a loop, it needs to
determine if certain lvalues designate distinct regions of storage. Aliases are
lvalues whose regions of storage are not distinct. Determining if two
pointers to objects are aliases is a difficult and time-consuming process because
it could require analysis of the entire program.

Example: the function vsq ()

asm(" string"):

main()
{

int i;

/* i = 10 */
asm("mov 10,%l0");
asm("st %l0,[%fp-8]");

printf("i = %d\n",i);
}
% cc foo.c
% a.out
i = 10
%

void vsq(int n, double * a, double * b)
{

int i;
for (i=0; i<n; i++) b[i] = a[i] * a[i];

}

60 C User’s Guide

3

The compiler can parallelize the execution of the different iterations of the
loops if it knows that pointers a and b access different objects. If there is an
overlap in objects accessed through pointers a and b then it would be unsafe
for the compiler to execute the loops in parallel. At compile time, the compiler
does not know if the objects accessed by a and b overlap by simply analyzing
the function vsq (); the compiler may need to analyze the whole program to get
this information.

Restricted pointers are used to specify pointers which designate distinct objects
so that the compiler can perform pointer alias analysis. To support restricted
pointers, the keyword _Restrict is recognized by the Sun ANSI C compiler
as an extension. Below is an example of declaring function parameters of
vsq () as restricted pointers:

Pointers a and b are declared as restricted pointers, so the compiler knows that
the regions of storage pointed to by a and b are distinct. With this alias
information, the compiler is able to parallelize the loop.

The _Restrict keyword is a type qualifier, like volatile , and it qualifies
pointer types only. _Restrict is recognized as a keyword only for
compilation modes -Xa (default) and -Xt . For these two modes, the compiler
defines the macro __RESTRICT to enable users write portable code with
restricted pointers.

The compiler defines the macro __RESTRICT to enable users to write portable
code with restricted pointers. For example, the following code works on the
Sun ANSI C compiler in all compilation modes, and should work on other
compilers which do not support restricted pointers:

void vsq(int n, double * _Restrict a, double * _Restrict b)

#ifdef __RESTRICT
#define restrict _Restrict
#else
#define restrict
#endif

void vsq(int n, double * restrict a, double * restrict b)
{

int i;
for (i=0; i<n; i++) b[i] = a[i] * a[i];

}

Sun ANSI C Compiler-Specific Information 61

3

If restricted pointers become a part of the ANSI C Standard, it is likely that
“restrict ” will be the keyword. Users may want to write code with
restricted pointers using:

as in vsq () because this way there will be minimal changes should
“restrict ” become a keyword in the ANSI C Standard. The Sun ANSI C
compiler uses _Restrict as the keyword because it is in the implementor's
name space, so there is no conflict with identifiers in the user's name space.

There are situations where a user may not want to change the source code.
One can specify pointer-valued function parameters to be treated as restricted
pointers with the command-line option -xrestrict ; refer to “-xrestrict=f” on
page 43 for details.

If a function list is specified, pointer parameters in the specified functions are
treated as restricted; otherwise, all pointer parameters in the entire C file are
treated as restricted. For example, -xrestrict=vsq would qualify the
pointers a and b given in “Example: the function vsq()” on page 59 with the
keyword _Restrict .

It is critical that _Restrict be used correctly. If pointers qualified as
restricted pointers point to objects which are not distinct, loops may be
incorrectly parallelized, resulting in undefined behavior. For example, assume
that pointers a and b of function vsq () point to objects which overlap, such
that b[i] and a[i+1] are the same object. If a and b are not declared as restricted
pointers, the loops will be executed serially. If a and b are incorrectly qualified
as restricted pointers, the compiler may parallelize the execution of the loops;
this is not safe, because b[i+1] should only be computed after b[i] has been
computed.

long long Data Type
The Sun ANSI C compiler includes the data types long long , and unsigned
long long , which are similar to the data type long . long long can store 64
bits of information; long can store 32 bits of information. long long is not
available in -Xc mode.

#define restrict _Restrict

62 C User’s Guide

3

Printing long long Data Types

To print or scan long long data types, prefix the conversion specifier with
the letters "ll." For example, to print llvar , a variable of long long data
type, in signed decimal format, use:

Usual Arithmetic Conversions

Some binary operators convert the types of their operands to yield a common
type, which is also the type of the result. These are called the usual arithmetic
conversions:

• If either operand is type long double , the other operand is converted to
long double .

• Otherwise, if either operand has type double , the other operand is
converted to double .

• Otherwise, if either operand has type float , the other operand is converted
to float .

• Otherwise, the integral promotions are performed on both operands. Then,
these rules are applied:
• If either operand has type unsigned long long int , the other operator

is converted to unsigned long long int .
• If either operand has type long long int , the other operator is converted

to long long int .
• If either operand has type unsigned long int , the other operand is

converted to unsigned long int .
• Otherwise, if one operand has type long int and the other has type

unsigned int, both operands are converted to unsigned long int .
• Otherwise, if either operand has type long int, the other operand is

converted to long int .
• Otherwise, if either operand has type unsigned int , the other operand is

converted to unsigned int .
• Otherwise, both operands have type int .

printf("%lld\n", llvar);

Sun ANSI C Compiler-Specific Information 63

3

Constants
This section contains information related to constants that is specific to the Sun
ANSI C compiler.

Integral Constants

Decimal, octal, and hexadecimal integral constants can be suffixed to indicate
type, as shown in the Table 3-1.

When assigning types to unsuffixed constants, the compiler uses the first of
this list in which the value can be represented, depending on the size of the
constant:

• int
• long int
• unsigned long int
• long long int
• unsigned long long int

1. long long and unsigned long long are not available in
-Xc mode.

Table 3-1 Data Type Suffixes

Suffix Type

u or U unsigned

l or L long

ll or LL long long 1

lu , LU, Lu , lU, ul,
uL, Ul, or UL

unsigned long

llu , LLU, LLu , llU,
ull, ULL, uLL, Ull

unsigned long long 1

64 C User’s Guide

3

Character Constants

A multiple-character constant that is not an escape sequence has a value
derived from the numeric values of each character. For example, the constant
'123' has a value of:

or 0x333231 .

With the -Xs option and in other, non-ANSI versions of C, the value is:

or 0x313233 .

Include Files
To include any of the standard header files supplied with the C compilation
system, use this format:

The angle brackets (<>) cause the preprocessor to search for the header file in
the standard place for header files on your system, usually the /usr/include
directory.

The format is different for header files that you have stored in your own
directories:

The quotation marks (" ") cause the preprocessor to search for header.h first
in the directory of the file containing the #include line.

Table 3-2 Multiple-character Constant (ANSI)

0 '3' '2' '1'

Table 3-3 Multiple-character Constant (non-ANSI)

0 '1' '2' '3'

#include <stdio.h>

#include "header.h"

Sun ANSI C Compiler-Specific Information 65

3

If your header file is not in the same directory as the sourcefiles that include it,
specify the path of the directory in which it is stored with the –I option to cc .
Suppose, for instance, that you have included both stdio.h and header.h in
the source file mycode.c :

Suppose further that header.h is stored in the directory../defs . The
command:

% cc –I../defs mycode.c

directs the preprocessor to search for header.h first in the directory
containing mycode.c , then in the directory ../defs , and finally in the
standard place. It also directs the preprocessor to search for stdio.h first in
../defs , then in the standard place. The difference is that the current
directory is searched only for header files whose names you have enclosed in
quotation marks.

You can specify the –I option more than once on the cc command-line. The
preprocessor searches the specified directories in the order they appear. You
can specify multiple options to cc on the same command-line:

% cc –o prog –I../defs mycode.c

Nonstandard Floating Point
IEEE 754 floating-point default arithmetic is “nonstop.” Underflows are
“gradual.” Following is a summary of explanation. See the Numerical
Computation Guide for details.

Nonstop means that execution does not halt on occurrences like division by
zero, floating-point overflow, or invalid operation exceptions. For example,
consider the following, where x is zero and y is positive:

z = y / x;

By default, z is set to the value +Inf , and execution continues. With the
-fnonstd option, however, this code causes an exit, such as a core dump.

#include <stdio.h>
#include "header.h"

66 C User’s Guide

3

Here is how gradual underflow works. Suppose you have the following code:

The first time through the loop, x is set to 1; the second time through, to 0.1 ;
the third time through, to 0.01 ; and so on. Eventually, x reaches the lower
limit of the machine’s capacity to represent its value. What happens the next
time the loop runs?

Let’s say that the smallest number characterizable is:

1.234567e-38

The next time the loop runs, the number is modified by “stealing” from the
mantissa and “giving” to the exponent:

1.23456e-39

and, subsequently,

1.2345e-40

and so on. This is known as “gradual underflow,” which is the default
behavior. In nonstandard behavior, none of this “stealing” takes place;
typically, x is simply set to zero.

Preprocessing Directives
This section describes assertions, pragmas, and predefined names.

Assertions

A line of the form:

x = 10;
for (i = 0; i < LARGE_NUMBER; i++)

x = x / 10;

#assert predicate (token-sequence)

Sun ANSI C Compiler-Specific Information 67

3

associates the token-sequence with the predicate in the assertion name space
(separate from the space used for macro definitions). The predicate must be an
identifier token.

asserts that predicate exists, but does not associate any token sequence with it.

The compiler provides the following predefined predicates by default (not in
-Xc mode):

lint provides the following predefinition predicate by default (not in
-Xc mode):

Any assertion may be removed by using #unassert , which uses the same
syntax as assert . Using #unassert with no argument deletes all assertions
on the predicate; specifying an assertion deletes only that assertion.

An assertion may be tested in a #if statement with the following syntax:

For example, the predefined predicate system can be tested with the following
line:

which evaluates true.

#assert predicate

#assert system (unix)
#assert machine (sparc) (SPARC)
#assert machine (i386) (Intel)
#assert machine (ppc) (PowerPC)
#assert cpu (sparc) (SPARC)
#assert cpu (i386) (Intel)
#assert cpu (ppc) (PowerPC)

#assert lint (on)

#if # predicate(non-empty token-list)

#if #system(unix)

68 C User’s Guide

3

Pragmas

Preprocessing lines of the form:

specify implementation-defined actions.

The following #pragma s are recognized by the compilation system:

• #pragma align integer (variable[,variable])—Makes all the mentioned
variables memory aligned to integer bytes, overriding the default. The
following limitations apply:
• integer must be a power of 2 between 1 and 128; valid values are: 1, 2, 4, 8,

16, 32, 64, and 128.
• variable is a global or static variable; it cannot be an automatic variable.
• If the specified alignment is smaller than the default, the default is used.
• The pragma line must appear before the declaration of the variables which

it mentions; otherwise, it is ignored.
• Any variable that is mentioned but not declared in the text following the

pragma line is ignored. For example:

• #pragma fini (f1[,f2...,fn]) —Causes the implementation to call functions
f1 to fn (finalization functions) after it calls main() routine. Such functions
are expected to be of type void and to accept no arguments, and are called
either when a program terminates under program control or when the
containing shared object is removed from memory. As with “initialization
functions,” finalization functions are executed in the order processed by the
link editors.

• #pragma init (f1[,f2...,fn]) —Causes the implementation to call functions
f1 to fn (initialization functions) before it calls main() routine. Such
functions are expected to be of type void and to accept no arguments, and
are called while constructing the memory image of the program at the start

#pragma pp-tokens

#pragma align 64 (aninteger, astring, astruct)

int aninteger;
static char astring[256];
struct astruct{int a; char *b;};

Sun ANSI C Compiler-Specific Information 69

3

of execution. In the case of initializers in a shared object, they are executed
during the operation that brings the shared object into memory, either
program start-up or some dynamic loading operation, such as dlopen() .
The only ordering of calls to initialization functions is the order in which
they were processed by the link editors, both static and dynamic.

• #pragma ident string—Places string in the .comment section of the
executable.

• #pragma int_to_unsigned function_name—For a function that returns a
type of unsigned , in -Xt or -Xs mode, changes the function return to be of
type int .

• (SPARC) #pragma MP serial_loop —Refer to “Serial Pragmas” on
page 74 for details.

• (SPARC) #pragma MP serial_loop_nested —Refer to “Serial Pragmas”
on page 74 for details.

• (SPARC) #pragma MP taskloop —Refer to “Parallel Pragmas” on page 74
for details.

• (SPARC) #pragma nomemorydepend —This pragma specifies that for any
iteration of a loop, there are no memory dependences. That is, within any
iteration of a loop there are no references to the same memory. This pragma
will permit the compiler (pipeliner) to schedule instructions, more
effectively, within a single iteration of a loop. If any memory dependences
exist within any iteration of a loop, the results of executing the program are
undefined. The pragma applies to the next for loop within the current
block. The compiler takes advantage of this information at optimization
level of 3 or above.

• (SPARC) #pragma no_side_effect (funcname)—funcname specifies the
name of a function within the current translation unit. The function must be
declared prior to the pragma. The pragma must be specified prior to the
function’s definition. For the named function, funcname, the pragma
declares that the function has no side effects of any kind. The compiler can
use this information when doing optimizations using the function. If the
function does have side effects, the results of executing a program which
calls this function are undefined. The compiler takes advantage of this
information at optimization level of 3 or above.

70 C User’s Guide

3

• #pragma pack (n)—Controls the layout of structure offsets. n is a number,
1, 2, or 4, that specifies the strictest alignment desired for any structure
member. If n is omitted, members are aligned on their natural boundaries.
If you are using #pragma pack (n), be sure to place it after all #includes .

• (SPARC) #pragma pipeloop (n)—This pragma accepts a positive constant
integer value, or 0, for the argument n. This pragma specifies that a loop is
pipelinable and the minimum dependence distance of the loop-carried
dependence is n. If the distance is 0, then the loop is effectively a Fortran-
style doall loop and should be pipelined on the target processors. If the
distance is greater than 0, then the compiler (pipeliner) will only try to
pipeline n successive iterations. The pragma applies to the next for loop
within the current block. The compiler takes advantage of this information
at optimization level of 3 or above.

• #pragma redefine_extname old_extname new_extname —The
pragma causes every externally defined occurrence of the name
"old_extname" in the object code to be "new_extname". Such that, at link
time only the name "new_extname" is seen by the loader.

 If pragma redefine_extname is encountered after the first use of
"old_extname", as a function definition, an initializer, or an expression, the
effect is undefined. (Not supported in –Xs and –Xc modes.)

• #pragma unknown_control_flow (name, [, name]) —Specifies a list of
routines that violate the usual control flow properties of procedure calls.
For example, the statement following a call to setjmp() can be reached
from an arbitrary call to any other routine. The statement is reached by a
call to longjmp() . Since such routines render standard flowgraph analysis
invalid, routines that call them cannot be safely optimized; hence, they are
compiled with the optimizer disabled.

• (SPARC) #pragma unroll (unroll_factor)—This pragma accepts a positive
constant integer value for the argument unroll_factor. The pragma applies to
the next for loop within the current block. For unroll factor other than 1,
this directive serves as a suggestion to the compiler that the specified loop
should be unrolled by the given factor. The compiler will, when possible,
use that unroll factor. When the unroll factor value is 1, this directive serves
as a command which specifies to the compiler that the loop is not to be
unrolled. The compiler takes advantage of this information at optimization
level of 3 or above.

Sun ANSI C Compiler-Specific Information 71

3

• #pragma weak symbol1 [= symbol2] —Defines a weak global symbol. This
pragma is used mainly in source files for building libraries. The linker does
not produce an error message if it is unable to resolve a weak symbol.

defines symbol to be a weak symbol. The linker does not produce an error
message if it does not find a definition for symbol.

defines symbol1 to be a weak symbol, which is an alias for the symbol
symbol2. This form of the pragma can only be used in the same translation
unit where symbol2 is defined, either in the sourcefiles or one of its included
headerfiles. Otherwise, a compilation error will result.

If your program calls but does not define symbol1, and symbol1 is a weak
symbol in a library being linked,the linker uses the definition from that
library. However, if your program defines its own version of symbol1, then
the program’s definition is used and the weak global definition of symbol1 in
the library is not used. If the program directly calls symbol2, the definition
from the library is used; a duplicate definition of symbol2 causes an error.

The compiler ignores unrecognized pragmas. Using the -v option will give a
warning on unrecognized pragmas.

Predefined Names

The following identifier is predefined as an object-like macro:

The compiler will issue a warning if __STDC__ is undefined (#undef
__STDC__). __STDC__ is not defined in -Xs mode.

#pragma weak symbol

#pragma weak symbol1 = symbol2

Table 3-4 Predefined Identifier

Identifier Description

__STDC__ __STDC__ 1 -Xc
__STDC__ 0 -Xa, -Xt
Not defined -Xs

72 C User’s Guide

3

Predefinitions (not valid in -Xc mode):

• sun
• unix
• sparc (SPARC)
• i386 (Intel)

The following predefinitions are valid in all modes:

• _ _sun
• _ _unix
• _ _SUNPRO_C=0x400
• _ _‘uname -s‘_‘uname -r‘ (example: _ _SunOS_5_4)
• _ _sparc (SPARC)
• _ _i386 (Intel)
• _ _BUILTIN_VA_ARG_INCR
• _ _SVR4
• _ _LITTLE_ENDIAN (PowerPC)
• _ _ppc (PowerPC)

The compiler also predefines the object-like macro
 _ _PRAGMA_REDEFINE_EXTNAME

to indicate that the pragma will be recognized.

The following is predefined in -Xa and -Xt modes only:

_ _RESTRICT

 MP C (SPARC)
SunSoft MP C is an extended ANSI C compiler that can optimize code to run
on SPARC shared-memory multiprocessor machines. The process is called
parallelizing. The compiled code can execute in parallel using the multiple
processors on the system.

The SunSoft WorkShop includes the license required to use the features of
MP C.

This section contains an overview and example of using MP C, and documents
the environment variable, keyword, pragmas, and options used with MP C.

Sun ANSI C Compiler-Specific Information 73

3

Refer to the “MP C” white paper, located in
/opt/SUNWspro/READMEs/mpc.ps , for examples on using MP C and for
further reference information.

Overview

The MP C compiler generates parallel code for those loops that it determines
are safe to parallelize. Typically, these loops have iterations that are
independent of each other. For such loops, it does not matter in what order the
iterations are executed or if they are executed in parallel. Many, although not
all, vector loops fall into this category.

Because of the way aliasing works in C, it is difficult to determine the safety of
parallelization. To help the compiler, MP C offers pragmas and additional
pointer qualifications to provide aliasing information known to the
programmer that the compiler cannot determine.

Example of Use

The following example illustrates the use of MP C and how parallel execution
can be controlled. To enable parallelization of the target program, the
“-xautopar ” option can be used as follows:

% cc -fast -xO4 -xautopar example.c -o example

This generates an executable called example , which can be executed normally.

Environment Variable

If multiprocessor execution is desired, the PARALLEL environment variable
needs to be set. It specifies the number of processors available to the program:

% setenv PARALLEL 2

This will enable the execution of the program on two threads. If the target
machine has multiple processors, the threads can map to independent
processors.

% example

Running the program will lead to creation of two threads that will execute the
parallelized portions of the program.

74 C User’s Guide

3

Keyword

The keyword _Restrict can be used with MP C. Refer to the section
“_Restrict Keyword” on page 59 for details.

