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Abstract

A topographic steering river meandering (TSRM) model based on continuity of a sim
fied flow field through bends is developed. The equilibrium coupling between helical 
and sediment transport, as inIkeda [1989] determines downstream variation of transver
bed slope. The model tests the hypothesis that meander development patterns can 
tured under the assumptions: (a) bank shear stress arises from forces associated w
graphically induced convective accelerations; (b) turbulent boundary layer dissipatio
these forces at the banks is sufficiently represented by gaussian smoothing at a par
ized scale; and (c) lateral migration of the channel is proportional to bank shear stres
resulting TSRM model produces realistic complex meander patterns and scroll bar-l
topography. Model compound bend formation is compared to a field case and found
arise from the nonlinear interaction of bank roughness and channel hydraulics scale
When the latter is short relative to the former, maximum bank shear stress occurs e
the bend and leads to compound bend formation. New statistical stream sinuosity an
tial coordinate variation measures are applied to both natural and model streams an
reveal secondary sinuosities arising from compound bend formation in both cases. S
bar topography and channel bank roughness are studied in the field to compare natu
model mechanisms.

A channel-hillslope integrated landscape development (CHILD) model incorporates 
TSRM model. The CHILD model represents the landscape as an irregular, Delaunay
gulated mesh of landscape nodes that may be moved, deleted, or added to accomm
meandering channels that are in general discretized at different spatial resolution th
surrounding landscape. The interactions among meandering, bank erodibility’s bank
height dependence, and uplift rate in a detachment-limited river valley are examined
equilibrium landscape adjusts to the onset of meandering and approaches a new dy
equilibrium. For the detachment-limited case, the hypothesis that meandering is mo
active when uplift is quiescent is rejected. When bank erodibility’s bank height depe
dence is greater, bend scale sinuosity is smaller, but the tendency toward multi-bend
formation is reinforced.
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Chapter 1

Introduction

The original objective of this study was to model the transport and deposition of sedi

in river basins in the context of landscape evolution. The new model would employ 

niques developed in previous studies where possible, but new process models wo

derived where the techniques of previous models were inadequate: in the treatment 

tiple sediment sizes, lateral fluvial erosion, and floodplain deposition. The model 

would attempt to answer the following question: given an initial distribution of sedim

in space and a climatic forcing in time, what is the structure of deposits after some

interval?

The initial objective of the present study was to develop a landscape evolutio

model (see review in Chapter 2) that would incorporate the new features listed above

problem of lateral fluvial erosion, or meandering, would not yield to a solution based

the traditional rectangular grid. Instead, I sought the simplest possible solution that s

captured most of the physics of river meandering. The results of the present study a

models of river meandering and landscape evolution. Another member of the resear

group took up the problem of multiple grain size sediment transport, and the problem

floodplain deposition has not been addressed. I review the landscape evolution mod

literature in Chapter 2.
171717
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An understanding of the process of river meandering is basic to an understan

of river processes in general. That general understanding is important for people wh

work with rivers covers a broad range of spatial and temporal scales—from the eros

pasture land from year to year, to the formation of alluvial terraces over millennia, to

evolution of a river basin over the geologic time. I review the river meandering literatu

Chapter 2.

From the literature and through studies of rivers from maps and aerial photogr

and in the field, I found that important aspects of meandering were not predicted by 

state of the art of river meander modeling, nor has the impact of meandering on the

scape received much study. I present a study of natural river meandering in Chapter

Field and experimental studies have shown that channel bed topography has a stron

on the patterns of flow and sediment transport through a bend and, thus, on the mea

ing process. In Chapter 4, I explain a new model of river meandering based on the h

esis that “topographic steering” [Dietrich and Smith, 1983] is the major physical control

on stream bank erosion. I show the model results and draw comparisons with the fin

in Chapter 3.

In Chapter 5, I return to the problem of landscape evolution modeling. The ai

to simulate the evolution of valleys and streams as long as several kilometers on the

of millennia for alluvial streams or millions of years for bedrock streams. I explain a 

landscape evolution model that incorporates the meandering model on an irregular, 

ble grid and show some synthetic results of the integrated model.
18
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The present work leaves some questions unanswered relative to nature and t

new models. In Chapter 6, I explore the directions of future work and discuss possib

improvements to the river meandering model. The landscape evolution model is und

active development, and I address the direction of that development and explore som

interesting experiments, especially with regard to meandering, that could be done wi

fully developed model. I also address the subject of model verification through field s

ies. Finally, I discuss the implications of the whole study and conclude in Chapter 7.
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Chapter 2

Literature Review

This chapter will review previous work on the subjects of landscape evolution and

meandering. In my review of the landscape evolution literature, I will address some 

fundamental processes which remain unaddressed by the models. Specifically, 

address the treatment of geomorphic processes in the context of the fluvial-dom

landscape and review the literature on the subject of river meandering.

2.1 Landscape Evolution
The study of landscape evolution has progressed rapidly within the past decade

Landscape evolution models have attained general acceptance only recently and c

model relatively large landscapes relatively quickly, but the suite of modeled process

not changed much sinceAhnert [1976], except for a few recent examples which I w

highlight in the following review. In this review of landscape evolution modeling, I fo

on previous models’ capabilities to represent various landscape processes and g

attention to the scientific results of the model studies.

Water, ice, wind, gravity and biogenic activity may all act as agents of, or forc

behind, sediment transport and, thus, landscape evolution. Aside from glacial and re

processes, ice is responsible for diffusional transport by frost heaving and physical w

ering by frost shattering. Wind is responsible for abrasion erosion, soil stripping, loe

deposition and diffusional transport on hillslopes by tree throw. The biogenic activity
212121



h as

able

ing

 a

poral

cales (<

bulent

rge as

years

s

f-

ity to

 diffu-

that
burrowing mammals also produces diffusional transport [Black and Montgomery, 1991].

Gravity transport in river basins includes soil creep and mass wasting processes suc

rockfall [Carson and Kirkby, 1972;McKean et al., 1993] and landsliding [Montgomery

and Dietrich, 1994]. Fresh water transport in river basins may take several distinguish

forms: rainsplash, overland flow, groundwater sapping, and fluvial processes, includ

channel flow. Overland flow, sapping, and landsliding may cause erosion and initiate

channel [Dietrich et al., 1993;Montgomery and Dietrich, 1988, 1989, 1992].

Various studies of sediment transport mirror greatly disparate spatial and tem

scales of sedimentary processes. On the one hand, the finest spatial and temporal s

1mm, < 1 sec.) are required to study the entrainment and motion of sediments in tur

flow (e.g.,Tetzlaff and Harbaugh, 1988;Slingerland, et al., 1994). On the other hand, the

evolution of fluvial landscapes and sedimentary basins takes place on domains as la

thousands of square kilometers and over periods as long as hundreds of millions of 

[Young and McDougall, 1993].

Gilbert [1877] recognized that the simultaneous interaction of many processe

form a landscape in dynamic equilibrium as opposed toDavis’s [1909] geographic cycle

of uplift and erosion.Gilbert [1909] saw that the local differences in form are due to di

fering process dominance. For example, he recognized that the change from convex

concavity in the landscape was due to changes in process dominance from hillslope

sional to advective fluvial processes. Later,Hack [1960] introduced the concept of

dynamic equilibrium as a steady state in which uplift exactly balances erosion such 

elevations remain constant in time. In this work I use a less restrictive definition of
22
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dynamic equilibrium such that elevations at a site may change, but on the scale of th

scape the processes building and eroding the landscape are in equilibrium.

It was not untilSmith and Bretherton [1972] that the issue of process dominance

was addressed in a quantitative model. They found that perturbations of an inclined 

introduced instabilities due to the convergence of flow. This instability allowed advec

transport to outpace diffusive transport and, thus, form a channel network. Their work

somewhat flawed, however, in that their results implied an infinite dissection of the la

scape.

Kirkby [1971] andCarson and Kirkby [1972] introduced a simple profile model o

hillslopes in which the sediment flux per unit width is a function of the distance from 

divide and the local slope:

(2.1)

where x is effectively a surrogate for discharge. Later profile studies have bui

upon the above simple model by adding functions for soil production and considerin

effects of spatial and temporal variations in climatic forcing [Kirkby, 1989]. Subsequently,

three-dimensional landscape evolution models have built upon the above equation b

including two basic terms in a sediment flux equation dependent on drainage area (

gous to x above) and local slope, one term for advective transport (m > 0 and n > 0)

one term for diffusive transport (m = 0 and n = 1).