Explicit Parallelization and Pragmas

Often, there is not enough information available for the compiler to make a
decision on the legality or profitability of parallelization. MP C supports
pragmas that allow the programmer to effectively parallelize loops that
otherwise would be too difficult or impossible for the compiler to handle.

Serial Pragmas

There are two serial pragmas, and both apply to “for ” loops:

• #pragma MP serial_loop
• #pragma MP serial_loop_nested

The #pragma MP serial_loop pragma indicates to the compiler that the
next for loop is not to be implicitly/automatically parallelized.

The #pragma MP serial_loop_nested pragma indicates to the compiler
that the next for loop and any for loops nested within the scope of this for
loop are not to be implicitly/automatically parallelized. The scope of the
serial_loop_nested pragma does not extend beyond the scope of the loop
to which it applies.

Parallel Pragmas

There is one parallel pragma: #pragma MP taskloop [options].

The MP taskloop pragma can, optionally, take one or more of the following
arguments.

• maxcpus (number_of_processors)
• private (list_of_private_variables)
• shared (list_of_shared_variables)
• readonly (list_of_readonly_variables)
• storeback (list_of_storeback_variables)
• savelast
• reduction (list_of_reduction_variables)

Sun ANSI C Compiler-Specific Information 75

3

• schedtype (scheduling_type)

Only one option can be specified per MP taskloop pragma; however, the
pragmas are cumulative and apply to the next for loop encountered within
the current block in the source code:

 #pragma MP taskloop maxcpus(4)
 #pragma MP taskloop shared(a,b)
 #pragma MP taskloop storeback(x)

These options may appear multiple times prior to the for loop to which they
apply. In case of conflicting options, the compiler will issue a warning
message.

Nesting of for loops
An MP taskloop pragma applies to the next for loop within the current
block. There is no nesting of parallelized for loops by MP C.

Eligibility for Parallelizing
An MP taskloop pragma suggests to the compiler that, unless otherwise
disallowed, the specified for loop should be parallelized.

For loops with irregular control flow and unknown loop iteration increment
are not eligible for parallelization. For example, for loops containing setjmp,
longjmp, exit, abort, return, goto, labels, and break should not be considered as
candidates for parallelization.

Of particular importance is to note that for loops with inter-iteration
dependencies can be eligible for explicit parallelization. This means that if a
MP taskloop pragma is specified for such a loop the compiler will simply
honor it, unless the for loop is disqualified. It is the user’s responsibility to
make sure that such explicit parallelization will not lead to incorrect results.

If both the serial_loop or serial_loop_nested and taskloop pragmas
are specified for a for loop, the last one specified will prevail.

Consider the following example:

 #pragma MP serial_loop_nested
 for (i=0; i<100; i++) {
 # pragma MP taskloop
 for (j=0; j<1000; j++) {

76 C User’s Guide

3

 ...
 }
 }

The i loop will not be parallelized but the j loop might be.

Number of Processors
#pragma MP taskloop maxcpus (number_of_processors) specifies the
number of processors to be used for this loop, if possible.

The value of maxcpus must be a positive integer. If maxcpus equals 1, then
the specified loop will be executed in serial. (Note that setting maxcpus to be 1
is equivalent to specifying the serial_loop pragma.) The smaller of the
values of maxcpus or the interpreted value of the PARALLEL environment
variable will be used. When the environment variable PARALLEL is not
specified, it is interpreted as having the value 1.

If more than one maxcpus pragma is specified for a for loop, the last one
specified will prevail.

Classifying Variables
A variable used in a loop is classified as being either a “private”, “shared”,
“reduction”, or “readonly” variable. The variable will belong to only one of
these classifications. A variable can only be classified as a reduction or
readonly variable via an explicit pragma. See #pragma MP taskloop
reduction and #pragma MP taskloop readonly . A variable can be
classified as being either a “private or “shared” variable via an explicit pragma
or through the following default scoping rules.

Default Scoping Rules for Private and Shared Variables
A private variable is one whose value is private to each processor processing
some iterations of a for loop. In other words, the value assigned to a private
variable in one iteration of a for loop is not propagated to other processors
processing other iterations of that for loop. A shared variable, on the other
hand, is a variable whose current value is accessible by all processors
processing iterations of a for loop. The value assigned to a shared variable by
one processor working on iterations of a loop may be seen by other processors
working on other iterations of the loop. Loops being explicitly parallelized
through use of #pragma MP taskloop directives, that contain references to
shared variables, must ensure that such sharing of values does not cause any

Sun ANSI C Compiler-Specific Information 77

3

correctness problems (such as race conditions). No synchronization is provided
by the compiler on updates and accesses to shared variables in an explicitly
parallelized loop.

In analyzing explicitly parallelized loops, the compiler uses the following
“default scoping rules” to determine whether a variable is private or shared:

• If a variable is not explicitly classified via a pragma, the variable will default
to being classified as a shared variable if it is declared as a pointer or array,
and is only referenced using array syntax within the loop. Otherwise, it will
be classified as a private variable.

• The loop index variable is always treated as a private variable and is always
a storeback variable.

It is highly recommended that all variables used in an explicitly parallelized for
loop be explicitly classified as one of shared, private, reduction, or readonly, to
avoid the “default scoping rules.”

Since the compiler does not perform any synchronization on accesses to shared
variables, extreme care must be exercised before using an MP taskloop
pragma for a loop that contains, for example, array references. If inter-iteration
data dependencies exist in such an explicitly parallelized loop, then its parallel
execution may give erroneous results. The compiler may or may not be able to
detect such a potential problem situation and issue a warning message. In any
case, the compiler will not disable the explicit parallelization of loops with
potential shared variable problems.

Private Variables
#pragma MP taskloop private (list_of_private_variables) specifies all the
variables that should be treated as private variables for this loop. All other
variables used in the loop that are not explicitly specified as shared, readonly,
or reduction variables, will be either shared or private as defined by the default
scoping rules.

A private variable is one whose value is private to each processor processing
some iterations of a loop. In other words, the value assigned to a private
variable by one of the processors working on iterations of a loop is not
propagated to other processors processing other iterations of that loop. A
private variable has no initial value at the start of each iteration of a loop and
must be set to a value within the iteration of a loop prior to its first use within

78 C User’s Guide

3

that iteration. Execution of a program with a loop containing an explicitly
declared private variable whose value is used prior to being set will result in
undefined behavior.

Shared Variables
#pragma MP taskloop shared (list_of_shared_variables) specifies all the
variables that should be treated as shared variables for this loop. All other
variables used in the loop that are not explicitly specified as private, readonly,
storeback or reduction variables, will be either shared or private as defined by
the default scoping rules.

A shared variable is a variable whose current value is accessible by all
processors processing iterations of a for loop. The value assigned to a shared
variable by one processor working on iterations of a loop may be seen by other
processors working on other iterations of the loop.

Read-only Variables
Read-only variables are a special class of shared variables that are not modified
in any iteration of a loop. #pragma MP taskloop readonly
(list_of_readonly_variables) indicates to the compiler that it may use a separate
copy of that variable’s value for each processor processing iterations of the
loop.

Storeback Variables
#pragma MP taskloop storeback (list_of_storeback_variables) specifies all
the variables to be treated as storeback variables.

A storeback variable is one whose value is computed in a loop, and this
computed value is then used after the termination of the loop. The last loop
iteration values of storeback variables are available for use after the
termination of the loop. Such a variable is a good candidate to be declared
explicitly via this directive as a storeback variable when the variable is a
private variable, whether by explicitly declaring the variable private or by the
default scoping rules.

Note that the storeback operation for a storeback variable occurs at the last
iteration of the explicitly parallelized loop, regardless of whether or not that
iteration updates the value of the storeback variable. In other words the

Sun ANSI C Compiler-Specific Information 79

3

processor that processes the last iteration of a loop may not be the same
processor that currently contains the last updated value for a storeback
variable. Consider the following example:

 #pragma MP taskloop private(x)
 #pragma MP taskloop storeback(x)
 for (i=1; i <= n; i++) {
 if (...) {

x =...
 }
 }
 printf (“%d”, x);

In the above example the value of the storeback variable x printed out via the
printf () call may not be the same as that printed out by a serial version of the
i loop, because in the explicitly parallelized case, the processor that processes
the last iteration of the loop (when i==n), which performs the storeback
operation for x may not be the same processor that currently contains the last
updated value for x. The compiler will attempt to issue a warning message to
alert the user of such potential problems.

In an explicitly parallelized loop, variables referenced as arrays are not treated
as storeback variables. Hence it is important to include them in the
list_of_storeback_variables if such storeback operation is desired (for example,
if the variables referenced as arrays have been declared as private variables).

Savelast
#pragma MP taskloop savelast specifies that all the private variables of
a loop be treated as a storeback variables. The syntax of this pragma is as
follows:

 #pragma MP taskloop savelast

It is often convenient to use this form, rather than list out each private variable
of a loop when declaring each variable as storeback variables.

Reduction Variables
#pragma MP taskloop reduction (list_of_reduction_variables) specifies
that all the variables appearing in the reduction list will be treated as reduction
variables for the loop. A reduction variable is one whose partial values can be
individually computed by each of the processors processing iterations of the
loop, and whose final value can be computed from all its partial values. The

80 C User’s Guide

3

presence of a list of reduction variables can facilitate the compiler in
identifying that the loop is a reduction loop, allowing generation of parallel
reduction code for it.

Consider the following example:

 #pragma MP taskloop reduction(x)
 for (i=0; i<n; i++) {

x = x + a[i];
 }

the variable x is a (sum) reduction variable and the i loop is a(sum) reduction
loop.

Scheduling Control
The MP C compiler supports several pragmas that can be used in conjunction
with the taskloop pragma to control the loop scheduling strategy for a given
loop. The syntax for this pragma is:

#pragma MP taskloop schedtype (scheduling_type)

This pragma can be used to specify the specific scheduling_type to be used to
schedule the parallelized loop. Scheduling_type can be one of the following:

• static

In static scheduling all the iterations of the loop are uniformly distributed
among all the participating processors.

Example:

 #pragma MP taskloop maxcpus(4)
 #pragma MP taskloop schedtype(static)
 for (i=0; i<1000; i++) {
 ...
 }

In the above example, each of the four processors will process 250 iterations of
the loop.

• self [(chunk_size)]

In self scheduling, each participating processor processes a fixed number of
iterations (called the “chunk size”) until all the iterations of the loop have been
processed. The optional chunk_size parameter specifies the “chunk size” to be
used. Chunk_size must be a positive integer constant, or variable of integral

Sun ANSI C Compiler-Specific Information 81

3

type. If specified as a variable chunk_size must evaluate to a positive integer
value at the beginning of the loop. If this optional parameter is not specified or
its value is not positive, the compiler will select the chunk size to be used.

Example:

 #pragma MP taskloop maxcpus(4)
 #pragma MP taskloop schedtype(self(120))
 for (i=0; i<1000; i++) {
 ...
 }

In the above example, the number of iterations of the loop assigned to each
participating processor, in order of work request, are:

 120, 120, 120, 120, 120, 120, 120, 120, 40.

• gss [(min_chunk_size)]

In guided self scheduling, each participating processor processes a variable
number of iterations (called the “min chunk size”) until all the iterations of the
loop have been processed. The optional min_chunk_size parameter specifies
that each variable chunk size used must be at least min_chunk_size in size.
Min_chunk_size must be a positive integer constant, or variable of integral
type. If specified as a variable min_chunk_size must evaluate to a positive
integer value at the beginning of the loop. If this optional parameter is not
specified or its value is not positive, the compiler will select the chunk size to
be used.

Example:

 #pragma MP taskloop maxcpus(4)
 #pragma MP taskloop schedtype(gss(10))
 for (i=0; i<1000; i++) {
 ...
 }

In the above example, the number of iterations of the loop assigned to each
participating processor, in order of work request, are:

 250, 188, 141, 106, 79, 59, 45, 33, 25, 19, 14, 11, 10, 10, 10.

• factoring [(min_chunk_size)]

In factoring scheduling, each participating processor processes a variable
number of iterations (called the “min chunk size”) until all the iterations of the
loop have been processed. The optional min_chunk_size parameter specifies

82 C User’s Guide

3

that each variable chunk size used must be at least min_chunk_size in size.
Min_chunk_size must be a positive integer constant, or variable of integral
type. If specified as a variable min_chunk_size must evaluate to a positive
integer value at the beginning of the loop. If this optional parameter is not
specified or its value is not positive, the compiler will select the chunk size to
be used.

Example:

 #pragma MP taskloop maxcpus(4)
 #pragma MP taskloop schedtype(factoring(10))
 for (i=0; i<1000; i++) {
 ...
 }

In the above example, the number of iterations of the loop assigned to each
participating processor, in order of work request, are:

 125, 125, 125, 125, 62, 62, 62, 62, 32, 32, 32, 32, 16, 16, 16, 16, 10, 10,
 10, 10, 10, 10.

Compiler Options

The following compiler options can be used in MP C. Refer to Chapter 2, “cc
Compiler Options” for complete descriptions of the options.

“-xautopar” on page 27
“-xdepend” on page 31
“-xexplicitpar” on page 31
“-xloopinfo” on page 34
“-xparallel” on page 39
“-xreduction” on page 42
“-xrestrict=f” on page 43
“-xvpara” on page 52
“-Zlp” on page 53.

83

cscope: Interactively
Examining a C Program 4

cscope is an interactive program that locates specified elements of code in C,
lex , or yacc source files. With cscope , you can search and edit your source
files more efficiently than you could with a typical editor. That’s because
cscope supports function calls—when a function is being called, when it is
doing the calling—as well as C language identifiers and keywords.

This chapter is a tutorial on the cscope browser, which is provided with this
release.

Note – SourceBrowser, a window-oriented code browser that is more powerful
than cscope , is described briefly in “SourceBrowser” on page 102.
SourceBrowser is sold separately.

The cscope Process
When cscope is called for a set of C, lex , or yacc source files, it builds a
symbol cross-reference table for the functions, function calls, macros, variables,
and preprocessor symbols in those files. You can then query that table about
the locations of symbols you specify. First, it presents a menu and asks you to
choose the type of search you would like to have performed. You may, for
instance, want cscope to find all the functions that call a specified function.

When cscope has completed this search, it prints a list. Each list entry
contains the name of the file, the number of the line, and the text of the line in
which cscope has found the specified code. In our case, the list also includes

84 C User’s Guide

4

the names of the functions that call the specified function. You now have the
option of requesting another search or examining one of the listed lines with
the editor. If you choose the latter, cscope invokes the editor for the file in
which the line appears, with the cursor on that line. You can now view the
code in context and, if you wish, edit the file as any other file. You can then
return to the menu from the editor to request a new search.

Because the procedure you follow depends on the task at hand, there is no
single set of instructions for using cscope . For an extended example of its
use, review the cscope session described in the next section. It shows how
you can locate a bug in a program without learning all the code.

Basic Use
Suppose you are given responsibility for maintaining the program prog . You
are told that an error message, out of storage , sometimes appears just as
the program starts up. Now you want to use cscope to locate the parts of the
code that are generating the message. Here is how you do it.

Step 1: Set Up the Environment

cscope is a screen-oriented tool that can only be used on terminals listed in
the Terminal Information Utilities (terminfo) database. Be sure you have set
the TERM environment variable to your terminal type so that cscope can
verify that it is listed in the terminfo database. If you have not done so,
assign a value to TERM and export it to the shell as follows:

In a Bourne shell, type:

$ TERM=term_name; export TERM

In a C shell, type:

% setenv TERM term_name

You may now want to assign a value to the EDITOR environment variable. By
default, cscope invokes the vi editor. (The examples in this chapter illustrate
vi usage.) If you prefer not to use vi , set the EDITOR environment variable to
the editor of your choice and export EDITOR, as follows:

In a Bourne shell, type:

$ EDITOR=emacs; export EDITOR

cscope:Interactively Examining a C Program 85

4

In a C shell, type:

% setenv EDITOR emacs

You may have to write an interface between cscope and your editor. For
details, see “Command-Line Syntax for Editors” on page 101.

If you want to use cscope only for browsing (without editing), you can set the
VIEWER environment variable to pg and export VIEWER. cscope will then
invoke pg instead of vi .

An environment variable called VPATH can be set to specify directories to be
searched for source files. See “View Paths” on page 95.

Step 2: Invoke the cscope Program

By default, cscope builds a symbol cross-reference table for all the C, lex , and
yacc source files in the current directory, and for any included header files in
the current directory or the standard place. So, if all the source files for the
program to be browsed are in the current directory, and if its header files are
there or in the standard place, invoke cscope without arguments:

% cscope

To browse through selected source files, invoke cscope with the names of
those files as arguments:

% cscope file1.c file2.c file3.h

For other ways to invoke cscope , see “Command-Line Options” on page 93.

cscope builds the symbol cross-reference table the first time it is used on the
source files for the program to be browsed. By default, the table is stored in
the file cscope.out in the current directory. On a subsequent invocation,
cscope rebuilds the cross-reference only if a source file has been modified or
the list of source files is different. When the cross-reference is rebuilt, the data
for the unchanged files is copied from the old cross-reference, which makes
rebuilding faster than the initial build, and reduces startup time for subsequent
invocations.

86 C User’s Guide

4

Step 3: Locate the Code

Now let’s return to the task we undertook at the beginning of this section: to
identify the problem that is causing the error message out of storage to be
printed. You have invoked cscope , the cross-reference table has been built.
The cscope menu of tasks appears on the screen.

The cscope Menu of Tasks:

Press the Return key to move the cursor down the screen (with wraparound at
the bottom of the display), and ^p (Control-p) to move the cursor up; or use
the up (ua) and down (da) arrow keys. You can manipulate the menu and
perform other tasks with the following single-key commands:

% cscope

cscope Press the ? key for help

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

Table 4-1 cscope Menu Manipulation Commands

Tab Move to the next input field.

Return Move to the next input field.

^n Move to the next input field.

^p Move to the previous input field.

^y Search with the last text typed.

^b Move to the previous input field and search pattern.

^f Move to the next input field and search pattern.

cscope:Interactively Examining a C Program 87

4

If the first character of the text for which you are searching matches one of
these commands, you can escape the command by entering a \ (backslash)
before the character.

Now move the cursor to the fifth menu item, Find this text string ,
enter the text out of storage , and press the Return key.

cscope Function: Requesting a Search for a Text String:

Note – Follow the same procedure to perform any other task listed in the menu
except the sixth, Change this text string . Because this task is slightly
more complex than the others, there is a different procedure for performing it.
For a description of how to change a text string, see “Examples” on page 97.

^c Toggle ignore/use letter case when searching. For example, a search
for FILE matches file and File when ignoring the letter case.

^r Rebuild cross-reference.

! Start an interactive shell. Type ^d to return to cscope .

^l Redraw the screen.

? Display the list of commands.

^d Exit cscope.

$ cscope

cscope Press the ? key for help

Find this C symbol
Find this global definition
Find functions called by this function
Find functions calling this function
Find this text string: out of storage
Change this text string
Find this egrep pattern
Find this file
Find files #including this file

Table 4-1 cscope Menu Manipulation Commands (Continued)

88 C User’s Guide

4

cscope searches for the specified text, finds one line that contains it, and
reports its finding.

cscope Function: Listing Lines Containing the Text String:

After cscope shows you the results of a successful search, you have several
options. You may want to change one of the lines or examine the code
surrounding it in the editor. Or, if cscope has found so many lines that a list
of them does not fit on the screen at once, you may want to look at the next
part of the list. The following table shows the commands available after
cscope has found the specified text:

Text string: out of storage

 File Line
1 alloc.c 63 (void) fprintf(stderr, "\n%s: out of storage\n", argv0);

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

Table 4-2 Commands for Use After an Initial Search

1 - 9 Edit the file referenced by this line. The number you type corresponds
to an item in the list of lines printed by cscope .

Space Display the next set of matching lines.

+ Display the next set of matching lines.

^v Display the next set of matching lines.

— Display the previous set of matching lines.

^e Edit the displayed files in order.

> Append the list of lines being displayed to a file.

| Pipe all lines to a shell command.

cscope:Interactively Examining a C Program 89

4

Again, if the first character of the text for which you are searching matches one
of these commands, you can escape the command by entering a backslash
before the character.

Now examine the code around the newly found line. Enter 1 (the number of
the line in the list). The editor is invoked with the file alloc.c with the
cursor at the beginning of line 63 of alloc.c .

cscope Function: Examining a Line of Code:

You can see that the error message is generated when the variable p is NULL.
To determine how an argument passed to alloctest() could have been
NULL, you must first identify the functions that call alloctest() .

Exit the editor by using normal quit conventions. You are returned to the
menu of tasks. Now type alloctest after the fourth item, Find
functions calling this function.

{
return(alloctest(realloc(p, (unsigned) size)));

}

/* check for memory allocation failure */

static char *
alloctest(p)
char *p;
{

if (p == NULL) {
(void) fprintf(stderr, "\n%s: out of storage\n", argv0);
exit(1);

}
return(p);

}
~
~
~
~
~
~
~
"alloc.c" 67 lines, 1283 characters

90 C User’s Guide

4

cscope Function: Requesting a List of Functions That Call alloctest() :

cscope finds and lists three such functions.

cscope Function: Listing Functions That Call alloctest() :

Now you want to know which functions call mymalloc() . cscope finds ten
such functions. It lists nine of them on the screen and instructs you to press
the space bar to see the rest of the list.

Text string: out of storage

 File Line
1 alloc.c 63(void)fprintf(stderr,"\n%s: out of storage\n",argv0);

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function: alloctest
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

Functions calling this function: alloctest
File Function Line
1 alloc.c mymalloc 33 return(alloctest(malloc((unsigned) size)));
2 alloc.c mycalloc 43 return(alloctest(calloc((unsigned) nelem, (unsigned) size)));
3 alloc.c myrealloc 53 return(alloctest(realloc(p, (unsigned) size)));

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

cscope:Interactively Examining a C Program 91

4

cscope Function: Listing Functions That Call mymalloc() :

Because you know that the error message out of storage is generated at
the beginning of the program, you can guess that the problem may have
occurred in the function dispinit() (display initialization).

To view dispinit() , the seventh function on the list, type 7.

Functions calling this function: mymalloc

File Function Line
1 alloc.c stralloc 24 return(strcpy(mymalloc(strlen(s) + 1), s));
2 crossref.c crossref 47 symbol = (struct symbol *) mymalloc(msymbols *

sizeof(struct symbol));
3 dir.c makevpsrcdirs63 srcdirs = (char **) mymalloc(nsrcdirs * sizeof(char

*));
4 dir.c addincdir 167 incdirs = (char **) mymalloc(sizeof(char *));
5 dir.c addincdir 168 incnames = (char **) mymalloc(sizeof(char *));
6 dir.c addsrcfile 439 p = (struct listitem *) mymalloc(sizeof(struct

listitem));
7 display.c dispinit 87 displine = (int *) mymalloc(mdisprefs * sizeof(int

));
8 history.c addcmd 19 h = (struct cmd *) mymalloc(sizeof(struct cmd));
9 main.c main 212 s = mymalloc((unsigned) (strlen(reffile) +

strlen(home) + 2));

* 9 more lines - press the space bar to display more *
Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:

92 C User’s Guide

4

cscope Function: Viewing dispinit() in the Editor:

mymalloc() failed because it was called either with a very large number or a
negative number. By examining the possible values of FLDLINE and REFLINE,
you can see that there are situations in which the value of mdisprefs is
negative, that is, in which you are trying to call mymalloc() with a negative
number.

Step 4: Edit the Code

On a windowing terminal, you may have multiple windows of arbitrary size.
The error message out of storage might have appeared as a result of
running prog in a window with too few lines. In other words, that may have
been one of the situations in which mymalloc() was called with a negative
number. Now you want to be sure that when the program aborts in this
situation in the future, it does so after printing the more meaningful error
message screen too small . Edit the function dispinit() as follows.

void
dispinit()
{

/* calculate the maximum displayed reference lines */
lastdispline = FLDLINE - 4;
mdisprefs = lastdispline - REFLINE + 1;
if (mdisprefs > 9) {

mdisprefs = 9;
}

/* allocate the displayed line array */
displine = (int *) mymalloc(mdisprefs * sizeof(int));

}
^L/* display a page of the references */

void
display()
{

char file[PATHLEN + 1]; /* file name */
char function[PATLEN + 1];/* function name */
char linenum[NUMLEN + 1]; /* line number */
int screenline; /* screen line number */
int width; /* source line display width */
register int i, j;

"display.c" 622 lines, 14326 characters

cscope:Interactively Examining a C Program 93

4

cscope Function: Correcting the Problem:

You have fixed the problem we began investigating at the beginning of this
section. Now if prog is run in a window with too few lines, it does not simply
fail with the unedifying error message out of storage . Instead, it checks the
window size and generates a more meaningful error message before exiting.

Command-Line Options

As noted, cscope builds a symbol cross-reference table for the C, lex , and
source files in the current directory by default. That is,

% cscope

is equivalent to:

% cscope *.[chly]

We have also seen that you can browse through selected source files by
invoking cscope with the names of those files as arguments:

% cscope file1.c file2.c file3.h

/* initialize display parameters */
void
dispinit()
{

/* calculate the maximum displayed reference lines */
lastdispline = FLDLINE - 4;
mdisprefs = lastdispline - REFLINE + 1;
if (mdisprefs <= 0) {

(void) fprintf(stderr,"\n%s: screen too small\n", argv0);
exit(1);

}
if (mdisprefs > 9)

mdisprefs = 9;
/* allocate the displayed line array */

displine = (int *) mymalloc(mdisprefs * sizeof(int));
}
^L/* display a page of the references */

void
display()

94 C User’s Guide

4

cscope provides command-line options with greater flexibility in specifying
source files to be included in the cross-reference. When you invoke cscope
with the –s option and any number of directory names (separated by
commas):

% cscope –s dir1,dir2,dir3

cscope builds a cross-reference for all the source files in the specified
directories as well as the current directory. To browse through all of the source
files whose names are listed in file (file names separated by spaces, tabs, or
new-lines), invoke cscope with the –i option and the name of the file
containing the list:

% cscope –i file

If your source files are in a directory tree, use the following commands to
browse through all of them:

% find . –name '*.[chly]' –print | sort > file
% cscope –i file

If this option is selected, however, cscope ignores any other files appearing on
the command-line.

The –I option can be used for cscope in the same way as the –I option to cc .
See “Include Files” on page 64.

You can specify a cross-reference file other than the default cscope.out by
invoking the –f option. This is useful for keeping separate symbol cross-
reference files in the same directory. You may want to do this if two programs
are in the same directory, but do not share all the same files:

% cscope –f admin.ref admin.c common.c aux.c libs.c
% cscope –f delta.ref delta.c common.c aux.c libs.c

In this example, the source files for two programs, admin and delta , are in
the same directory, but the programs consist of different groups of files. By
specifying different symbol cross-reference files when you invoke cscope for
each set of source files, the cross-reference information for the two programs is
kept separate.

You can use the –pn option to specify that cscope display the path name, or
part of the path name, of a file when it lists the results of a search. The number
you give to –p stands for the last n elements of the path name you want to be
displayed. The default is 1, the name of the file itself. So if your current
directory is home/common, the command:

cscope:Interactively Examining a C Program 95

4

% cscope –p2

causes cscope to display common/file1.c , common/file2.c , and so forth
when it lists the results of a search.

If the program you want to browse contains a large number of source files, you
can use the –b option, so that cscope stops after it has built a cross-reference;
cscope does not display a menu of tasks. When you use cscope –b in a
pipeline with the batch (1) command, cscope builds the cross-reference in the
background:

% echo 'cscope -b' | batch

Once the cross-reference is built, and as long as you have not changed a source
file or the list of source files in the meantime, you need only specify:

% cscope

for the cross-reference to be copied and the menu of tasks to be displayed in
the normal way. You can use this sequence of commands when you want to
continue working without having to wait for cscope to finish its initial
processing.

The –d option instructs cscope not to update the symbol cross-reference. You
can use it to save time if you are sure that no such changes have been made;
cscope does not check the source files for changes.

Note – Use the –d option with care. If you specify –d under the erroneous
impression that your source files have not been changed, cscope refers to an
outdated symbol cross-reference in responding to your queries.

Check the cscope (1) man page for other command-line options.

View Paths

As we have seen, cscope searches for source files in the current directory by
default. When the environment variable VPATH is set, cscope searches for
source files in directories that comprise your view path. A view path is an
ordered list of directories, each of which has the same directory structure
below it.

96 C User’s Guide

4

For example, suppose you are part of a software project. There is an official set
of source files in directories below /fs1/ofc . Each user has a home directory
(/usr/you). If you make changes to the software system, you may have
copies of just those files you are changing in /usr/you/src/cmd/prog1 . The
official versions of the entire program can be found in the directory
/fs1/ofc/src/cmd/prog1 .

Suppose you use cscope to browse through the three files that comprise
prog1 , namely, f1.c , f2.c , and f3.c . You would set VPATH to /usr/you
and /fs1/ofc and export it, as in:

In a Bourne shell, type:

$ VPATH=/usr/you:/fs1/ofc; export VPATH

In a C shell, type:

% setenv VPATH /usr/you:/fs1/ofc

You then make your current directory /usr/you/src/cmd/prog1 , and
invoke cscope :

% cscope

The program locates all the files in the view path. In case duplicates are found,
cscope uses the file whose parent directory appears earlier in VPATH. Thus, if
f2.c is in your directory, and all three files are in the official directory, cscope
examines f2.c from your directory, and f1.c and f3.c from the official
directory.

The first directory in VPATH must be a prefix of the directory you will be
working in, usually $HOME. Each colon-separated directory in VPATH must be
absolute: it should begin at / .

cscope and Editor Call Stacks

cscope and editor calls can be stacked. That is, when cscope puts you in the
editor to view a reference to a symbol and there is another reference of interest,
you can invoke cscope again from within the editor to view the second
reference without exiting the current invocation of either cscope or the editor.
You can then back up by exiting the most recent invocation with the
appropriate cscope and editor commands.

cscope:Interactively Examining a C Program 97

4

Examples

This section presents examples of how cscope can be used to perform three
tasks: changing a constant to a preprocessor symbol, adding an argument to a
function, and changing the value of a variable. The first example demonstrates
the procedure for changing a text string, which differs slightly from the other
tasks on the cscope menu. That is, once you have entered the text string to be
changed, cscope prompts you for the new text, displays the lines containing
the old text, and waits for you to specify which of these lines you want it to
change.

Changing a Constant to a Preprocessor Symbol

Suppose you want to change a constant, 100 , to a preprocessor symbol,
MAXSIZE. Select the sixth menu item, Change this text string , and enter
\100 . The 1 must be escaped with a backslash because it has a special
meaning (item 1 on the menu) to cscope . Now press Return. cscope
prompts you for the new text string. Type MAXSIZE.

cscope Function: Changing a Text String:

cscope displays the lines containing the specified text string, and waits for
you to select those in which you want the text to be changed.

cscope Press the ? key for help

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string: \100
Find this egrep pattern:
Find this file:
Find files #including this file:
To: MAXSIZE

98 C User’s Guide

4

cscope Function: Prompting for Lines to be Changed:

You know that the constant 100 in lines 1, 2, and 3 of the list (lines 4, 26, and 8
of the listed source files) should be changed to MAXSIZE. You also know that
0100 in read.c and 100.0 in err.c (lines 4 and 5 of the list) should not be
changed. You select the lines you want changed with the following single-key
commands:

Change "100" to "MAXSIZE"

 File Line
1 init.c 4 char s[100];
2 init.c 26 for (i = 0; i < 100; i++)
3 find.c 8 if (c < 100) {
4 read.c 12 f = (bb & 0100);
5 err.c 19 p = total/100.0; /* get percentage */

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
Select lines to change (press the ? key for help):

Table 4-3 Commands for Selecting Lines to be Changed

1-9 Mark or unmark the line to be changed.

* Mark or unmark all displayed lines to be changed.

Space Display the next set of lines.

+ Display the next set of lines.

– Display the previous set of lines.

a Mark all lines to be changed.

^d Change the marked lines and exit.

Esc Exit without changing the marked lines.

cscope:Interactively Examining a C Program 99

4

In this case, enter 1, 2, and 3. The numbers you type are not printed on the
screen. Instead, cscope marks each list item you want to be changed by
printing a > (greater than) symbol after its line number in the list.

cscope Function: Marking Lines to be Changed:

Now type ^d to change the selected lines. cscope displays the lines that have
been changed and prompts you to continue.

cscope Function: Displaying Changed Lines of Text:

When you press Return in response to this prompt, cscope redraws the
screen, restoring it to its state before you selected the lines to be changed.

Change "100" to "MAXSIZE"

 File Line
1>init.c 4 char s[100];
2>init.c 26 for (i = 0; i < 100; i++)
3>find.c 8 if (c < 100) {
4 read.c 12 f = (bb & 0100);
5 err.c 19 p = total/100.0; /* get percentage */

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
Select lines to change (press the ? key for help):

Changed lines:

char s[MAXSIZE];
for (i = 0; i < MAXSIZE; i++)
if (c < MAXSIZE) {

Press the RETURN key to continue:

100 C User’s Guide

4

The next step is to add the #define for the new symbol MAXSIZE. Because
the header file in which the #define is to appear is not among the files whose
lines are displayed, you must escape to the shell by typing ! . The shell prompt
appears at the bottom of the screen. Then enter the editor and add the
#define .

cscope Function: Exiting to the Shell:

To resume the cscope session, quit the editor and type ^d to exit the shell.

Adding an Argument to a Function

Adding an argument to a function involves two steps: editing the function
itself and adding the new argument to every place in the code where the
function is called.

First, edit the function by using the second menu item, Find this global
definition . Next, find out where the function is called. Use the fourth
menu item, Find functions calling this function , to obtain a list of all
the functions that call it. With this list, you can either invoke the editor for
each line found by entering the list number of the line individually, or invoke

Text string: 100

 File Line
1 init.c 4 char s[100];
2 init.c 26 for (i = 0; i < 100; i++)
3 find.c 8 if (c < 100) {
4 read.c 12 f = (bb & 0100);
5 err.c 19 p = total/100.0; /* get percentage */

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
$ vi defs.h

cscope:Interactively Examining a C Program 101

4

the editor for all the lines automatically by typing ^e . Using cscope to make
this kind of change ensures that none of the functions you need to edit are
overlooked.

Changing the Value of a Variable

At times, you may want to see how a proposed change affects your code.

Suppose you want to change the value of a variable or preprocessor symbol.
Before doing so, use the first menu item, Find this C symbol , to obtain a list
of references that are affected. Then use the editor to examine each one. This
step helps you predict the overall effects of your proposed change. Later, you
can use cscope in the same way to verify that your changes have been made.

Command-Line Syntax for Editors

cscope invokes the vi editor by default. You can override the default setting
by assigning your preferred editor to the EDITOR environment variable and
exporting EDITOR, as described in “Step 1: Set Up the Environment” on
page 84. However, cscope expects the editor it uses to have a command-line
syntax of the form:

% editor + linenum filename

as does vi . If the editor you want to use does not have this command-line
syntax, you must write an interface between cscope and the editor.

Suppose you want to use ed . Because ed does not allow specification of a line
number on the command-line, you cannot use it to view or edit files with
cscope unless you write a shell script that contains the following line:

Let’s name the shell script myedit . Now set the value of EDITOR to your shell
script and export EDITOR:

In a Bourne shell, type:

$ EDITOR=myedit; export EDITOR

In a C shell, type:

% setenv EDITOR myedit

/usr/bin/ed $2

102 C User’s Guide

4

When cscope invokes the editor for the list item you have specified, say, line
17 in main.c , it invoke your shell script with the command-line:

% myedit +17 main.c

myedit then discards the line number ($1) and calls ed correctly with the file
name ($2). Of course, you are not moved automatically to line 17 of the file
and must execute the appropriate ed commands to display and edit the line.

Unknown Terminal Type Error
If you see the error message:

Sorry, I don't know how to deal with your "term" terminal

your terminal may not be listed in the Terminal Information Utilities
(terminfo) database that is currently loaded. Make sure you have assigned
the correct value to TERM. If the message reappears, try reloading the Terminal
Information Utilities.

If this message is displayed:

Sorry, I need to know a more specific terminal type than "unknown"

set and export the TERM variable as described in “Step 1: Set Up the
Environment” on page 84.

SourceBrowser
The SourceBrowser is an interactive tool to aid programmers in the
development and maintenance of software systems, particularly large ones.
Because the SourceBrowser builds a database and uses it to respond to queries,
once the database it built, the size of the code you are browsing has minimal
impact on SourceBrowser’s speed.

SourceBrowser can find all occurrences of any symbol of your choice, including
those found in header files. It can be used from either a command-line or
window environment.

SourceBrowser uses a “what-you-see-is-what-you-browse” paradigm. The
source code you manipulate is the same source code SourceBrowser uses in its
searches, hence you can edit code from within the SourceBrowser itself.

cscope:Interactively Examining a C Program 103

4

SourceBrowser is designed to be used with multiple languages. In addition to
C, it can be used with FORTRAN and C++, or with (SPARC) Pascal.

104 C User’s Guide

4

105

lint Source Code Checker 5

This chapter describes lint , the C source code checker.

Overview of the lint Program
lint is a program that checks your C code for errors that may cause your C
program not to compile or to execute with unexpected results. In many cases,
lint warns you about incorrect, error-prone, or nonstandard code that the
compiler does not necessarily flag.

lint issues every error and warning message produced by the C compiler. It
also issues lint –specific warnings about potential bugs and portability
problems. Many messages issued by lint can assist you in improving your
program’s effectiveness, including reducing its size and required memory.

lint is invoked on the command line, and can be invoked with multiple
options. lint operates in two modes:

• Basic, which is the default for the lint program
• Enhanced, which includes everything done by basic lint , plus provides

additional, detailed analysis of code

Locale of lint error messages is the same as for cc , see page 54.

106 C User’s Guide

5

Basic and Enhanced lint Functionality
In both basic and enhanced modes, lint compensates for separate and
independent compilation in C by flagging inconsistencies in definition and use
across files, including any libraries you have used. In a large project
environment especially, where the same function may be used by different
programmers in hundreds of separate modules of code, lint can help
discover bugs that otherwise might be difficult to find. A function called with
one less argument than expected, for example, looks at the stack for a value the
call has never pushed, with results correct in one condition, incorrect in
another, depending on whatever happens to be in memory at that stack
location. By identifying dependencies like this one and dependencies on
machine architecture as well, lint can improve the reliability of code run on
your machine or someone else's.