Vanguard among landscape evolution models areAhnert [1976] andCordova, et

al. [1982].Ahnert [1976] modeled regolith production and diffusional, mass wasting, a

qs xmSn∝
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advective transport processes, andCordova, et al. [1982] modeled explicitly fluvial trans-

port processes, both on a two-dimensional grid.Ahnert [1976] modeled transport from a

point to all downhill points according to the discharges and slopes in each direction, 

Cordova, et al. [1982] collected flow and sediment from all upstream points and sent fl

and sediment to only the downstream point with the steepest slope. After these wor

progress in the modeling of landscape evolution was hindered by the lack of a quanti

field-based understanding of the processes shaping the landscape and, on a more p

note, sufficient computing power to model landscapes on grids larger than several p

per side.

Montgomery and Dietrich [1988] brought the issue of channel initiation into the

general consciousness, andMontgomery and Dietrich [1989] followed up on that earlier

work with a thorough field study of channel initiation processes, including overland fl

shallow landsliding, and seepage erosion.Montgomery and Dietrich [1989] addressed the

issue of what defines landscape scale and derived an alternative approach to definin

drainage density in terms of channel head source basin length.

Willgoose, et al. [1989, 1991] developed a landscape evolution model, SIBERI

in which transport in channels had greater capacity than non-channel transport. Cha

were explicitly defined with an activator function. The channel activator was a separa

governing partial differential equation which extended the channel network via head

growth according to the value of a threshold criterion dependent on the drainage are

local slope at a point. The latter slope dependence markedly distinguished the activa

from the headward growth model ofHoward [1971].Montgomery and Dietrich [1992]
24
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used mapped channel head locations to empirically define a topographic threshold s

in form to the activator function.

Dietrich, et al. [1992] developed a graphical technique to define spatial variatio

process dominance and divided the landscape into areas prone to channel instability

runoff and stable areas dominated by diffusion processes.Tarboton, et al. [1991, 1992]

developed a similar technique for differentiating channels and hillslopes in digital ele

tion models (DEMs), but the method was not tested against mapped channels.Ijjasz-

Vasquez, et al. [1992] used a saturation from below mechanism for channel initiation i

the SIBERIA model.Dietrich, et al. [1993] addressed the question of whether threshol

for runoff generation or slope failure better defined the locations of known channel h

They found that a threshold based on a critical shear stress due to saturation overlan

was better than one based on a threshold for landslide initiation at predicting channe

locations when applied to real landscapes.Montgomery and Dietrich [1994] derived and

tested a model of pore pressure-induced shallow landsliding by combining the infinit

slope stability model for shallow soils with a simple expression for subsurface flow in

steady state. They were successful in predicting the locations of some mapped land

scars.

Howard[1994] compared the effects of different hillslope processes, and Tucker

and Bras [1998] recently incorporated many channel initiation and hillslope processes

landscape evolution model in order to examine the differences among landscapes p

duced by the various processes.Howard [1998] recently modeled a system in which res

tant bedrock is mantled by soft regolith which is in turn covered by resistant vegetati
252525
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and investigated gullying in response to disturbances in the vegetation layer.Moglen and

Bras [1995] investigated the effect of a spatially heterogeneous erodibility and calibr

the model to natural landscapes with a simple detachment-limited advection-diffusio

model. They found that heterogeneity led to patterns of drainage aggregation that w

more circuitous and more realistic than the model networks produced in the homoge

case.Rosenbloom and Anderson [1994] used a landscape evolution model with diffusio

limited by regolith production on hillslopes and detachment limited erosion in channe

model the formation of marine terraces and calibrated the model to a site in Californ

Tucker and Slingerland [1994, 1996, 1997] developed the Geologic, Orographic Land-

scape Evolution Model (GOLEM) with the above processes and both bedrock and al

channels to model escarpments, fold and thrust mountain belts, and the effects of c

change on drainage basins.