In enhanced mode, lint provides more detailed reporting than in basic mode.
In enhanced mode, lint ’s capabilities include:

• Structure and flow analysis of the source program
• Constant propagations and constant expression evaluations
• Analysis of control flow and data flow
• Analysis of data types usage

In enhanced mode, lint can detect these problems:

• Unused #include directives, variables, and procedures
• Memory usage after its deallocation
• Unused assignments
• Usage of a variable value before its initialization
• Deallocation of nonallocated memory
• Usage of pointers when writing in constant data segments
• Nonequivalent macro redefinitions
• Unreached code
• Conformity of the usage of value types in unions
• Implicit casts of actual arguments.

lint Source Code Checker 107

5

Using lint

Invoke the basic lint program as follows:

% lint file1.c file2.c

Enhanced lint is invoked with the –Nlevel or –Ncheck option. For example,
you can invoke enhanced lint as follows:

% lint –Nlevel=3 file1.c file2.c

lint examines code in two passes. In the first pass, lint checks for error
conditions within C source files; in the second pass, it checks for
inconsistencies across C source files. This process is invisible to the user unless
lint is invoked with –c :

% lint –c file1.c file2.c

That command directs lint to execute the first pass only and collect
information relevant to the second—about inconsistencies in definition and use
across file1.c and file2.c —in intermediate files named file1.ln and file2.ln :

This way, the –c option to lint is analogous to the –c option to cc , which
suppresses the link editing phase of compilation. Generally speaking, lint 's
command-line syntax closely follows cc 's.

When the .ln files are lint ed:

% lint file1.ln file2.ln

the second pass is executed. lint processes any number of .c or .ln files in
their command-line order. Thus,

% lint file1.ln file2.ln file3.c

directs lint to check file3.c for errors internal to it and all three files for
consistency.

lint searches directories for included header files in the same order as cc .
You can use the –I option to lint as you would the –I option to cc . See
“Include Files” on page 64

% ls
file1.c
file1.ln
file2.c
file2.ln

108 C User’s Guide

5

You can specify multiple options to lint on the same command line. Options
can be concatenated unless one of the options takes an argument or if the
option has more than one letter:

% lint –cp –I dir1 –I dir2 file1.c file2.c

That command directs lint to:

• Execute the first pass only
• Perform additional portability checks
• Search the specified directories for included header files

lint has many options you can use to direct lint to perform certain tasks
and report on certain conditions.

The lint Options
lint is a static analyzer. It cannot evaluate the runtime consequences of the
dependencies it detects. Certain programs, for instance, may contain hundreds
of unreachable break statements that are of little importance, but which lint
flags nevertheless. This is one example where the lint command-line options
and directives—special comments embedded in the source text—come in:

• You can invoke lint with the –b option to suppress all the error messages
about unreachable break statements.

• You can precede any unreachable statement with the comment
/* NOTREACHED */ to suppress the diagnostic for that statement.

The lint options are listed below alphabetically. Several lint options relate
to suppressing lint diagnostic messages. These options are also listed in
Table 5-5, following the alphabetized options, along with the specific messages
they suppress. The options for invoking enhanced lint begin with –N.

lint recognizes many cc command-line options, including –A, –D, –E, –g , –H,
–O, –P, –U, –Xa, –Xc , –Xs , –Xt , and –Y, although –g and –O are ignored.
Unrecognized options are warned about and ignored.

–#

Turns on verbose mode, showing each component as it is invoked.

lint Source Code Checker 109

5

–###

Shows each component as it is invoked, but does not actually execute it.

–a

Suppresses certain messages. Refer to Table 5-5.

–b

Suppresses certain messages. Refer to Table 5-5.

–Cfilename

Creates a .ln file with the file name specified. These .ln files are the product
of lint 's first pass only. filename can be a complete path name.

–c

Creates a .ln file consisting of information relevant to lint 's second pass for
every .c file named on the command line. The second pass is not executed.

–dirout= dir

Specifies the directory dir where the lint output files (.ln files) will be
placed. This option affects the –c option.

–err=warn

Treats all warnings as errors. The result is that both errors and warnings cause
lint to exit with a failure status.

-errchk= l

Check structural arguments passed by value; Check portability to environment
for which the size of long integers and pointers is 64 bits.

110 C User’s Guide

5

l is a comma-separated list of checks that consists of one or more of the
following:

 structarg

Check structural arguments passed by value and report the cases when
formal parameter type is not known.

longptr64

Check portability to environment for which the size of long integers and
pointers is 64 bits and the size of plain integers is 32 bits. Check assignments
of pointer expressions and long integer expressions to plain integers, even
when explicit cast is used.

%all

Perform all of errchk 's checks.

%none

 Perform none of errchk 's checks. This is the default.

no%structarg

 Perform none of errchk 's structarg checks.

no%longptr64

 Perform none of errchk 's longptr64 checks.

The values may be a comma separated list, for example
-errchk=longptr64,structarg .

The default is -errchk=%none . Specifying -errchk is equivalent to
specifying -errchk=%all .

lint Source Code Checker 111

5

–errfmt= f

Specifies the format of lint output. f can be one of the following: macro ,
simple , src , or tab .

The default is –errfmt=tab . Specifying –errfmt is equivalent to specifying
–errfmt=tab .

If more than one format is specified, the last format specified is used, and lint
warns about the unused formats.

–errhdr= h

Enables the reporting of certain messages for header files when used with
–Ncheck . h is a comma-separated list that consists of one or more of the
following: dir, no%dir, %all , %none, %user .

Table 5-1 The –errfmt Values

Value Meaning

macro Displays the source code, the line number, and the place of the
error, with macro unfolding

simple Displays the line number and the place number, in brackets, of the
error, for one-line (simple) diagnostic messages. Similar to the –s
option, but includes error-position information

src Displays the source code, the line number, and the place of the
error (no macro unfolding)

tab Displays in tabular format. This is the default.

Table 5-2 The –errhdr Values

Value Meaning

dir Checks header files used in the directory dir

no%dir Does not check header files used in the directory dir

112 C User’s Guide

5

The default is –errhdr=%none . Specifying –errhdr is equivalent to
specifying –errhdr=%user .

Examples:

% lint –errhdr=inc1 –errhdr=../inc 2

checks used header files in directories inc1 and ../inc2 .

% lint –errhdr=%all,no%../inc

checks all used header files except those in the directory ../inc .

–erroff= t

Suppresses or enables lint error messages.

t is a comma-separated list that consists of one or more of the following: tag,
no%tag, %all , %none.

The default is –erroff=%none . Specifying –erroff is equivalent to
specifying –erroff=%all .

%all Checks all used header files

%none Does not check header files. This is the default.

%user Checks all used user header files, that is, all header files except
those in /usr/include and its subdirectories, as well as those
supplied by the compiler

Table 5-3 The –erroff Values

Value Meaning

tag Suppresses the message specified by this tag. You can display the
tag for a message by using the –errtags=yes option.

no%tag Enables the message specified by this tag

%all Suppresses all messages

%none Enables all messages. This is the default.

Table 5-2 The –errhdr Values (Continued)

Value Meaning

lint Source Code Checker 113

5

Examples:

% lint –erroff=%all,no%E_ENUM_NEVER_DEF,no%E_STATIC_UNUSED

prints only the messages “enum never defined” and “static unused”, and
suppresses other messages.

% lint –erroff=E_ENUM_NEVER_DEF,E_STATIC_UNUSED

suppresses only the messages “enum never defined” and “static unused”.

–errtags= a

Displays the message tag for each error message. a can be either yes or no . The
default is –errtags=no . Specifying –errtags is equivalent to specifying
–errtags=yes .

Works with all –errfmt options.

–F

Prints the path names as supplied on the command line rather than only their
base names when referring to the .c files named on the command line.

–fd

Reports about old-style function definitions or declarations.

–flagsrc= file

Executes lint with options contained in the file file. Multiple options can be
specified in file, one per line.

–h

Suppresses certain messages. Refer to Table 5-5.

–I dir

Searches the directory dir for included header files.

114 C User’s Guide

5

–k

Alter the behavior of /* LINTED [message] */ directives or
NOTE(LINTED(message)) annotations. Normally, lint suppresses warning
messages for the code following these directives. Instead of suppressing the
messages, lint prints an additional message containing the comment inside
the directive or annotation.

–Ldir

Searches for a lint library in the directory dir when used with –l .

–l x

Accesses the lint library llib-l x.ln .

–m

Suppresses certain messages. Refer to Table 5-5.

–Ncheck= c

Checks header files for corresponding declarations; checks macros. c is a
comma-separated list of checks that consists of one or more of the following:
macro , extern , %all , %none, no%macro, no%extern .

Table 5-4 The –Ncheck Values

Value Meaning

macro Checks for consistency of macro definitions across files

extern Checks for one-to-one correspondence of declarations between
source files and their associated header files (for example, for
file1.c and file1.h). Ensure that there are neither extraneous
nor missing extern declarations in a header file.

%all Performs all of –Ncheck ’s checks

lint Source Code Checker 115

5

The default is –Ncheck=%none . Specifying –Ncheck is equivalent to
specifying –Ncheck=%all .

Values may be combined with a comma, for example,
–Ncheck=extern,macro.

Example:

% lint –Ncheck=%all,no%macro

performs all checks except macro checks.

–Nlevel= n

Specifies the level of analysis for reporting problems. This option allows you to
control the amount of detected errors. The higher the level, the longer the
verification time. n is a number: 1, 2, 3, or 4.

–Nlevel=1

Analyzes single procedures. Reports unconditional errors that occur on
some program execution paths. Does not do global data and control flow
analysis.

–Nlevel=2

The default. Analyzes the whole program, including global data and
control flow. Reports unconditional errors that occur on some program
execution paths.

–Nlevel=3

Analyzes the whole program, including constant propagation, cases
when constants are used as actual arguments, as well as the analysis
performed under –Nlevel=2 .

%none Performs none of –Ncheck ’s checks. This is the default.

no%macro Performs none of –Ncheck ’s macro checks

no%extern Performs none of –Ncheck ’s extern checks

Table 5-4 The –Ncheck Values (Continued)

Value Meaning

116 C User’s Guide

5

–Nlevel=4

Analyzes the whole program, and reports conditional errors that could
occur when certain program execution paths are used, as well as the
analysis performed under –Nlevel=3 .

The default is –Nevel=2 . Specifying –Nlevel is equivalent to specifying
–Nlevel=2 .

–n

Suppresses checks for compatibility with the default lint standard C library.

–ox

Causes lint to create a lint library with the name llib-l x.ln . This library
is created from all the .ln files that lint used in its second pass. The –c
option nullifies any use of the –o option. To produce a llib-l x.ln without
extraneous messages, you can use the –x option. The –v option is useful if the
source file(s) for the lint library are just external interfaces. The lint library
produced can be used later if lint is invoked with –l x.

By default, you create libraries in lint ’s basic format. If you use lint ’s
enhanced mode, the library created will be in enhanced format, and can only
be used in enhanced mode.

–p

Enables certain messages relating to portability issues.

–Rfile

Write a .ln file to file, for use by cxref (1). This option disables the enhanced
mode, if it is switched on.

–s

Converts compound messages into simple ones.

lint Source Code Checker 117

5

–u

Suppresses certain messages. Refer to Table 5-5. This option is suitable for
running lint on a subset of files of a larger program.

–V

Writes the product name and releases to standard error.

–v

Suppresses certain messages. Refer to Table 5-5.

–Wfile

Write a .ln file to file, for use by cflow (1). This option disables the enhanced
mode, if it is switched on.

–x

Suppresses certain messages. Refer to Table 5-5.

–XCC=a

Accepts C++-style comments. In particular, // can be used to indicate the start
of a comment. a can be either yes or no . The default is –XCC=no. Specifying –
XCC is equivalent to specifying –XCC=yes.

–Xexplicitpar= a

(SPARC) Directs lint to recognize #pragma MP directives. a can be either yes
or no . The default is –Xexplicitpar=no . Specifying –Xexplicitpar is
equivalent to specifying –Xexplicitpar=yes .

118 C User’s Guide

5

–Xkeeptmp= a

Keeps temporary files created during lint ing instead of deleting them
automatically. a can be either yes or no . The default is –Xkeeptmp=no .
Specifying –Xkeeptmp is equivalent to specifying –Xkeeptmp=yes .

–Xtemp= dir

Sets the directory for temporary files to dir. Without this option, temporary files
go into /tmp .

–Xtime= a

Reports the execution time for each lint pass. a can be either yes or no . The
default is –Xtime=no . Specifying –Xtime is equivalent to specifying
–Xtime=yes .

–Xtransition= a

Issues warnings for the differences between K&R C and Sun ANSI C. a can be
either yes or no . The default is –Xtransition=no . Specifying
–Xtransition is equivalent to specifying –Xtransition=yes .

–y

Treats every .c file named on the command line as if it begins with the
directive /* LINTLIBRARY */ or the annotation NOTE(LINTLIBRARY). A
lint library is normally created using the /* LINTLIBRARY */ directive or
the NOTE(LINTLIBRARY) annotation.

lint Source Code Checker 119

5

lint Messages
Most of lint 's messages are simple, one-line statements printed for each
occurrence of the problem they diagnose. Errors detected in included files are
reported multiple times by the compiler, but only once by lint , no matter how
many times the file is included in other source files. Compound messages are
issued for inconsistencies across files and, in a few cases, for problems within
them as well. A single message describes every occurrence of the problem in
the file or files being checked. When use of a lint filter (see “lint Libraries”
on page 133) requires that a message be printed for each occurrence,
compound diagnostics can be converted to the simple type by invoking lint
with the –s option.

Lint ’s messages are written to stderr .

The Error and Warning Messages File, located in
/opt/SUNWSPRO/READMEs/c_lint_messages , contains all the C compiler
error and warning messages and all the lint program’s messages. Many of
the messages are self-explanatory. You can obtain a description of the messages
and, in many cases, code examples, by searching the text file for a string from
the message that was generated. See the section, “Error and Warning Messages
File” on page xxv for details on using this file.

For a discussion of localization issues, see page 54.

Options to Suppress Messages

You can use several lint options to suppress lint diagnostic messages.
Messages can be suppressed with the –erroff option, followed by one or
more tags. These mnemonic tags can be displayed with the
–errtags=yes option.

120 C User’s Guide

5

Table 5-5 lists the options that suppress lint messages.

lint Message Formats

lint can, with certain options, show precise source file lines with pointers to
the line position where the error occurred. The option enabling this feature is
–errfmt= f. Under this option, lint provides the following information:

• Source line(s) and position(s)
• Macro unfolding
• Error-prone stack(s)

Table 5-5 lint Options and Messages Suppressed

Option Messages Suppressed

–a assignment causes implicit narrowing conversion
conversion to larger integral type may sign-extend incorrectly

–b statement not reached (unreachable break and empty statements)

–h assignment operator "=" found where equality operator
"==" was expected
constant operand to op: "!"
fallthrough on case statements
pointer cast may result in improper alignment
precedence confusion possible; parenthesize
statement has no consequent: if
statement has no consequent: else

–m declared global, could be static

–erroff= t One or more lint messages specified by tag

–u name defined but never used
name used but not defined

–v arguments unused in function

–x name declared but never used or defined

lint Source Code Checker 121

5

For example, the following program, Test1.c , contains an error.

Using lint on Test1.c with the option:

% lint –errfmt=src Test1.c

produces the following output:

The first warning indicates two source lines that are contradictory. The second
warning shows the call stack, with the control flow leading to the error.

1 #include <string.h>
2 static void cpv(char *s, char* v, unsigned n)
3 { int i;
4 for (i=0; i<=n; i++)
5 *v++ = *s++;
6 }
7 void main(int argc, char* argv[])
8 {
9 if (argc != 0)
10 cpv(argv[0], argc, strlen(argv[0]));
11}

 |static void cpv(char *s, char* v, unsigned n)
 | ^ line 2, Test1.c
 |
 | cpv(argv[0], argc, strlen(argv[0]));
 | ^ line 10, Test1.c
warning: improper pointer/integer combination: arg #2
 |
 |static void cpv(char *s, char* v, unsigned n)
 | ^ line 2, Test1.c
 | *v++ = *s++;
 | ^ line 5, Test1.c
warning: modification using a pointer produced in a questionable way

v defined at Test1.c(2)::Test1.c(5)
 call stack:

 main() ,Test1.c(10)
 cpv() ,Test1.c(5)

122 C User’s Guide

5

Another program, Test2.c , contains a different error:

Using lint on Test2.c with the option:

% lint –errfmt=macro Test2.c

produces the following output, showing the steps of macro substitution:

1 #define AA(b) AR[b+l]
2 #define B(c,d) c+AA(d)
3
4 int x=0;
5
6 int AR[10]={1,2,3,4,5,6,77,88,99,0};
7
8 main()
9 {
10 int y=-5, z=5;
11 return B(y,z);
12 }

 | return B(y,z);
 | ^ line 11, Test2.c
 |
 |#define B(c,d) c+AA(d)
 | ^ line 2, Test2.c
 |
 |#define AA(b) AR[b+l]
 | ^ line 1, Test2.c
error: undefined symbol: l

lint Source Code Checker 123

5

lint Directives

Predefined Values

 The following predefinitions are valid in all modes:

_ _sun

_ _unix

_ _lint

_ _SUNPRO_C=0x420

_ _‘uname –s‘_‘uname –r‘ (example: _ _SunOS_5_4)

_ _RESTRICT (–Xa and –Xt modes only)

_ _sparc (SPARC)

_ _i386 (Intel)

_ _BUILTIN_VA_ARG_INCR

_ _SVR4

_ _LITTLE_ENDIAN (PowerPC)

_ _ppc (PowerPC)

 These predefinitions are not valid in –Xc mode:

sun

unix

sparc (SPARC)

i386 (Intel)

lint

124 C User’s Guide

5

Directives

lint directives in the form of /*...*/ are supported for existing annotations,
but will not be supported for future annotations. Directives in the form of
source code annotations, NOTE(...) , are recommended for all annotations.

Specify lint directives in the form of source code annotations by including
the file note.h , for example:

#include <note.h>

Lint shares the Source Code Annotations scheme with several other tools.
When you install the SunSoft ANSI C Compiler, you also automatically install
the file /usr/lib/note/SUNW_SPRO-lint , which contains the names of all
the annotations that LockLint understands. However, the SunSoft C source
code checker, lint, also checks all the files in /usr/lib/note and
/opt/SUNWspro/ <current-release>/note for all valid annotations.

You may specify a location other than /usr/lib/note by setting the
environment variable NOTEPATH, as in:

setenv NOTEPATH $NOTEPATH: other_location

lint Source Code Checker 125

5

Table 5-6 lists the lint directives along with their actions.

Table 5-6 lint Directives

Directive Action

NOTE(ALIGNMENT(fname,n))
where n=1, 2, 4, 8,
16, 32, 64, 128

Makes lint set the following function result alignment in n bytes. For example,
malloc() is defined as returning a char * or void * when in fact it really returns
pointers that are word, or even doubleword, aligned.
Suppresses the following message:

improper alignment

NOTE(ARGSUSED(n))
/*ARGSUSEDn*/

This directive acts like the –v option for the next function.
Suppresses the following message:

argument unused in function
for every argument but the first n in the function definition it precedes. Default is 0.
For the NOTE format, n must be specified.