Several other landscape evolution models are noteworthy here.Chase [1992]

developed a “precipiton” model in which parcels of water are placed in random locat

routed downstream, and allowed to erode or deposit sediment along the way. This m

similar to that ofBeaumont, et al. [1992]. This model is really only valid if the governing

equations for sediment transport are linear in discharge because flow cannot aggreg

i.e., only one pixel generates flow during a given iteration.Beaumont, et al.[1992] and

Kooi and Beaumont [1994] also incorporated orogenic influences on rainfall and intro-

duced a reaction length scale such that entrainment and deposition as calculated at 

point are potentially spread over more than one point along the channel.Braun and Sam-

bridge [1997] developed a model on a triangulated irregular network (TIN). In this mo

points can be added, e.g., to resolve steep slopes, and points can be moved accord
26
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simple rules mimicking tectonic motion.Gasparini, et al. [1997] incorporated sediment

with multiple grain sizes in a landscape evolution model by combining the sand and g

transport model ofWilcock and McArdell [1993] withTucker and Slingerland’s [1994]

GOLEM. They found that even in dynamic equilibrium drainage basins exhibited dow

stream fining and the changes in texture had a large effect on basin stream profile c

ity. This effect was recognized long ago byHack [1957].Dunne and Aubrey [1986]

attempted to model the effect of different grain sizes and reported qualitative agreem

between model and experiment, but they abandoned the effort because they were un

reproduce the experimental values of sediment transport due to the sensitivity of the

model.

Another group of landscape models takes a more rules-based approach. For

ple,Rodriguez-Iturbe, et al. [1992] evolved topography and stream networks according

optimality criteria. These optimal channel networks, or OCNs, indicate that minimiza

of total network stream power is sufficient to produce networks resembling natural o

This approach is essentially statistical mechanics applied to river basins, whereas th

present approach addresses the mechanics of specific landscape processes.Rinaldo, et al.

[1995] used a model with diffusive hillslope transport and detachment-limited advect

according to a critical shear stress threshold to study changes in drainage density w

mate. They found that a lower threshold and constant diffusion strength led to greate

drainage density.

As I will show in later chapters, lateral channel migration is an important facto

the evolution of the landscape, but no landscape model has incorporated this fundam
272727
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process. In fact, no one has even considered the quantitative effects of lateral migrat

drainage basin form beyond the recognition that it can widen valley floors and produ

characteristic forms such as terraces [Merritts, et al., 1994], bluffs, and slip-off slopes. A

model incorporating lateral channel migration, or meandering, is required to address

interaction of meandering and other landscape processes and is the major goal of th

present work.

2.2 River Meandering

Schumm, et al.[1987] illuminated some of the conditions necessary for the dev

opment of stable meanders. They experimented with meandering in an initially curve

experimental “bedrock” channel. They found that clear water flow incised an inner ch

nel at the inside of the bend. With the admixture of bedload sediment to the incomin

flow, however, the channel migrated laterally and incision slowed. They observed tha

bedload material formed a transversely sloped point bar which steered the experime

stream’s erosive energy toward the outside bank. They concluded that point bar-form

bedload is a necessary condition for meandering in a channel with cohesive banks.

Leopold and Wolman [1960] noted that meltwater rivulets on ice develop meanders in

absence of bedload, but they did not study the mechanism responsible for this deve

ment.

Another set of experiments bySchumm, et al.[1987] revealed that an initially

straight channel in cohesionless material formed a “meandering thalweg” pattern du

stage prior to the development of a braided pattern. However, when they mixed cohe

material with the inflow to the meandering thalweg channel, the deposition of the coh
28
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material stabilized the point bars to form a floodplain, and the meandering thalweg

became a stable meandering channel. They concluded that the conditions necessary

development of a stable meander pattern, whether bedrock or alluvial, were: a) the 

ence of bedload ample enough to develop a point bar and to redirect a significant po

of the stream’s energy toward the outside bank; and b) a mechanism or process pro

bank stability, such as cohesive bank material, bank stabilizing vegetation, or a cohe

suspended load to deposit on and stabilize point bars. The recent experimental resu

Smith [1998] support these conclusions. When the above conditions are met stable p

bars may form that steer the high velocity flow to the outside bank. In the case of ze

incision, such point bars accrete to form a floodplain which resists the formation of s

ondary channels or chutes that, in the extreme case, would lead to braiding.

Dietrich and Smith [1983],Dietrich and Whiting [1989], andNelson and Smith

[1989b] showed that the flow and boundary shear stress fields in meander bends ar

strongly affected by the presence of point bars, a phenomenon they called topograp

steering.Dietrich and Smith [1983] found that “[f]orces arising from topographically

induced spatial accelerations are of the same order of magnitude as the downstream

boundary shear stress and water surface slope force components.” In fact, some of 

results ofDietrich and Whiting [1989] showed that the forces arising from topographic

steering were of greater magnitude than the water surface slope force component.Nelson

and Smith [1989b] modeled flow and sediment transport in a channel bend with an in

tially flat bottom. Their modeling experiment showed, with the growth of the point bar

corresponding development of a region of high boundary shear stress near the outs

bank.
292929
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Many authors have modeled meandering [Ikeda, et al., 1981;Parker, et al.,1982;

Parker, 1983;Parker, et al.,1983;Beck,1983;Blondeaux and Seminara, 1985;Johannes-

son and Parker, 1985, 1989a, b, c;Parker and Andrews, 1986;Parker and Johannesson,

1989;Crosato,1990;Howard, 1992;Seminara and Tubino, 1992;Garcia, et al.,1994] by

linearizing the equations of flow and sediment transport such that they afford a tract

solution for the near-bank downstream flow velocity as a function of the downstream

coordinate. Higher velocity near the bank corresponds to larger bank shear stress b

that shear stress is proportional to the lateral gradient of downstream flow velocity n

the bank; higher near-bank velocity means a greater velocity gradient. These model

assume that bank erosion is a detachment-limited process [Howard, 1994]. Models of river

meandering based on the linearized flow equations (LFE models) produce realistic m

der bends [Howard, 1992] and have proven useful in predicting channel migration in so

cases [Johannesson and Parker, 1985] but with mixed results in others [Garcia, et al.,

1994]. The models ofBlondeaux and Seminara [1985] andJohannesson and Parker

[1989a] revealed the existence of complex feedbacks between flow and bed topogra

Other authors [Smith and McLean, 1984; Nelson and Smith, 1989a, b] have devel-

oped “two-plus”-dimensional channel flow and sediment transport models using dep

averaged equations for the bedload transport and an assumed vertical velocity profi

the suspended load transport. These numerical models are more detailed than LFE m

and, as mentioned above, they show that topographic steering greatly affects flow an

iment transport in bends.Nelson and Smith [1989b, p. 350] point out that, to deal with

bank erosion and meandering, their model would need to include “both consideratio
30
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the lateral diffusion of momentum [at the bank] by turbulence and the characterizatio

bank roughness.”

Howard[1992] noted four constraints on the rate of bank erosion:

These constraints are, or may be, sequentially linked, so that
the slowest among them controls the overall rate.

(1) The rate of deposition of the point bar.

(2) The ability of the stream to remove the bedload compo-
nent of the sediment eroded from the bank deposits via a net
transport flux divergence.

(3) The ability of the stream to entrain sedimentin situ or
mass-wasted bank deposits.

(4) The rate with which weathering acts to diminish bank
sediment cohesion to the point that particles may be
entrained by the flow or bank slumping may occur.

Howard[1992] developed an erosion law based on near-bank shear stress an

cluded that it was most applicable in the detachment-limited erosion of cohesive ban

(constraint 3). Such a law may also be applicable in the case of bedrock, where the 

rate of bank erosion may be limited by the weathering rate (constraint 4) which may

turn, be independent of other channel processes, while the bank erosion at a specifi

may be dependent on the relative ability of the near-bank flow to detach bank mater

Howard[1992] used theJohannesson and Parker[1989a] model to simulate the

long-term evolution of meandering channels and floodplain topography. Following th

reasoning of other authors [Beck,1983;Johannesson and Parker,1985;Crosato,1990;

Garcia, et al.,1994],Howard[1992] expressed the near-bank flow velocity and chann

depth in terms of linear perturbations on the mean values; in the model, the rate of b

erosion is proportional to the velocity perturbation, and the initial floodplain elevation
313131
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found from the depth perturbation.Howard[1992, 1996] developed this model further b

including floodplain deposition as a diffusional process [Pizzuto, 1987] and chute forma-

tion as a stochastic process [Howard, 1996].