NOTE(ARGUNUSED(par_name[,
par_name...]))

Makes lint not check the mentioned arguments for usage (this option acts only for
the next function).
Suppresses the following message:

argument unused in function
for every argument listed in NOTE or directive.

NOTE(CONSTCOND)
/*CONSTCOND*/

Suppresses complaints about constant operands for the conditional expression.
Suppresses the following messages:

constant in conditional context
constant operands to op: "!"
logical expression always false: op "&&"
logical expression always true: op "||"

for the constructs it precedes. Also NOTE(CONSTANTCONDITION) or
/* CONSTANTCONDITION */ .

NOTE(EMPTY)
/*EMPTY*/

Suppresses complaints about a null statement consequent on an if statement. This
directive should be placed after the test expression, and before the semicolon. This
directive is supplied to support empty if statements when a valid else statement
follows. It suppresses messages on an empty else consequent.
Suppresses the following messages:

statement has no consequent: else
when inserted between the else and semicolon;

statement has no consequent: if
when inserted between the controlling expression of the if and semicolon.

126 C User’s Guide

5

NOTE(FALLTHRU)
/*FALLTHRU*/

Suppresses complaints about a fall through to a case or default labelled statement.
This directive should be placed immediately preceding the label.
Suppresses the following message:

fallthrough on case statement
for the case statement it precedes. Also NOTE(FALLTHROUGH) or /* FALLTHROUGH
*/.

NOTE(LINTED (msg))
/*LINTED [msg]*/

Suppresses any intra-file warning except those dealing with unused variables or
functions. This directive should be placed on the line immediately preceding where
the lint warning occurred. The –k option alters the way in which lint handles this
directive. Instead of suppressing messages, lint prints an additional message, if any,
contained in the comments. This directive is useful in conjunction with the –s option
for post-lint filtering.
When –k is not invoked, suppresses every warning pertaining to an intra-file problem,
except:

argument unused in function
declarations unused in block
set but not used in function
static unused
variable not used in function

for the line of code it precedes. msg is ignored.

NOTE(LINTLIBRARY)
/*LINTLIBRARY*/

When –o is invoked, writes to a library .ln file only definitions in the .c file it heads.
This directive suppresses complaints about unused functions and function arguments
in this file.

NOTE(NOTREACHED)
/*NOTREACHED*/

At appropriate points, stops comments about unreachable code. This comment is
typically placed just after calls to functions such as exit (2).
Suppresses the following messages:

statement not reached
for the unreached statements it precedes;

fallthrough on case statement
for the case it precedes that cannot be reached from the preceding case ;

function falls off bottom without returning value
for the closing curly brace it precedes at the end of the function.

Table 5-6 lint Directives (Continued)

Directive Action

lint Source Code Checker 127

5

NOTE(PRINTFLIKE(n))
NOTE(PRINTFLIKE (fun_name,n))
/*PRINTFLIKE n*/

Treats the nth argument of the function definition it precedes as a [fs]printf()
format string and issues the following messages:

malformed format strings
for invalid conversion specifications in that argument, and function argument type
inconsistent with format;

too few arguments for format
too many arguments for format

for mismatches between the remaining arguments and the conversion specifications.
lint issues these warnings by default for errors in the calls to [fs]printf()
functions provided by the standard C library.
For the NOTE format, n must be specified.

NOTE(PROTOLIB(n))
/*PROTOLIB n*/

When n is 1 and NOTE(LINTLIBRARY) or /* LINTLIBRARY */ is used, writes to a
library .ln file only function prototype declarations in the .c file it heads. The
default is 0, which cancels the process.
For the NOTE format, n must be specified.

NOTE(SCANFLIKE(n))
NOTE(SCANLIKE(fun_name,n))
/*SCANFLIKE n*/

Same as NOTE(PRINTFLIKE(n)) or /* PRINTFLIKE n */ , except that the nth
argument of the function definition is treated as a [fs]scanf() format string. By
default, lint issues warnings for errors in the calls to [fs]scanf() functions
provided by the standard C library.
For the NOTE format, n must be specified.

NOTE(VARARGS(n))
NOTE(VARARGS(fun_name,n))
/*VARARGSn*/

Suppresses the usual checking for variable numbers of arguments in the following
function declaration. The data types of the first n arguments are checked; a missing n
is taken to be 0. The use of the ellipsis (...) terminator in the definition is suggested in
new or updated code.
For the function whose definition it precedes, suppresses the following message:

functions called with variable number of arguments
for calls to the function with n or more arguments.
For the NOTE format, n must be specified.

Table 5-6 lint Directives (Continued)

Directive Action

128 C User’s Guide

5

lint Reference and Examples
This section provides reference information on lint , including checks
performed by lint , lint libraries, and lint filters.

Checks Performed by lint

lint -specific diagnostics are issued for three broad categories of conditions:
inconsistent use, nonportable code, and questionable constructs. In this
section, we review examples of lint 's behavior in each of these areas, and
suggest possible responses to the issues they raise.

Consistency Checks

Inconsistent use of variables, arguments, and functions is checked within files
as well as across them. Generally speaking, the same checks are performed for
prototype uses, declarations, and parameters as lint checks for old-style
functions. If your program does not use function prototypes, lint checks the
number and types of parameters in each call to a function more strictly than
the compiler. lint also identifies mismatches of conversion specifications and
arguments in [fs]printf() and [fs]scanf() control strings.

Examples:

• Within files, lint flags non-void functions that “fall off the bottom”
without returning a value to the invoking function. In the past,
programmers often indicated that a function was not meant to return a
value by omitting the return type: fun() {} . That convention means
nothing to the compiler, which regards fun() as having the return type
int . Declare the function with the return type void to eliminate the
problem.

• Across files, lint detects cases where a non-void function does not return
a value, yet is used for its value in an expression—and the opposite
problem, a function returning a value that is sometimes or always ignored
in subsequent calls. When the value is always ignored, it may indicate an
inefficiency in the function definition. When it is sometimes ignored, it's
probably bad style (typically, not testing for error conditions). If you need
not check the return values of string functions like strcat() , strcpy() ,
and sprintf() , or output functions like printf() and putchar() , cast
the offending calls to void .

lint Source Code Checker 129

5

• lint identifies variables or functions that are declared but not used or
defined; used, but not defined; or defined, but not used. When lint is
applied to some, but not all files of a collection to be loaded together, it
produces error messages about functions and variables that are:
• Declared in those files, but defined or used elsewhere
• Used in those files, but defined elsewhere
• Defined in those files, but used elsewhere

Invoke the –x option to suppress the first complaint, –u to suppress the
latter two.

Portability Checks

Some nonportable code is flagged by lint in its default behavior, and a few
more cases are diagnosed when lint is invoked with –p or –Xc . The latter
causes lint to check for constructs that do not conform to the ANSI C
standard. For the messages issued under –p and –Xc , see “lint Libraries” on
page 133.

Examples:

• In some C language implementations, character variables that are not
explicitly declared signed or unsigned are treated as signed quantities
with a range typically from –128 to 127. In other implementations, they are
treated as nonnegative quantities with a range typically from 0 to 255. So
the test:

where EOF has the value –1, always fails on machines where character
variables take on nonnegative values. lint invoked with –p checks all
comparisons that imply a plain char may have a negative value. However,
declaring c a signed char in the above example eliminates the diagnostic,
not the problem. That's because getchar() must return all possible
characters and a distinct EOF value, so a char cannot store its value. We
cite this example, perhaps the most common one arising from
implementation-defined sign-extension, to show how a thoughtful
application of lint 's portability option can help you discover bugs not
related to portability. In any case, declare c as an int .

char c;
c = getchar();
if (c == EOF) ...

130 C User’s Guide

5

• A similar issue arises with bit-fields. When constant values are assigned to
bit-fields, the field may be too small to hold the value. On a machine that
treats bit-fields of type int as unsigned quantities, the values allowed for
int x:3 range from 0 to 7, whereas on machines that treat them as signed
quantities, they range from –4 to 3. However, a three-bit field declared type
int cannot hold the value 4 on the latter machines. lint invoked with –p
flags all bit-field types other than unsigned int or signed int . These
are the only portable bit-field types. The compiler supports int , char ,
short , and long bit-field types that may be unsigned , signed , or plain. It
also supports the enum bit-field type.

• Bugs can arise when a larger-sized type is assigned to a smaller-sized type.
If significant bits are truncated, accuracy is lost:

lint flags all such assignments by default; the diagnostic can be
suppressed by invoking the –a option. Bear in mind that you may be
suppressing other diagnostics when you invoke lint with this or any other
option. Check the list in “lint Libraries” on page 133 for the options that
suppress more than one diagnostic.

• A cast of a pointer to one object type to a pointer to an object type with
stricter alignment requirements may not be portable. lint flags:

because, on most machines, an int cannot start on an arbitrary byte
boundary, whereas a char can. You can suppress the diagnostic by
invoking lint with –h , although, again, you may be disabling other
messages. Better still, eliminate the problem by using the generic pointer
void * .

• ANSI C leaves the order of evaluation of complicated expressions
undefined. That is, when function calls, nested assignment statements, or
the increment and decrement operators cause side effects when a variable is

short s;
long l;
s = l;

int *fun(y)
char *y;
{

return(int *)y;
}

lint Source Code Checker 131

5

changed as a by-product of the evaluation of an expression, the order in
which the side effects take place is highly machine-dependent. By default,
lint flags any variable changed by a side effect and used elsewhere in the
same expression:

In this example, the value of a[1] may be 1 if one compiler is used, 2 if
another. The bitwise logical operator & can give rise to this diagnostic when
it is mistakenly used in place of the logical operator &&:

Questionable Constructs

lint flags a miscellany of legal constructs that may not represent what the
programmer intended. Examples:

• An unsigned variable always has a nonnegative value. So the test:

always fails. The test:

is equivalent to:

int a[10];
main()
{

int i = 1;
a[i++] = i;

}

if ((c = getchar()) != EOF & c != '0')

unsigned x;
if (x < 0) ...

unsigned x;
if (x > 0) ...

if (x != 0) ...

132 C User’s Guide

5

This may not be the intended action. lint flags questionable comparisons
of unsigned variables with negative constants or 0. To compare an
unsigned variable to the bit pattern of a negative number, cast it to
unsigned :

Or use the U suffix:

• lint flags expressions without side effects that are used in a context where
side effects are expected—that is, where the expression may not represent
what the programmer intends. It issues an additional warning whenever
the equality operator is found where the assignment operator is
expected—that is, where a side effect is expected:

• lint cautions you to parenthesize expressions that mix both the logical and
bitwise operators (specifically, &, | , ^ , <<, >>), where misunderstanding of
operator precedence may lead to incorrect results. Because the precedence
of bitwise &, for example, falls below logical ==, the expression:

is evaluated as:

which is most likely not what you intended. Invoking lint with –h
disables the diagnostic.

if (u == (unsigned) –1) ...

if (u == –1U) ...

int fun()
{

int a, b, x, y;
(a = x) && (b == y);

}

if (x & a == 0) ...

if (x & (a == 0)) ...

lint Source Code Checker 133

5

lint Libraries

You can use lint libraries to check your program for compatibility with the
library functions you have called in it—the declaration of the function return
type, the number and types of arguments the function expects, and so on. The
standard lint libraries correspond to libraries supplied by the C compilation
system, and generally are stored in a standard place on your system. By
convention, lint libraries have names of the form llib-l x.ln .

The lint standard C library, llib-lc.ln , is appended to the lint
command line by default; checks for compatibility with it can be suppressed by
invoking the –n option. Other lint libraries are accessed as arguments to –l .
That is:

% lint –l x file1.c file2.c

directs lint to check the usage of functions and variables in file1.c and
file2.c for compatibility with the lint library llib-l x.ln . The library
file, which consists only of definitions, is processed exactly as are ordinary
source files and ordinary .ln files, except that functions and variables used
inconsistently in the library file, or defined in the library file but not used in
the source files, elicit no complaints.

To create your own lint library, insert the directive NOTE(LINTLIBRARY) at
the head of a C source file, then invoke lint for that file with the –o option
and the library name given to –l :

% lint –o x file1.c file2.c

causes only definitions in the source files headed by NOTE(LINTLIBRARY) to
be written to the file llib-l x.ln . (Note the analogy of lint –o to cc –o .)
A library can be created from a file of function prototype declarations in the
same way, except that both NOTE(LINTLIBRARY) and
NOTE(PROTOLIB(n)) must be inserted at the head of the declarations file. If n
is 1, prototype declarations are written to a library .ln file just as are old-style
definitions. If n is 0, the default, the process is cancelled. Invoking lint with
–y is another way of creating a lint library. The command line:

% lint –y –o x file1.c file2.c

causes each source file named on that line to be treated as if it begins with
NOTE(LINTLIBRARY) , and only its definitions to be written to llib-l x.ln .

134 C User’s Guide

5

By default, lint searches for lint libraries in the standard place. To direct
lint to search for a lint library in a directory other than the standard place,
specify the path of the directory with the –L option:

% lint –L dir –l x file1.c file2.c

In enhanced mode, lint produces .ln files which store additional
information than .ln files produced in basic mode. In enhanced mode, lint
can read and understand all .ln files generated by either basic or enhanced
lint modes. In basic mode, lint can read and understand .ln files generated
only using basic lint mode.

By default, lint uses libraries from the /usr/lib directory. These libraries
are in the basic lint format, that is, libraries shipped with C 3.0.1 and below.
You can run a makefile once, and create enhanced lint libraries in a new
format, which will enable enhanced lint to work more effectively. To run the
makefile and create the new libraries, enter the command:

% cd /opt/SUNWspro/SC4.2/src/lintlib; make

where /opt/SUNWspro/SC4.2 is the installation directory. After the
makefile is run, lint will use the new libraries in enhanced mode, instead of
the libraries in the /usr/lib directory.

The specified directory is searched before the standard place.

lint Filters

A lint filter is a project-specific post-processor that typically uses an awk
script or similar program to read the output of lint and discard messages that
your project has deemed as not identifying real problems—string functions, for
instance, returning values that are sometimes or always ignored. lint filters
generate customized diagnostic reports when lint options and directives do
not provide sufficient control over output.

Two options to lint are particularly useful in developing a filter:

• Invoking lint with –s causes compound diagnostics to be converted into
simple, one-line messages issued for each occurrence of the problem
diagnosed. The easily parsed message format is suitable for analysis by an
awk script.

lint Source Code Checker 135

5

• Invoking lint with –k causes certain comments you have written in the
source file to be printed in output, and can be useful both in documenting
project decisions and specifying the post-processor's behavior. In the latter
instance, if the comment identifies an expected lint message, and the
reported message is the same, the message can be filtered out. To use
–k , insert on the line preceding the code you wish to comment the
NOTE(LINTED(msg)) directive, where msg refers to the comment to be
printed when lint is invoked with –k .

Refer to the list of directives in Table 5-6 for an explanation of what lint
does when –k is not invoked for a file containing NOTE(LINTED(msg)) .

136 C User’s Guide

5

137

ANSI C Data Representations A

This appendix describes how ANSI C represents data in storage and the
mechanisms for passing arguments to functions. It is intended as a guide to
programmers who want to write or use modules in languages other than C and
have those modules interface to C code.

Storage Allocation
Table A-1 shows the data types and how they are represented.

Table A-1 Storage Allocation for Data Types

Data Type Internal Representation

char elements A single 8-bit byte aligned on a byte boundary.

short integers Halfword (two bytes or 16 bits), aligned on a two-byte
boundary

int and long 32 bits (four bytes or one word), aligned on a four-byte
boundary

long long 1 (SPARC) (PowerPC) 64 bits (eight bytes or two words), aligned
on an eight-byte boundary
(Intel) 64 bits (eight bytes or two words), aligned on a four-byte
boundary

138 C User’s Guide

A

Data Representations
Bit numberings of any given data element depend on the architecture in use:
SPARCstation™ machines use bit 0 as the least significant bit, with byte 0
being the most significant byte. The tables in this section describe the various
representations.

Integer Representations

Integer types used in ANSI C are short , int , long , and long long :

1. long long is not available in -Xc mode.

float 32 bits (four bytes or one word), aligned on a four-byte
boundary. A float has a sign bit, 8-bit exponent, and 23-bit
fraction.

double 64 bits (eight bytes or two words), aligned on an eight-byte
boundary (SPARC) (PowerPC) or aligned on a four-byte
boundary (Intel). A double element has a sign bit, an 11-bit
exponent and a 52-bit fraction.

long double (SPARC) 128 bits (16 bytes or four words), aligned on an eight-
byte boundary. A long double element has a sign bit, a 15-
bit exponent and a 112-bit fraction.
(PowerPC) 128 bits (16 bytes or four words), aligned on a16-byte
boundary. A long double element has a sign bit, a 15-bit
exponent and a 112-bit fraction.
(Intel) 96 bits (12 bytes or three words) aligned on a four-byte
boundary. A long double element has a sign bit, a 16-bit
exponent, and a 64-bit fraction. 16 bits are unused.

Table A-2 Representation of short

Bits Content

8 - 15 Byte 0 (SPARC)
Byte 1 (Intel) (PowerPC)

0 - 7 Byte 1 (SPARC)
Byte 0 (Intel) (PowerPC)

Table A-1 Storage Allocation for Data Types (Continued)

Data Type Internal Representation

ANSI C Data Representations 139

A

1. long long is not available in -Xc mode.

Table A-3 Representation of int and long

Bits Content

24 - 31 Byte 0 (SPARC)
Byte 3 (Intel) (PowerPC)

16 - 23 Byte 1 (SPARC)
Byte 2 (Intel) (PowerPC)

8 - 15 Byte 2 (SPARC)
Byte 1 (Intel) (PowerPC)

0 - 7 Byte 3 (SPARC)
Byte 0 (Intel) (PowerPC)

Table A-4 Representation of long long 1

Bits Content

56 - 63 Byte 0 (SPARC)
Byte 7 (Intel) (PowerPC)

48 - 55 Byte 1 (SPARC)
Byte 6 (Intel) (PowerPC)

40 - 47 Byte 2 (SPARC)
Byte 5 (Intel) (PowerPC)

32 - 39 Byte 3 (SPARC)
Byte 4 (Intel) (PowerPC)

24 - 31 Byte 4 (SPARC)
Byte 3 (Intel) (PowerPC)

16 - 23 Byte 5 (SPARC)
Byte 2 (Intel) (PowerPC)

8 - 15 Byte 6(SPARC)
Byte 1 (Intel) (PowerPC)

0 - 7 Byte 7 (SPARC)
Byte 0 (Intel) (PowerPC)

140 C User’s Guide

A

Floating-Point Representations

float , double , and long double data elements are represented according
to the ANSI IEEE 754-1985 standard. The representation is:

(-1) s2(e - bias) × j.f

where:

• s = sign

• e = biased exponent

• j is the leading bit, determined by the value of e. In the case of
long double (Intel), the leading bit is explicit; in all other cases, it is
implicit.

• f = fraction

• u means that the bit can be either 0 or 1.

The following tables show the position of the bits.

Table A-5 float Representation

Bits Name

31 Sign

23 - 30 Exponent

0 - 22 Fraction

Table A-6 double Representation

Bits Name

63 Sign

52 - 62 Exponent

0 - 51 Fraction

ANSI C Data Representations 141

A

For further information, refer to the Numerical Computation Guide.