The above work has done much to further the understanding of the meander

process, but a key question is left unanswered; that is, how important is the effect of

strongly nonlinear topographic steering to meander evolution in light of the success 

ear and weakly nonlinear models? The weakly nonlinear approach does address no

effects but only for small curvature and within a small neighborhood of “resonance”,

the meander wave number at which the linear solution becomes unbounded. Despite

evidence that topographic effects are strongly nonlinear, almost all models use simil

ear or weakly nonlinear approaches. Two recent exceptions areDroste[1996] andImran

and Parker [1997], but these models are still too computationally slow to model chan

evolution over geologic time, especially in the context of an entire landscape.

A new approach combining strong nonlinearity and computational efficiency i

called for to address nonlinear effects over long channel courses and times. Strong 

earity is required in order that the model’s application is not limited to bends with sm

curvature and, therefore, after short times. Computational efficiency is required to in

porate the model in a landscape-scale model. To meet both of these requirements, 

determine the essential physics required to model meandering. Once the new mean

model is developed, I must address the proper coupling of the meandering channel a

landscape where they meet, at the channel bed and banks. For a full coupling, sedim

input to the channel from the surrounding landscape should also be addressed, but 
32
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bases for comparison of both the meandering and coupled models to natural stream

landscapes, I first investigate the morphology of the latter natural systems.
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Chapter 3

River Meandering in Nature

In this chapter I report results and observations from a study of natural meandering 

This study was motivated in part by the modeling study presented in the following c

ters. I needed to ask the question: How do I judge the success or failure of a new

meandering model and its incorporation in a landscape evolution model; what que

remain unanswered? what phenomena unexplained? Included in this chapter are

study in Maine and the Ozarks of Arkansas and Missouri and remote studies of the M

sippi floodplain, the Schoharie Creek drainage basin in the Catskills of New York

Alaskan meandering stream channel planforms.

3.1 Introduction
3.1.1 Meandering and the Landscape

Meandering streams are familiar features of the landscape. Though the valley

incising meanders may be quite narrow, meandering streams typically occupy relativ

flat valley floors, as in the case of Schoharie Creek in New York, shown in figure 3.1

eral channel migration may flatten the valley bottom by forming a strath surface if th

channel erodes laterally but not vertically. Often meandering streams are characteriz

net deposition and aggradation, and these alluvial deposits may partially fill the valley

their surface may form a relatively flat fill surface.
353535
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Meandering streams may also degrade and incise the landscape. If the migra

rate is large with respect to the rate of incision, the stream may cut a flat-bottomed s

through the former fill or strath. Cycles of cutting and filling may create a series of cu

fill terraces. Cycles of cutting and strath formation may form a series of strath terrac

Often the two types of terraces are found in the same valley [Meritts, et al., 1994]. If the

migration rate is small relative to the incision rate, then the stream forms incising me

ders. As opposed to the point bars and cut banks formed on strath and fill surfaces,

ing meanders have slip-off slopes and bluffs, respectively, as on the Buffalo River in

Arkansas, shown in figure 3.2.

Figure 3.1: Surface with contours at 50 meter intervals of elevation from the 30 m
horizontal-resolution digital elevation model (DEM) of the Hunter, NY, 7.5’ quadran
Shown is part of the Schoharie Creek basin along the main channel; view is downs
and to the west.
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Figure 3.2: Visualization of Ponca, AR, 7.5’ DEM. Elevation range of the DEM is 26
739 meters; horizontal resolution is 30 meters.

Even in the absence of terraces, slip-off slopes, and bluffs, meandering stream

form complicated floodplain topographies. As channels erode at the outer banks of b

they deposit material to form the point bar at the inner banks. Floods deposit not onl

sediments from suspension on the floodplain but also coarser sediments from bedlo

often in floodplain channels. Such channels are scoured by flood flow. Thus, floodpl

topography is the result of lateral and vertical accretion and scour in floodplain chan

1 km
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These floodplain channels may themselves meander. Channels migrate to form mea

loops that eventually cut off to form oxbow lakes. Thus, the hydraulics of channel an

flood flow can create a complex floodplain topography.

Other features of meandering streams are not as well understood as those

described above. Scroll bar topography, or the series of concentric curved ridges an

swales on the floodplain, is as ubiquitous as are meander loops and oxbow lakes, bu

bar topography is not explained by the simple set of processes described above. An

ple of scroll bar topography on the Mississippi River floodplain is shown in figure 3.3

Figure 3.3: Red Leaf, AR, 7.5’ quadrangle DEM. Mississippi River (blue) flows towa
observer.

Several authors have noted the existence of compound bends, or bends with

that have opposite curvature (see figure 3.4), as opposed to simple bends that have

ture of the same sign throughout. Compound bends also have familiar, characteristi

shapes, such as the bend shown in figure 3.4, and, therefore, are not likely the resu

bank heterogeneity or some other stochastic process.

Another important part of the meandering system is the eroding channel bank

mechanisms of bank failure and the forms created by that failure affect the shape an
38
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of the meander bend by defining both the channel’s migration pattern and the smalle

tures of the bank.

Finally, I should reexamine the role of meandering in the landscape. Though 

characteristic forms of flat valley floors and steep valley sides or slip-off slopes and b

are recognized, beyond that qualitative recognition the effect of meandering on the l

scape is often ignored in the interpretation of the slope-area relationship, i.e., local s

plotted against contributing area at each point in a discretized drainage basin from a 

Figure 3.4: Photograph from space of a tributary to the Amazon River, flow from to
bottom, channel highlighted.

Also, the mechanism of downstream valley width variation is not well understo

Faster channel migration with respect to the incision rate will lead to a wider, flatter v

bottom. But, what controls these relative rates? Changes in valley width along a strea

commonly observed to correspond to changes in lithology. Valleys may be wider wh

the valley walls are more erodible because greater bank erodibility will lead to faster

migration for the same bank shear stress. It is also possible that changes in litholog

lead to changes in the magnitude of that shear stress. In Chapter 2, I discussed topo

steering, or the role of bedload in forming bars that, in turn, steer the flow toward an

thus, increase the shear stress at the bank. Differences in lithology may correspond
393939
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ferences in bedload, e.g., in the amount or particle size distribution. In turn, different 

and types of bedload may lead to different bar forms and, thus, magnitudes of topog

steering. An increase in the latter magnitude would increase the lateral channel mig

rate and, possibly, the valley width.

In this chapter, I present a study addressing the above issues. The focus is o

phologic, rather than hydraulic, measurements and indicators of meandering proces

dynamics. The study includes rivers and streams in Alaska, Arkansas, Maine, Misso

and New York, and uses both remote and field data. The objective is to develop both

understanding of the mechanisms active in meandering streams and a methodology

measuring the morphologic effects of these mechanisms. In later chapters, I draw o

results of this chapter in order to assess the results of the new river meandering and

scape evolution models.

3.1.2 Compound Bend Formation

As noted parenthetically above, I define compound bends as bends that evol

from simple bends to develop a curvature reversal in the course of the bend.Brice [1974]

documented the formation of compound bends on the White River, Indiana, though 

above definition is slightly different fromBrice’s. He defined a simple meander loop as

“[having] one segment of constant curvature whose length exceeds its radius” and a

pound loop as “[including] two or more simple loops, whose curvature is commonly

directed toward the same side of the river.” Both definitions, his and the present one

ally agree and do involve some subjective judgment to distinguish between a compo

bend and a series of simple bends.Brice [1974] noted that compound loops “demonstrab
40
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evolve from simple loops,” and the present definition of compound bends follows fro

this observation.

Two mechanisms, cutting off and compound bend formation (see figure 3.5), 

both important for the development of complex meandering stream patterns. Bends a

off when the channel bypasses the bend by seeking a shorter path across the floodp

a result of cutoffs, the meander axis shifts to one side or another at different location

the channel course becomes erratic. Cutoffs also produce new smaller bends relative

larger loops which remain (see figure 3.5(a)).

Figure 3.5: Illustration of two mechanisms which influence meander belt complexity:
cutoffs and (b) compound bend formation.