Exceptional Values

float and double numbers are said to contain a “hidden,” or implied, bit,
providing for one more bit of precision than would otherwise be the case. In
the case of long double , the leading bit is implicit (SPARC) (PowerPC) or
explicit (Intel); this bit is 1 for normal numbers, and 0 for subnormal numbers.

Table A-7 long double Representation (SPARC) (PowerPC)

Bits Name

127 Sign

112 - 126 Exponent

0 - 111 Fraction

Table A-8 long double Representation (Intel)

Bits Name

80 - 95 Unused

79 Sign

64 - 78 Exponent

63 Leading bit

0 - 62 Fraction

Table A-9 float Representations

normal number
(0<e<255):

(-1)Sign2 (exponent - 127)1.f

subnormal number
(e=0, f!=0):

(-1)Sign2 (-126)0.f

zero (e=0, f=0): (-1)Sign0.0

signaling NaN s=u, e=255(max); f=.0uuu-uu; at least one bit must be nonzero

quiet NaN s=u, e=255(max); f=.1uuu-uu

Infinity s=u, e=255(max); f=.0000-00 (all zeroes)

142 C User’s Guide

A

Table A-10 double Representations

normal number
(0<e<2047):

(-1)Sign2 (exponent - 1023)1.f

subnormal number
(e=0, f!=0):

(-1)Sign2 (-1022)0.f

zero (e=0, f=0): (-1)Sign0.0

signaling NaN s=u, e=2047(max); f=.0uuu-uu; at least one bit must be nonzero

quiet NaN s=u, e=2047(max); f=.1uuu-uu

Infinity s=u, e=2047(max); f=.0000-00 (all zeroes)

Table A-11 long double Representations

normal number
(0<e<32767):

 (-1)Sign2 (exponent - 16383)1.f

subnormal number
(e=0, f!=0):

 (-1)Sign2 (-16382)0.f

zero (e=0, f=0): (-1)Sign0.0

signaling NaN s=u, e=32767(max); f=.0uuu-uu; at least one bit must be nonzero

quiet NaN s=u, e=32767(max); f=.1uuu-uu

Infinity s=u, e=32767(max); f=.0000-00 (all zeroes)

ANSI C Data Representations 143

A

Hexadecimal Representation of Selected Numbers

The following tables show the hexadecimal representations.

For further information, refer to the Numerical Computation Guide.

Pointer Representation

A pointer in C occupies four bytes. The NULL value pointer is equal to zero.

Table A-12 Hexadecimal Representation of Selected Numbers (SPARC) (PowerPC)

Value float double long double

+0
-0

00000000
80000000

0000000000000000
8000000000000000

00000000000000000000000000000000
80000000000000000000000000000000

+1.0
-1.0

3F800000
BF800000

3FF0000000000000
BFF0000000000000

3FFF00000000000000000000000000000
BFFF00000000000000000000000000000

+2.0
+3.0

40000000
40400000

4000000000000000
4008000000000000

40000000000000000000000000000000
40080000000000000000000000000000

+Infinity
-Infinity

7F800000
FF800000

7FF0000000000000
FFF0000000000000

7FFF00000000000000000000000000000
FFFF00000000000000000000000000000

NaN 7FBFFFFF 7FF7FFFFFFFFFFFF 7FFF7FFFFFFFFFFFFFFFFFFFFFFFFFF
F

Table A-13 Hexadecimal Representation of Selected Numbers (Intel)

Value float double long double

+0
-0

00000000
80000000

0000000000000000
0000000080000000

00000000000000000000
80000000000000000000

+1.0
-1.0

3F800000
BF800000

000000003FF00000
00000000BFF00000

3FFF8000000000000000
BFFF8000000000000000

+2.0
+3.0

40000000
40400000

0000000040000000
0000000040080000

40008000000000000000
4000C000000000000000

+Infinity
-Infinity

7F800000
FF800000

000000007FF00000
00000000FFF00000

7FFF8000000000000000
FFFF8000000000000000

NaN 7FBFFFFF FFFFFFFF7FF7FFFF 7FFFBFFFFFFFFFFFFFFF

144 C User’s Guide

A

Array Storage

Arrays are stored with their elements in a specific storage order. The elements
are actually stored in a linear sequence of storage elements.

C arrays are stored in row-major order; the last subscript in a multidimensional
array varies the fastest.

String data types are simply arrays of char elements.

Static and global arrays can accommodate many more elements.

Arithmetic Operations on Exceptional Values

This section describes the results derived from applying the basic arithmetic
operations to combinations of exceptional and ordinary floating-point values.
The information that follows assumes that no traps or any other exception
actions are taken.

1. Not valid in -Xc mode

Table A-14 Automatic Array Types and Storage

Type
Maximum Number
of Elements

char 268435455

short 134217727

int 67108863

long 67108863

float 67108863

double 33554431

long double 1677215 (SPARC) (PowerPC)
22369621 (Intel)

long long 1 33554431

ANSI C Data Representations 145

A

The following tables explain the abbreviations:

The tables that follow describe the types of values that result from arithmetic
operations performed with combinations of different types of operands.

Note – Num + Num could be Inf, rather than Num, when the result is too large
(overflow). Inf + Inf = NaN when the infinities are of opposite sign .

Table A-15 Abbreviation Usage

Abbreviation Meaning

Num Subnormal or normal number

Inf Infinity (positive or negative)

NaN Not a number

Uno Unordered

Table A-16 Addition and Subtraction Results

Right Operand

Left Operand 0 Num Inf NaN

0 0 Num Inf NaN

Num Num See Note Inf NaN

Inf Inf Inf See Note NaN

NaN NaN NaN NaN NaN

Table A-17 Multiplication Results

Right Operand

Left Operand 0 Num Inf NaN

0 0 0 NaN NaN

Num 0 Num Inf NaN

Inf NaN Inf Inf NaN

NaN NaN NaN NaN NaN

146 C User’s Guide

A

Note – NaN compared with NaN is unordered, and results in inequality. +0
compares equal to -0.

Argument-Passing Mechanism
This section describes how arguments are passed in ANSI C.

All arguments to C functions are passed by value.

Actual arguments are passed in the reverse order from which they are declared
in a function declaration.

Actual arguments which are expressions are evaluated before the function
reference. The result of the expression is then placed in a register or pushed
onto the stack.

Table A-18 Division Results

Right Operand

Left Operand 0 Num Inf NaN

0 NaN 0 0 NaN

Num Inf Num 0 NaN

Inf Inf Inf NaN NaN

NaN NaN NaN NaN NaN

Table A-19 Comparison Results

Right Operand

Left Operand 0 +Num +Inf NaN

0 = < < Uno

+Num

> The result of
the
comparison

< Uno

+Inf > > = Uno

NaN Uno Uno Uno Uno

ANSI C Data Representations 147

A

(SPARC)

Functions return integer results in register %o0, float results in register
%f0 , and double results in registers %f0 and %f1 .

long long 1 integers are passed in registers with the higher word order in
%oN, and the lower order word in %o(N+1) . In-register results are returned
in %i0 and %i1 , with similar ordering.

All arguments, except double s and long doubles , are passed as four-byte
values. A double is passed as an eight-byte value. The first six four-byte
values (double counts as 8) are passed in registers %o0 through %o5. The
rest are passed onto the stack. Structures are passed by making a copy of
the structure and passing a pointer to the copy. A long double is passed
in the same manner as a structure.

Upon return from a function, it is the responsibility of the caller to pop
arguments from the stack. Registers described are as seen by the caller.

(Intel)

Functions return integer results in register %eax.

long long results are returned in registers %edx and %eax. Functions
return float , double , and long double results in register %st(0) .

All arguments, except structs , unions , long longs , doubles and long
doubles , are passed as four-byte values; a long long is passed as an
eight-byte value, a double is passed as an eight-byte value, and a long
double is passed as a 12-byte value.

structs and unions are copied onto the stack. The size is rounded up to
a multiple of four bytes. Functions returning structs and unions are
passed a hidden first argument, pointing to the location into which the
returned struct or union is stored.

Upon return from a function, it is the responsibility of the caller to pop
arguments from the stack, except for the extra argument for struct and
union returns that is popped by the called function.

1. Not available in -Xc mode.

148 C User’s Guide

A

(PowerPC)

Functions return integer results in register %r3. Float and double results
are returned in %f1 . For float results, the value returned is rounded to
float precision. Long long and structure or union result whose size is 8
bytes or less are returned in registers %r3 and %r4, with %r3 containing the
low-addressed word of the structure as stored in memory. For other
structures or unions and long double results, the caller passes a pointer
to a storage area into which the result is copied in register %r3 as an implicit
first argument.

Arguments are passed in integer registers %r3 through %r10 , floating-point
registers %f1 through %f8 and a parameter area on the stack. All arguments
except doubles , long doubles , and long long are passed as four-byte
values.

In the description of the argument-passing algorith below, gr is the number
of the next integer register to be used for argument passing, fr is the number
of the next floating point register, and starg is a pointer to the next word in
the parameter area.

INITIALIZE:
Set fr=1, gr=3, and starg to the start of the parameter area.

SCAN:
If there are no more arguments, terminate. Otherwise, select one of the
following, depending on the type of the next argument:

DOUBLE_OR_FLOAT:
If fr>8 (that is, there are no more available floating-point registers), go to
OTHER. Otherwise, load the argument value into floating register fr,
increment fr, and go to SCAN.

SIMPLE_ARG:
A SIMPLE_ARG is one of the following:
1. One of the simple integer types no more than 32 bits wide (char ,
short , int , long , enum), or
2. A pointer to an object of any type, or
3. A structure, union, or long double , is passed as a pointer to a copy
of the object made by the caller.

ANSI C Data Representations 149

A

If gr>10, go to OTHER. Otherwise, load the argument value into general
register gr, set gr to gr+1, and go to SCAN. Values shorter than 32 bits
are sign extended or zero extended depending on whether they are
signed or unsigned .

LONG_LONG:
If gr>7, go to OTHER. If gr is even, set gr to gr+1. Load the lower-
addressed word of the long long into gr and the higher-addressed
word into gr+1, increment gr by 2 and to SCAN.

OTHER:
Arguments not otherwise handled above are passed in the parameter
words of the caller’s stack frame. Integer values shorter than 32 bits are
(conceptually) sign or zero extended to 32 bits and considered to have 4-
byte size and alignment; otherwise the size, sz, of the argument is as
determined by the sizeof operator. Round starg up to a multiple of the
alignment requirement of the argument and copy the argument byte-for-
byte, beginning with its lowest addressed byte, into starg, ..., starg+sz-1.
Set starg to starg+sz, then go to SCAN.

150 C User’s Guide

A

151

Implementation-Defined Behavior B

The American National Standard for Programming Language--C, ANSI/ISO
9899-1990 defines the behavior of ANSI-conformant C. However, this standard
leaves a number of issues as “implementation-defined,” that is, as varying
from compiler to compiler.

This chapter details these areas. They can be readily compared to the ANSI
standard itself:

• Each issue uses the same section text as found in the ANSI standard.

• Each issue is preceded by its corresponding section number in the ANSI
standard.

Translation
(2.1.1.3) Identification of diagnostics:

Error messages have the following format:

filename, line line number: message

Warning messages have the following format:

filename, line line number: warning message

Where:

• filename is the name of the file containing the error or warning
• line number is the number of the line on which the error or warning is found

152 C User’s Guide

B

• message is the diagnostic message

Environment
 (2.1.2.2.1) Semantics of arguments to main :

argc is the number of command-line arguments with which the program is
invoked with. After any shell expansion, argc is always equal to at least 1,
the name of the program.

argv is an array of pointers to the command-line arguments.

 (2.1.2.3) What constitutes an interactive device:

An interactive device is one for which the system library call isatty()
returns a nonzero value.

Identifiers
(3.1.2) The number of significant initial characters (beyond 31) in an
identifier without external linkage:

The first 1,023 characters are significant. Identifiers are case-sensitive.

 (3.1.2) The number of significant initial characters (beyond 6) in an
identifier with external linkage:

The first 1,023 characters are significant. Identifiers are case-sensitive.

int main (int argc, char *argv[])
{
....
}

Implementation-Defined Behavior 153

B

Characters
(2.2.1) The members of the source and execution character sets, except as
explicitly specified in the Standard:

Both sets are identical to the ASCII character sets, plus locale-specific
extensions.

(2.2.1.2) The shift states used for the encoding of multibyte characters:

There are no shift states.

(2.2.4.2.1) The number of bits in a character in the execution character set:

There are 8 bits in a character for the ASCII portion; locale-specific multiple of
8 bits for locale-specific extended portion.

(3.1.3.4) The mapping of members of the source character set (in character
and string literals) to members of the execution character set:

Mapping is identical between source and execution characters.

(3.1.3.4) The value of an integer character constant that contains a
character or escape sequence not represented in the basic execution
character set or the extended character set for a wide character constant:

It is the numerical value of the rightmost character. For example, '\q ' equals
'q' . A warning is emitted if such an escape sequence occurs.

(3.1.3.4) The value of an integer character constant that contains more
than one character or a wide character constant that contains more than
one multibyte character:

A multiple-character constant that is not an escape sequence has a value
derived from the numeric values of each character.

(3.1.3.4) The current locale used to convert multibyte characters into
corresponding wide characters (codes) for a wide character constant:

The valid locale specified by LC_ALL, LC_CTYPE, or LANG environment
variable.

154 C User’s Guide

B

(3.2.1.1) Does a plain char have the same range of values as signed
char or unsigned char :

 A char is treated as a signed char (SPARC) (Intel) .

A char is treated as an unsigned char (PowerPC).

Integers
(3.1.2.5) The representations and sets of values of the various types of
integers:

1. Not valid in -Xc mode

Table B-1 Representations and Sets of Values of Integers

Integer Bits Minimum Maximum

char (SPARC) (Intel) 8 -128 127

char (PowerPC) 8 0 255

signed char 8 -128 127

unsigned char 8 0 255

short 16 -32768 32767

signed short 16 -32768 32767

unsigned short 16 0 65535

int 32 -2147483648 2147483647

signed int 32 -2147483648 2147483647

unsigned int 32 0 4294967295

long 32 -2147483648 2147483647

signed long 32 -2147483648 2147483647

unsigned long 32 0 4294967295

long long 1 64 -9223372036854775808 9223372036854775807

signed long long 1 64 -9223372036854775808 9223372036854775807

unsigned long long 1 64 0 18446744073709551615

Implementation-Defined Behavior 155

B

(3.2.1.2) The result of converting an integer to a shorter signed integer, or
the result of converting an unsigned integer to a signed integer of equal
length, if the value cannot be represented:

When an integer is converted to a shorter signed integer, the low order bits
are copied from the longer integer to the shorter signed integer. The result
may be negative.

When an unsigned integer is converted to a signed integer of equal size, the
low order bits are copied from the unsigned integer to the signed integer.
The result may be negative.

(3.3) The results of bitwise operations on signed integers:

The result of a bitwise operation applied to a signed type is the bitwise
operation of the operands, including the sign bit. Thus, each bit in the result
is set if—and only if—each of the corresponding bits in both of the operands is
set.

(3.3.5) The sign of the remainder on integer division:

The result is the same sign as the dividend; thus, the remainder of -23/4 is -3.

(3.3.7) The result of a right shift of a negative-valued signed integral
type:

The result of a right shift is a signed right shift.

156 C User’s Guide

B

Floating-Point
(3.1.2.5) The representations and sets of values of the various types of
floating-point numbers:

(3.2.1.3) The direction of truncation when an integral number is
converted to a floating-point number that cannot exactly represent the
original value:

Numbers are rounded to the nearest value that can be represented.

Table B-2 Values of Floating-Point Numbers

float

Bits 32

Min 1.17549435E-38

Max 3.40282347E+38

Epsilon 1.19209290E-07

double

Bits 64

Min 2.2250738585072014E-308

Max 1.7976931348623157E+308

Epsilon 2.2204460492503131E-16

long double

Bits 128 (SPARC)(PowerPC)
80 (Intel)

Min 3.362103143112093506262677817321752603E-4932 (SPARC) (PowerPC)
3.3621031431120935062627E-4932 (Intel)

Max 1.189731495357231765085759326628007016E+4932 (SPARC) (PowerPC)
1.1897314953572317650213E4932 (Intel)

Epsilon 1.925929944387235853055977942584927319E-34 (SPARC) (PowerPC)
1.0842021724855044340075E-19 (Intel)

Implementation-Defined Behavior 157

B

(3.2.1.4) The direction of truncation or rounding when a floating- point
number is converted to a narrower floating-point number:

Numbers are rounded to the nearest value that can be represented.

Arrays and Pointers
(3.3.3.4, 4.1.1) The type of integer required to hold the maximum size of an
array; that is, the type of the sizeof operator, size_t :

unsigned int as defined in stddef.h .

(3.3.4) The result of casting a pointer to an integer, or vice versa:

The bit pattern does not change for pointers and values of type int , long ,
unsigned int and unsigned long .

(3.3.6, 4.1.1) The type of integer required to hold the difference between
two pointers to members of the same array, ptrdiff_t :

int as defined in stddef.h .

Registers
(3.5.1) The extent to which objects can actually be placed in registers by
use of the register storage-class specifier:

The number of effective register declarations depends on patterns of use and
definition within each function and is bounded by the number of registers
available for allocation. Neither the compiler nor the optimizer is required to
honor register declarations.

Structures, Unions, Enumerations, and Bit-Fields
(3.3.2.3) A member of a union object is accessed using a member of a
different type:

The bit pattern stored in the union member is accessed, and the value
interpreted, according to the type of the member by which it is accessed.

158 C User’s Guide

B

(3.5.2.1) The padding and alignment of members of structures.

Structure members are padded internally, so that every element is aligned on
the appropriate boundary.

Alignment of structures is the same as its more strictly aligned member. For
example, a struct with only char s has no alignment restrictions, whereas a
struct containing a double would be aligned on an 8-byte boundary.

(3.5.2.1) Whether a plain int bit-field is treated as a signed int bit-
field or as an unsigned int bit-field:

It is treated as an unsigned int .

(3.5.2.1) The order of allocation of bit-fields within an int :

Bit-fields are allocated within a storage unit from high-order to low-order.

(3.5.2.1) Whether a bit-field can straddle a storage-unit boundary:

Bit-fields do not straddle storage-unit boundaries.

1. Not available in -Xc mode.

Table B-3 Padding and Alignment of Structure Members

Type Alignment Boundary Byte Alignment

char Byte 1

short Halfword 2

int Word 4

long Word 4

float Word 4

double Doubleword (SPARC)
Word (Intel)

8 (SPARC) (PowerPC)
4 (Intel)

long double Doubleword (SPARC)
Word (Intel)
Quadword (PowerPC)

8 (SPARC)
4 (Intel)
16 (PowerPC)

pointer Word 4

long long 1 Doubleword (SPARC)
Word (Intel)

8 (SPARC) (PowerPC)
4 (Intel)

Implementation-Defined Behavior 159

B

(3.5.2.2) The integer type chosen to represent the values of an
enumeration type:

This is an int .

Qualifiers
(3.5.3) What constitutes an access to an object that has volatile-
qualified type:

Each reference to the name of an object constitutes one access to the object.

Declarators
(3.5.4) The maximum number of declarators that may modify an
arithmetic, structure, or union type:

No limit is imposed by the compiler.

Statements
(3.6.4.2) The maximum number of case values in a switch statement:

No limit is imposed by the compiler.

Preprocessing Directives
(3.8.1) Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion matches the
value of the same character constant in the execution character set:

A character constant within a preprocessing directive has the same numeric
value as it has within any other expression.

(3.8.1) Whether such a character constant may have a negative value:

Character constants in this context may have negative values (SPARC) (Intel) .

Character constants in this context may not have negative values (PowerPC).

160 C User’s Guide

B

(3.8.2) The method for locating includable source files:

A file whose name is delimited by < > is searched for first in the directories
named by the -I option, and then in the standard directory. The standard
directory is /usr/include , unless the -YI option is used to specify a
different default location.

A file whose name is delimited by quotes is searched for first in the directory
of the source file that contains the #include , then in directories named by the
-I option, and last in the standard directory.

If a file name enclosed in < > or double quotes begins with a / character, the
file name is interpreted as a path name beginning in the root directory. The
search for this file begins in the root directory only.

(3.8.2) The support of quoted names for includable source files:

Quoted file names in include directives are supported.

(3.8.2) The mapping of source file character sequences:

Source file characters are mapped to their corresponding ASCII values.

(3.8.6) The behavior on each recognized #pragma directive:

The following pragmas are supported:

align integer (variable[, variable])
Makes the specified variables memory aligned to integer bytes, overriding
the default. integer must be a power of 2, between 1 and 128. Valid values
are: 1, 2, 4, 8, 16, 32, 64, 128. variable is a global or static variable; it cannot
be a dynamic variable. If the specified alignment is smaller than the default,
the default is silently used. The pragma line must appear before the
declaration of the variables that it mentions; otherwise, it is ignored. Any
variable that is mentioned but not declared in the text following the pragma
line is ignored.

Implementation-Defined Behavior 161

B

For example, the compilation and execution of the following program:

produces this output:

fini (f1[,f2...,fn])
Causes the implementation to call functions f1 to fn (finalization functions)
after it calls main() routine. Such functions are expected to be of type
void and to accept no arguments, and are called either when a program
terminates under program control or when the containing shared object is
removed from memory. As with “initialization functions,” finalization
functions are executed in the order processed by the link editors.

init (f1[,f2...,fn])
Causes the implementation to call functions f1 to fn (initialization functions)
before it calls main() routine. Such functions are expected to be of type
void and to accept no arguments, and are called while constructing the
memory image of the program at the start of execution. In the case of

#define AL2 128
#pragma align AL2 (astruct, aint, apointer)

typedef struct {double a; long long t;} s;

int aint;
char * apointer;

main (int argc, char *argv[]) {

static s astruct;

printf ("align:\n");
printf ("aint=%x mod=%x\n",&aint,((long)&aint)%AL2);
printf ("apointer=%x mod=%x\n",&apointer,((long)&apointer)%AL2);
printf ("astruct=%x mod=%x\n",&astruct,((long)&astruct)%AL2);

}

align:
aint=20900 mod=0
apointer=20980 mod=0
astruct=20880 mod=0

162 C User’s Guide

B

initializers in a shared object, they are executed during the operation that
brings the shared object into memory, either program startup or some
dynamic loading operation, such as dlopen() . The only ordering of calls
to initialization functions is the order in which they were processed by the
link editors, both static and dynamic.

ident string
Places string in the .comment section of the executable.

int_to_unsigned function name
For a function that returns a type of unsigned , in -Xt or -Xs mode,
changes the function return to be of type int .

MP serial_loop
(SPARC) Refer to “Serial Pragmas” on page 74 for details.

MP serial_loop_nested
(SPARC) Refer to “Serial Pragmas” on page 74 for details.

MP taskloop
(SPARC)Refer to “Parallel Pragmas” on page 74 for details.

nomemorydepend
(SPARC) This pragma specifies that for any iteration of a loop, there are no
memory dependences. That is, within any iteration of a loop there are no
references to the same memory. This pragma will permit the compiler
(pipeliner) to schedule instructions, more effectively, within a single
iteration of a loop. If any memory dependences exist within any iteration of
a loop, the results of executing the program are undefined. The pragma
applies to the next for loop within the current block. The compiler takes
advantage of this information at optimization level of 3 or above.

no_side_effect (funcname)
(SPARC) funcname specifies the name of a function within the current
translation unit. The function must be declared prior to the pragma. The
pragma must be specified prior to the function’s definition. For the named
function, funcname, the pragma declares that the function has no side effects
of any kind. The compiler can use this information when doing
optimizations using the function. If the function does have side effects, the
results of executing a program which calls this function are undefined. The
compiler takes advantage of this information at optimization level of 3 or
above.

Implementation-Defined Behavior 163

B

pack (n)
Controls the layout of structure offsets. n is a number, 1, 2, or 4, that
specifies the strictest alignment desired for any structure member. If n is
omitted, members are aligned on their natural boundaries. If you are using
#pragma pack (1), be sure to place it after all #include s.

#pragma pipeloop (n)
(SPARC) This pragma accepts a positive constant integer value, or 0, for the
argument n. This pragma specifies that a loop is pipelinable and the
minimum dependence distance of the loop-carried dependence is n. If the
distance is 0, then the loop is effectively a Fortran-style doall loop and
should be pipelined on the target processors. If the distance is greater than
0, then the compiler (pipeliner) will only try to pipeline n successive
iterations. The pragma applies to the next for loop within the current block.
The compiler takes advantage of this information at optimization level of 3
or above.

#pragma redefine_extname old_extname new_extname
The pragma causes every externally defined occurrence of the name
"old_extname" in the object code to be "new_extname". Such that, at link
time only the name "new_extname" is seen by the loader.

 If pragma redefine_extname is encountered after the first use of
"old_extname", as a function definition, an initializer, or an expression, the
effect is undefined. (Not supported in –Xs and –Xc modes.)

unknown_control_flow (name, [, name])
Specifies a list of routines that violate the usual control flow properties of
procedure calls. For example, the statement following a call to setjmp()
can be reached from an arbitrary call to any other routine. The statement is
reached by a call to longjmp() . Since such routines render standard flow
graph analysis invalid, routines that call them cannot be safely optimized;
hence, they are compiled with the optimizer disabled.

#pragma unroll (unroll_factor)
(SPARC) This pragma accepts a positive constant integer value for the
argument unroll_factor. The pragma applies to the next for loop within the
current block. For unroll factor other than 1, this directive serves as a
suggestion to the compiler that the specified loop should be unrolled by the
given factor. The compiler wil, when possible, use that unroll factor. When

164 C User’s Guide

B

the unroll factor value is 1, this directive serves as a command which
specifies to the compiler that the loop is not to be unrolled. The compiler
takes advantage of this information at optimization level of 3 or above.

weak function_name or function_name1 = function_name2
Use #pragma weak to define a weak global symbol. This pragma is used
mainly in source files for building libraries. The linker does not produce an
error if it is unable to resolve a weak symbol.

defines function_name to be a weak symbol. The linker does not complain if
it does not find a definition for function_name.

defines function_name1 to be a weak symbol, which is an alias for the symbol
function_name2.

If your program calls but does not define function_name1, the linker uses the
definition from the library. However, if your program defines its own
version of function_name1, then the program definition is used and the weak
global definition of function_name1 in the library is not used. If the program
directly calls function_name2, the definition from the library is used; a
duplicate definition of function_name2 causes an error.

(3.8.8) The definitions for __DATE__ and __TIME__ when,
respectively, the date and time of translation are not available:

These macros are always available from the environment.

Library Functions
(4.1.5) The null pointer constant to which the macro NULL expands:

NULL equals 0.

#pragma weak function_name

#pragma weak function_name1 = function_name2

Implementation-Defined Behavior 165

B

(4.2) The diagnostic printed by and the termination behavior of the
assert function:

The diagnostic is:

Assertion failed: statement. file filename, line number

Where:

• statement is the statement which failed the assertion
• filename is the name of the file containing the failure
• line number is the number of the line on which the failure occurs

(4.3.1) The sets of characters tested for by the isalnum , isalpha ,
iscntrl , islower , isprint , and isupper functions:

Table B-4 Character Sets Tested by isalpha , islower , Etc.

isalnum ASCII characters A-Z, a-z and 0-9

isalpha ASCII characters A-Z and a-z, plus locale-specific single-byte
letters

iscntrl ASCII characters with value 0-31 and 127

islower ASCII characters a-z

isprint Locale-specific single-byte printable characters

isupper ASCII characters A-Z

166 C User’s Guide

B

(4.5.1) The values returned by the mathematics functions on domain
errors:

(4.5.1) Whether the mathematics functions set the integer expression
errno to the value of the macro ERANGE on underflow range errors:

Mathematics functions, except scalbn , set errno to ERANGE when underflow
is detected.

Table B-5 Values Returned on Domain Errors

Error Math Functions

Compiler Modes

-Xs , -Xt -Xa , -Xc

DOMAIN acos(|x|>1) 0.0 0.0

DOMAIN asin(|x|>1) 0.0 0.0

DOMAIN atan2(+-0,+-0) 0.0 0.0

DOMAIN y0(0) -HUGE -HUGE_VAL

DOMAIN y0(x<0) -HUGE -HUGE_VAL

DOMAIN y1(0) -HUGE -HUGE_VAL

DOMAIN y1(x<0) -HUGE -HUGE_VAL

DOMAIN yn(n,0) -HUGE -HUGE_VAL

DOMAIN yn(n,x<0) -HUGE -HUGE_VAL

DOMAIN log(x<0) -HUGE -HUGE_VAL

DOMAIN log10(x<0) -HUGE -HUGE_VAL

DOMAIN pow(0,0) 0.0 1.0

DOMAIN pow(0,neg) 0.0 -HUGE_VAL

DOMAIN pow(neg,non-integal) 0.0 NaN

DOMAIN sqrt(x<0) 0.0 NaN

DOMAIN fmod(x,0) x NaN

DOMAIN remainder(x,0) NaN NaN

DOMAIN acosh(x<1) NaN NaN

DOMAIN atanh(|x|>1) NaN NaN

Implementation-Defined Behavior 167

B

(4.5.6.4) Whether a domain error occurs or zero is returned when the
fmod function has a second argument of zero:

In this case, it returns the first argument with domain error.

Signals
(4.7.1.1) The set of signals for the signal function:

Table B-6 shows the semantics for each signal as recognized by the signal
function:

Table B-6 Semantics for signal Signals

Signal No. Default Event

SIGHUP 1 Exit hangup

SIGINT 2 Exit interrupt

SIGQUIT 3 Core quit

SIGILL 4 Core illegal instruction (not reset when caught)

SIGTRAP 5 Core trace trap (not reset when caught)

SIGIOT 6 Core IOT instruction

SIGABRT 6 Core Used by abort

SIGEMT 7 Core EMT instruction

SIGFPE 8 Core floating point exception

SIGKILL 9 Exit kill (cannot be caught or ignored)

SIGBUS 10 Core bus error

SIGSEGV 11 Core segmentation violation

SIGSYS 12 Core bad argument to system call

SIGPIPE 13 Exit write on a pipe with no one to read it

SIGALRM 14 Exit alarm clock

SIGTERM 15 Exit software termination signal from kill

SIGUSR1 16 Exit user defined signal 1

SIGUSR2 17 Exit user defined signal 2

168 C User’s Guide

B

(4.7.1.1) The default handling and the handling at program startup for
each signal recognized by the signal function:

See above.

(4.7.1.1) If the equivalent of signal(sig, SIG_DFL); is not executed
prior to the call of a signal handler, the blocking of the signal that is
performed:

The equivalent of signal(sig,SIG_DFL) is always executed.

(4.7.1.1) Whether the default handling is reset if the SIGILL signal is
received by a handler specified to the signal function:

Default handling is not reset in SIGILL .

SIGCLD 18 Ignore child status change

SIGCHLD 18 Ignore child status change alias

SIGPWR 19 Ignore power-fail restart

SIGWINCH 20 Ignore window size change

SIGURG 21 Ignore urgent socket condition

SIGPOLL 22 Exit pollable event occurred

SIGIO 22 Exit socket I/O possible

SIGSTOP 23 Stop stop (cannot be caught or ignored)

SIGTSTP 24 Stop user stop requested from tty

SIGCONT 25 Ignore stopped process has been continued

SIGTTIN 26 Stop background tty read attempted

SIGTTOU 27 Stop background tty write attempted

SIGVTALRM 28 Exit virtual timer expired

SIGPROF 29 Exit profiling timer expired

SIGXCPU 30 Core exceeded cpu limit

SIGXFSZ 31 Core exceeded file size limit

SIGWAITINGT 32 Ignore process's lwps are blocked

Table B-6 Semantics for signal Signals (Continued)

Signal No. Default Event

Implementation-Defined Behavior 169

B

Streams and Files
(4.9.2) Whether the last line of a text stream requires a terminating new-
line character:

The last line does not need to end in a newline.

(4.9.2) Whether space characters that are written out to a text stream
immediately before a new-line character appear when read in:

All characters appear when the stream is read.

(4.9.2) The number of null characters that may be appended to data
written to a binary stream:

No null characters are appended to a binary stream.

(4.9.3) Whether the file position indicator of an append mode stream is
initially positioned at the beginning or end of the file:

The file position indicator is initially positioned at the end of the file.

(4.9.3) Whether a write on a text stream causes the associated file to be
truncated beyond that point:

A write on a text stream does not cause a file to be truncated beyond that point
unless a hardware device forces it to happen.

(4.9.3) The characteristics of file buffering:

Output streams, with the exception of the standard error stream (stderr), are
by default-buffered if the output refers to a file, and line-buffered if the output
refers to a terminal. The standard error output stream (stderr) is by default
unbuffered.

A buffered output stream saves many characters, and then writes the
characters as a block. An unbuffered output stream queues information for
immediate writing on the destination file or terminal immediately. Line-
buffered output queues each line of output until the line is complete (a newline
character is requested).

170 C User’s Guide

B

(4.9.3) Whether a zero-length file actually exists:

A zero-length file does exist since it has a directory entry.

(4.9.3) The rules for composing valid file names:

A valid file name can be from 1 to 1,023 characters in length and can use all
character except the characters null and / (slash).

(4.9.3) Whether the same file can be open multiple times:

The same file can be opened multiple times.

(4.9.4.1) The effect of the remove function on an open file:

The file is deleted on the last call which closes the file. A program cannot open
a file which has already been removed.

(4.9.4.2) The effect if a file with the new name exists prior to a call to the
rename function:

If the file exists, it is removed and the new file is written over the previously
existing file.

(4.9.6.1) The output for %p conversion in the fprintf function:

The output for %p is equivalent to %x.

(4.9.6.2) The input for %p conversion in the fscanf function:

The input for %p is equivalent to %x.

(4.9.6.2) The interpretation of a - character that is neither the first nor
the last character in the scan list for %[conversion in the fscanf
function:

The - character indicates an inclusive range; thus, [0-9] is equivalent to
[0123456789] .

Implementation-Defined Behavior 171

B

errno

(4.9.9.4) The value to which the macro errno is set by the fgetpos or
ftell function on failure:

errno is set to EBADF, ESPIPE, or EINVAL on failure.

(4.9.10.4) The messages generated by the perror function:

These messages, or their translation into the language of the locale of the
LC_MESSAGE category, are generated.

Table B-7 Error Messages Generated by perror

Number Message

1 Not owner

2 No such file or directory

3 No such process

4 Interrupted system call

5 I/O error

6 No such device or address

7 Arg list too long

8 Exec format error

9 Bad file number

10 No child processes

11 No more processes

12 Not enough space

13 Permission denied

14 Bad address

15 Block device required

16 Device busy

17 File exists

18 Cross-device link

19 No such device

172 C User’s Guide

B

20 Not a directory

21 Is a directory

22 Invalid argument

23 File table overflow

24 Too many open files

25 Not a typewriter

26 Text file busy

27 File too large

28 No space left on device

29 Illegal seek

30 Read-only file system

31 Too many links

32 Broken pipe

33 Argument out of domain

34 Result too large

35 No message of desired type

36 Identifier removed

37 Channel number out of range

38 Level 2 not synchronized

39 Level 3 halted

40 Level 3 reset

41 Link number out of range

42 Protocol driver not attached

43 No CSI structure available

44 Level 2 halted

45 Deadlock situation detected/avoided

46 No record locks available

Table B-7 Error Messages Generated by perror (Continued)

Number Message

Implementation-Defined Behavior 173

B

50 Bad exchange descriptor

51 Bad request descriptor

52 Message tables full

53 Inode table overflow

54 Bad request code

55 Invalid slot

56 File locking deadlock

57 Bad font file format

60 Not a stream device

61 No data available

62 Timer expired

63 Out of stream resources

64 Machine is not on the network

65 Package not installed

66 Object is remote

67 Link has been severed

68 Advertise error

69 Srmount error

70 Communication error on send

71 Protocol error

74 Multihop attempted

77 Not a data message

78 File name too long

79 Value too large for defined data type

80 Name not unique on network

81 File descriptor in bad state

82 Remote address changed

Table B-7 Error Messages Generated by perror (Continued)

Number Message

174 C User’s Guide

B

83 Can not access a needed shared library

84 Accessing a corrupted shared library

85 .lib section in a.out corrupted

86 Attempting to link in more shared libraries than system
limit

87 Can not exec a shared library directly

88 Illegal byte sequence

89 Operation not applicable

90 Number of symbolic links encountered during path name
traversal exceeds MAXSYMLINKS

93 Directory not empty

94 Too many users

95 Socket operation on non-socket

96 Destination address required

97 Message too long

98 Protocol wrong type for socket

99 Option not supported by protocol

120 Protocol not supported

121 Socket type not supported

122 Operation not supported on transport endpoint

123 Protocol family not supported

124 Address family not supported by protocol family

125 Address already in use

126 Cannot assign requested address

127 Network is down

128 Network is unreachable

129 Network dropped connection because of reset

130 Software caused connection abort

Table B-7 Error Messages Generated by perror (Continued)

Number Message

Implementation-Defined Behavior 175

B

131 Connection reset by peer

132 No buffer space available

133 Transport endpoint is already connected

134 Transport endpoint is not connected

135 Structure needs cleaning

137 Not a name file

138 Not available

139 Is a name file

140 Remote I/O error

141 Reserved for future use

142 Error 142

143 Cannot send after socket shutdown

144 Too many references: cannot splice

145 Connection timed out

146 Connection refused

147 Host is down

148 No route to host

149 Operation already in progress

150 Operation now in progress

151 Stale NFS file handle

Table B-7 Error Messages Generated by perror (Continued)

Number Message

176 C User’s Guide

B

Memory
(4.10.3) The behavior of the calloc , malloc , or realloc function if the
size requested is zero:

malloc and calloc return a unique pointer if the size is zero. realloc frees
the object pointed to if the size is zero, and the pointer is not null.

abort Function
(4.10.4.1) The behavior of the abort function with regard to open and
temporary files:

abort first closes all open files, stdio streams, directory streams, and
message catalogue descriptors, if possible, and then sends the signal SIGABRT
to the calling process.

exit Function
(4.10.4.3) The status returned by the exit function if the value of the
argument is other than zero, EXIT_SUCCESS, or EXIT_FAILURE :

The value returned by the argument to exit .

getenv Function
(4.10.4.4) The set of environment names and the method for altering the
environment list used by the getenv function:

The set of environment names provided to a program are the same as those
that were in the environment when the program was executed. Any
environment variable altered during program execution does not permanently
change the environment variable; that is, the environment variable has the
same value upon program completion as it did before the program was
executed.

Implementation-Defined Behavior 177

B

system Function
(4.10.4.5) The contents and mode of execution of the string by the system
function:

strerror Function
(4.11.6.2) The contents of the error message strings returned by the
strerror function:

See 4.9.10.4.

Locale Behavior
(4.12.1) The local time zone and Daylight Savings Time:

The local time zone is set by the environment variable TZ.

(4.12.2.1) The era for the clock function

The era for the clock is represented as clock ticks with the origin at the
beginning of the execution of the program.

The following characteristics of a hosted environment are locale-specific:

(2.2.1) The content of the execution character set, in addition to the
required members:

Locale-specific (no extension in C locale).

(2.2.2) The direction of printing:

Printing is always left to right.

(4.1.1) The decimal-point character:

Locale-specific (“.” in C locale).

(void) execl("/sbin/sh", "sh", (const char *)"-c", string, (char
*)0);

178 C User’s Guide

B

(4.3) The implementation-defined aspects of character testing and case
mapping functions:

Same as 4.3.1.

(4.11.4.4) The collation sequence of the execution character set:

Locale-specific (ASCII collation in C locale).

(4.12.3.5) The formats for time and date:

Locale-specific. Formats for the C locale are shown in the tables below.

The names of the months are:

The names of the days of the week are:

The format for time is:

%H:%M:%S

The format for date is:

%m/%d/%y

The formats for AM and PM designation are: AM PM

Table B-8 Names of Months

January May September

February June October

March July November

April August December

Table B-9 Days and Abbreviated Days of the Week

Days Abbreviated Days

Sunday Thursday Sun Thu

Monday Friday Mon Fri

Tuesday Saturday Tue Sat

Wednesday Wed

179

-Xs Differences for Sun C
and ANSI C C

This appendix describes the differences in compiler behavior when using the
-Xs option. The -Xs option tries to emulate Sun C 1.0, and Sun C 1.1 (K&R
style), but in some cases it cannot emulate the previous behavior.

Table C-1 -Xs Behavior

Data Type Sun C (K&R) Sun ANSI C (4.0)

Aggregate initialization:
struct {
int a[3];
int b;
} w[] = { {1} , 2};

sizeof (w) = 16
w[0].a = 1, 0, 0
w[0].b =2

sizeof(w) = 32
w[0].a = 1, 0, 0
w[0].b = 0
w[1].a = 2, 0, 0
w[1].b = 0

Incomplete struct , union ,
enum declaration

struct fq {
int i;
struct unknown;
};

Does not allow incomplete struct , union ,
and enum declaration.

Switch expression integral type Allows non-integral type. Does not allow non-integral type.

Order of precedence Allows:
if (rcount > count += index)

Does not allow:
if (rcount > count += index)

unsigned , short , and
long typedef declarations

Allows:
typedef short small
unsigned small;

Does not allow (all modes).

180 C User’s Guide

C

struct or union tag mismatch
in nested struct or union
declarations

Allows tag mismatch:
struct x {
int i;
} s1;

/* K&R treats as a struct */
{
union x s2;
}

Does not allow tag mismatch in nested
struct or union declaration.

Incomplete struct or union
type

Ignores an incomplete type
declaration.

struct x {
int i;
} s1;

main()
{
struct x;
struct y {
struct x f1
/* in K&R, f1 refers */
/* to outer struct */
} s2;
struct x {
int i;
};
}

Casts as lvalue s Allows:
(char *) ip = &foo;

Does not allow casts as lvalue s (all modes).

Table C-1 -Xs Behavior (Continued)

Data Type Sun C (K&R) Sun ANSI C (4.0)

181

Performance Tuning (SPARC) D

This appendix describes performance tuning on SPARC platforms.

Limits
Some parts of the C library cannot be optimized for speed, even though doing
so would benefit most applications. Some examples:

• Integer arithmetic routines—Current SPARC V8 processors support integer
multiplication and division instructions. However, if standard C library
routines were to use these instructions, programs running on V7 SPARC
processors would either run slowly due to kernel emulation overhead, or
might break altogether. Hence, integer multiplication and division
instructions cannot be used in the standard C library routines.

• Doubleword memory access—Block copy and move routines, such as
memmove() and bcopy() , could run considerably faster if they used
SPARC doubleword load and store instructions (ldd and std). Some
memory-mapped devices, such as frame buffers, do not support 64-bit
access; nevertheless, these devices are expected to work correctly with
memmove() and bcopy (). Hence, ldd and std cannot be used in the
standard C library routines.

• Memory allocation algorithms—The C library routines malloc() and
free() are typically implemented as a compromise between speed, space,
and insensitivity to coding errors in old UNIX programs. Memory
allocators based on “buddy system” algorithms typically run faster than the
standard library version, but tend to use more space.

182 C User’s Guide

D

libfast.a Library
The library libfast.a provides speed-tuned versions of standard C library
functions. Because it is an optional library, it can use algorithms and data
representations that may not be appropriate for the standard C library, even
though they improve the performance of most applications.

Use profiling to determine whether the routines in the following checklist are
important to the performance of your application, then use this checklist to
decide whether libfast.a benefits the performance:

• Do use libfast.a if performance of integer multiplication or division is
important, even if a single binary version of the application must run on
both V7 and V8 SPARC platforms.

The important routines are: .mul , .div , .rem , .umul , .udiv , and .urem .

• Do use libfast.a if performance of memory allocation is important, and
the size of the most commonly allocated blocks is close to a power of two.

The important routines are: malloc() , free() , realloc() .

• Do use libfast.a if performance of block move or fill routines is
important.

The important routines are: bcopy() , bzero() , memcpy() , memmove() ,
and memset().

• Do not use libfast.a if the application requires user mode, memory-
mapped access to an I/O device that does not support 64-bit memory
operations.

• Do not use libfast.a if the application is multithreaded.

When linking the application, add the option -lfast to the cc command used
at link time. The cc command links the routines in libfast.a ahead of their
counterparts in the standard C library.

183

Index

A
abort function, 176
acomp (C compiler), 2
alignment of structures, 158
ANSI C, xxi
ANSI C vs. K&R C, xxi, 5, 23, 179
arithmetic conversions, 58, 62
_asm keyword, 58
asm keyword, 58
assembler, 2
#assert , 7, 66
Auto-Read, 44

B
behavior, implementation-defined, 151 to

178
binding

static vs. dynamic, 7
bit-fields, 130, 158
bits, in execution character set, 153
bitwise

operations on signed integers, 155
buffering, 169

C
c89 , xxiv
calloc function, 176
case statements, 159
cb , xxiv
cc

shared error message database
catfiles, 55

cc compiler options, 5 to 54
-# , 6
-### , 6
-A name [(tokens)], 7
-B[static|dynamic] , 7
-C , 7
-c , 7
-d[y|n] , 8
-dalign , 9
-D name [(=tokens)], 7
-E , 9
-erroff= t, 9
-errtags= a, 10
-fast , 10
-fd , 11
-flags , 11
-fnonstd , 11
-fns , 12
-fprecision= r, 12
-fround= r, 12

184 C User’s Guide

-fsimple[= n], 12
-fsingle , 13
-fstore , 14
-ftrap= t, 14
-G , 14
-g , 15
-H , 15
-h , 15
-I dir, 16
-J , 16
-keeptmp , 16
-KPIC , 16
-Kpic , 16
-L dir, 17
-L name, 18
-mc , 18
-misalign , 18
-misalign2 , 18
-mr , 19
-mr, string, 19
-mt , 19
-native , 19
-nofstore , 19
-noqueue , 20
-O , 20
-o filename, 20
-P , 20
-p , 20
-Q[y|n] , 20
-qp , 21
-R dir[:dir], 21
-S , 21
-s , 21
-U name, 21
-V , 21
-v , xxvii, 22
-w , 23
-Wc, arg, 22
-X[a|c|s|t] , 23
-x386 , 23
-x486 , 24
-xa , 24
-xarch= a, 24
-xautopar , 27
-xcache= c, 28
-xCC , 29

-xcg[89|92] , 29
-xchip= c, 29
-xcrossfile , 30
-xdepend , 31
-xe , 31
-xexplicitpar , 31
-xF , 32
-xhelp= f, 32
-xildoff , 33
-xildon , 33
-xinline= [f1,...,fn], 33
-xlibmieee , 34
-xlibmil , 34
-xlic_lib , 34
-xlic_lib=sunperf , 34
-xlicinfo , 34
-xloopinfo , 34
-xM , 35
-xM1 , 36
-xMerge , 36
-xnolib , 36
-xnolibmil , 37
-xO[1|2|3|4|5] , 37
-xP , 39
-xparallel , 39
-xpentium , 40
-xpg , 40
-xprofile= p, 40
-xreduction , 42
-xregs= r, 42
-xrestrict =f, 43
-Xs , 179
-xs , 44
-xsafe=mem , 44
-xsb , 44
-xsbfast , 44
-xsfpconst , 45
-xspace , 45
-xstrconst , 45
-xtarget= t, 45
-xtemp =dir, 51
-xtime , 51
-xtransition , 51, 58
-xunroll =n, 52
-xvpara , 52
-YA , dir, 53

Index 185

-Y c, dir, 52
-YI , dir, 53
-YP, dir, 53
-YS , dir, 53
-Zll , 53
-Zlp , 53
-Ztha , 54

cflow , xxiv
cg (code generator), 3
cg386 (intermediate language

translator), 2
cgppc (intermediate language

translator), 2
character

bits in set, 153
decimal point, 177
mapping set, 153
multibyte, shift status, 153
set, collation sequence, 178
single-character characater

constant, 159
source and execution of set, 153
space, 169
testing of sets, 165

clock function, 177
code generator, 3
code optimization, 11, 37
code optimizer, 2
codegen (code generator), 3
compatibility options, 5, 23
compilation modes and dependencies, 71
compiler, 54
compiler flags, See cc compiler options
compiling a program, 5 to 6
constants, 63 to 64
conversion

integers, 155
conversions, 58, 62
cpp (C preprocessor), 2
cscope , xxiv, 83 to 102

command-line use, 85, 93 to 95
editing source files, 84, 92, 101
environment setup, 84 to 85, 102

environment variables, 95 to 96
searching source files, 83 to 84, 85, 86

to 92
See also SourceBrowser
usage examples, 84 to 93, 97 to 101

ctrace , xxiv
cxref , xxiv

D
data representation, 137 to ??
data types, 61
__DATE__, 164
date and time formats, 178
dbx tool

disable Auto-Read for, 44
initializes faster, 44
symbol table information for, 15

debugging information, removing, 21
decimal-point character, 177
declarators, 159
default

compiler behavior, 23
handling and SIGILL , 168
installation path name, xxx
locale, 153

#define , 7
diagnostics, format, 151
directives, 66
documentation for C compiler, xxii to

xxviii
domain errors, math functions, 166
double load/store instructions, 9

E
edit, source files, See cscope

environment variables, xxiii, 27, 57, 73, 84,
85, 101, 153, 177

ERANGE, 166
errno , 166, 171
Error message

source file names, 54

186 C User’s Guide

Error message catalogs, 54
Error message database

shared between cc and lint
commands, 55

Error messages
localization, 54

error messages, xxv, 119, 151
See also message ID (tag)

exit function, 176

F
faster linking and initializing, 44
fbe (assembler), 2
features, new in this release, See README

file
fgetpos function, 171
files

implementation-defined
behavior, 169 to 170

See also #include files; source files
temporary, 57

flags, compiler, See options, compiler
float expressions as single precision, 13
floating point, 156

gradual underflows, 65
nonstandard, 11
nonstop, 65
representations, 156
truncation, 156, 157
values, 156

fprintf function, 170
fscanf function, 170
ftell function, 171
function

abort , 176
calloc , 176
clock , 177
exit , 176
fgetpos , 171
fmod , 167
fprintf , 170
fscanf , 170
ftell , 171

getenv , 176
malloc , 176
perror , 171
prototypes, 128
prototypes, lint checks for, 133
realloc , 176
remove , 170
rename , 170
strerror , 177
system , 177

G
gencat utility

creating formatted message database
catfiles, 54

getenv function, 176
gprof , xxv
gradual underflows, 65

H
header files

format, 64
how to include, 64 to 65
standard place, 64 to 65
with lint , 107 to 108

help, See documentation for C compiler

I
identifiers, 152
ild , xxv, xxviii, 3, 33
iMPact, 72
implementation-defined behavior, 151 to

178
#include files, 64 to 65, ?? to 94
incremental linker, xxv, xxviii, 3, 33
indent , xxiv
inline , xxv
inline expansion templates, 34, 37
inlining, xxv, 34
installation path name, xxx
integers, 154 to 155

Index 187

interactive device, 152
iropt (code optimizer), 2
isalnum, 165
isalpha, 165
iscntrl, 165
islower, 165
isprint, 165
isupper, 165

K
K&R C vs. ANSI C, xxi, 5, 23, 179
keywords, 58 to 61

L
ld , xxv, xxviii, 3, 54
lex , xxv
libfast.a , 182
libraries

intrinsic name, 15
libfast.a , 182
lint , 133 to 134
renaming shared, 15

library bindings, 7
license, xxvii, 72
linker, xxv, xxviii, 3, 33, 44, 54
linker, See also incremental linker
linking

static vs. dynamic, 8
lint , xxiv, 105 to 135

consistency checks, 128 to 129
filters, 134 to 135
libraries, 133 to 134
messages, 119
options, 108 to 118
portability checks, 129 to 131
predefinitions, 67
questionable constructs, 131 to 132
shared error message database

catfiles, 55
local time zone, 177

locale
behavior, 177
default, 153

Localization
Using gencat and catges , 54

Localization error messages
lint , 54

Localization of error messages, 54
long double , 147
long int , 62
long long , 61 to 62

arithmetic promotions, 62
passing, 147
representation of, 139
returning, 147
storage allocation, 137
suffix, 63
value preserving, 63

long long, 9
loops, 31

M
m4, xxv
macros

__DATE__, 164
__RESTRICT, 60, 72
__TIME__ , 164

main
semantics of args, 152

make, xxv
malloc function, 176
man pages, xxiii to xxv
math functions,domain errors, 166
memory, 176
message ID (tag), xxvi, 9, 10, 112, 113, 119
messages, error, xxv, 119, 151

See also message ID (tag)
messages, lint , 119
mode, compiler, 23
MP C, xxii, 72 to 82
multiprocessing, 72 to 82
mwinline , 2

188 C User’s Guide

N
new features in this release, See README

file
newline, terminating, 169
NLSPATH

setting the access path, 55
nonstop

floating-point arithmetic, 11, 65
null characters not appended to data, 169
NULL, value of, 164

O
on-line documentation, xxiii
operating environment, xxx, 1
optimization, 11, 37, 181
optimizer, 2
optimizing performance, 11, 37, 181
options

-xtarget= t , ?? to 51
options, compiler, 5 to 54
options, lint , 108 to 118

P
padding of structures, 158
PARALLEL environment variable, 27, 73
parallelization, 27, 31, 34, 39, 42, 52, 72 to

82
pass, name and version of each, 21
path name, xxx
Pentium, 51
performance,optimizing, 11, 37, 181
perror function, 171
platform, xxx
pointers, restricted, 59 to 61
portability, of code, 106, 129 to 131
#pragma _int_to_unsigned , 69, 162
#pragma _unknown_control_

flow , 70, 163
#pragma align , 68, 160
#pragma fini , 68, 161

#pragma ident , 69, 162
#pragma init , 68, 161
#pragma MP serial_loop , 69, 74, 162
#pragma MP serial_loop-

nested , 69, 74, 162
#pragma MP taskloop , 69, 74, 162
#pragma no_side_effect , 69, 162
#pragma nomemorydepend , 69, 162
#pragma pack , 70, 163
#pragma pipeloop , 70, 163
#pragma redefine_extname , 70, 163
#pragma unroll , 70, 163
#pragma weak , 71, 164
pragmas, 68 to 71, 160 to 164
predefinitions, 8, 72
preprocessing

directives, 7, 64 to 65, 71, 159
predefined names, 71

preprocessor, 35
preserving

unsigned , 58
value, 58

printing, 62, 177
prof , xxv
profiling

with tcov , 24
promotions, 58

Q
qualifiers, 159

R
README file, xxvii
realloc function, 176
remove function, 170
rename function, 170
renaming shared libraries, 15
representation

floating point, 156
integers, 154

Index 189

__RESTRICT macro, 60, 72
_Restrict keyword, 60
restricted pointers, 59 to 61
right shift, 155
rounding behavior, 65

S
sccs , xxv
search, source files, See cscope

shared libraries, naming, 15
shared object, 14
signal, 167 to 168
signed , 58, 154
Source Code Control System, See sccs

source files
checking with lint , 105 to 135
editing, See cscope
indenting, xxiv
locating, 160
searching, See cscope

SourceBrowser, 102
space characters, 169
standards conformance, xxiv, 1, 57
streams, 169
strerror function, 177
string literals in text segment, 45
structure

alignment, 158
padding, 158

SUNPRO_SB_INIT_FILE_NAME
environment variable, 57

symbol table for dbx , 44
symbolic debugging information,

removing, 21
system function, 177

T
tcov , xxv

new style with -xprofile , 41
tcov tool, 24

text
segment and string literals, 45
stream, 169

__TIME__ , 164
time and date formats, 178
/tmp , 57
TMPDIR environment variable, 57
translation behavior, 151
type conversions, 58
typographic conventions, xxix

U
underflow, gradual, 11
unsigned , 58, 154

V
value

floating point, 156
integers, 154
preserving, 58

volatile , 159

W
warning messages, xxv, 119, 151

See also message ID (tag)
write on text stream, 169

Y
yacc , xxv

Z
zero-length file, 170
zero-size memory allocation, 176

Copyright 1996 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100, U.S.A. Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie,
la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut être reproduite sous
aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il
y en a.

Des parties de ce produit pourront être dérivées du système UNIX® licencié par Novell, Inc. et du système Berkeley 4.3 BSD
licencié par l’Université de Californie. UNIX est une marque enregistrée aux Etats-Unis et dans d’autres pays et licenciée
exclusivement par X/Open Company Ltd. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices
de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Solaris, et SunSoft sont des marques déposées ou enregistrées de Sun Microsystems, Inc.
aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC, utilisées sous licence, sont des marques déposées ou
enregistrées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont
basés sur une architecture développée par Sun Microsystems, Inc. Intel sont enregistrées de Intel Corporation. PowerPC sont des
marques déposées International Business Machines Corporation.

Les interfaces d’utilisation graphique OPEN LOOK® et Sun™ ont été développées par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des
interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox
sur l’interface d’utilisation graphique Xerox, cette licence couvrant aussi les licenciés de Sun qui mettent en place l’interface
d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE NI IMPLICITE,
Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES CONCERNANT LA VALEUR
MARCHANDE, L’APTITUDE DES PRODUITS A RÉPONDRE A UNE UTILISATION PARTICULIERE, OU LE FAIT QU’ILS
NE SOIENT PAS CONTREFAISANTS DE PRODUITS DE TIERS.