As a rule, simple bends that become compound first develop a middle section

low curvature. Such bends might be compound underBrice’s [1974] definition, but under

the present definition the curvature must actually reverse, or change sign. Some dis

bance initiated upstream of the bend, such as that investigated in the following secti

leads to migration that reverses the curvature where it was small (see figure 3.5(b)) 

therefore, makes the bend compound. An example of a typical compound bend shap

the Amazon River basin is shown in figure 3.4. In some cases, the section with reve

curvature may continue migrating in that reverse direction such that the compound b

(a)

(b)
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separates into three distinct small bends (see figure 3.5(b)). The result of such sepa

is that the size, shape, and orientation of bends becomes more irregular in general, 

figure 3.5(b). Note that the initial bends in figure 3.5(a) and (b) are differently shaped

that the different shapes are indicative of their different evolution.

The bend separation that often follows from compound bend formation increa

the time over which prior conditions are reflected in present forms. In the absence o

pound bend formation, bends grow until they cut off, either by chute formation or the

breaching of the thin neck connecting the point bar to the rest of floodplain. These m

nisms are known as chute and neck cutoffs, respectively [Howard, 1992]. Cutoffs essen-

tially erase the old bend because the new channel bypasses the old bend complete

However, as explained above, bends may also become compound and separ

rather than cutting off, and this process may be repeated in the bends resulting from

initial compound bend formation. In such cases, the shape of the first bend is reflect

the course of a large, multi-bend loop. This loop will eventually cut off, but the initial fo

will persist over the time it takes for each of the bends to grow and divide, much long

than the time for a single bend to grow and cut off in the absence of compound bend

multi-bend loop formation. If the channel form persists for a longer time, it stands to 

son that parts of the floodplain also remain undisturbed more predictably and for a lo

time than if the first bend had cut off rather than divided.

Howard and Hemberger[1991] found that their model did not simulate “the com

pound or cumuliform forms noted byBrice [1974] andHickin [1974]” and reasoned that

these forms might indicate the operation of “two distinct processes...caused by strea
42
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vature...[and] the formation of alternate bars.” It is also possible that compound bend

mation is the result of strongly nonlinear dynamics which are not accounted for in th

linear model formulation. I will address the latter hypothesis in Chapter 4. This chap

will address the evolution of compound bends from simple bends and the effect of c

pound bend and multi-bend loop formation on meandering channel planforms over m

bends.

3.1.3 Scroll Bar Topography

Scroll bar, or ridge and swale, topography is a familiar feature of meandering 

floodplains, but the mechanism responsible for this phenomenon has been studied o

rarely, as inMcKenney, et al., [1995]. The latter study determined that patterns of vege

tion colonization led to observed ridges and swales on gravel bars in the Ozarks of M

souri and Arkansas. However, these gravel bars are not typical of all scroll bar topogr

Scroll bar topography is such a common feature of meandering streams in a wide va

of climates that I wish to determine whether it is related to meandering process dyna

and, if so, how.

Several hypotheses for the mechanism forming scroll bar topography exist in

literature.Parker [1996] proposes that “highly elongated, partially beached oblique

dunes” form observed scroll bars, and this mechanism is consistent with experimen

observations [P. Whiting, personal communication, 1996]. I have observed in the field

longitudinal dunes do form ridges on sandy point bars, but the ridges’ wavelength is

general, smaller than that of scroll bars observed on the floodplain, at least at the fiel

I have visited.
434343



ow.
el bed
le repre-
bed is

g

topo-

hich

nism

ation

imilar-

re,

 large

uring

 spa-

annel

. This

 of
Figure 3.6: Illustration of scroll bar hypothesis. Channel migrates in direction of arr
Dark gray area with diagonal lines represents point bar deposits with former chann
surfaces. Light gray area represents present channel cross-section; dashed rectang
sents the rectangular channel cross-section with respect to which the channel 
sloped.

Another hypothesis is that scroll bar topography is the result of alternating lon

stable (i.e., channel not migrating) periods during which natural levees form relative 

graphic maxima and brief unstable (i.e., channel migrating rapidly) periods during w

levees do not have time to form and so result in topographic minima. Such a mecha

should produce scroll bars without a characteristic wavelength unless the rapid migr

occurs over similar spatial durations from one occurrence to another, though such s

ity is not recognized in the literature. A related hypothesis is that episodic bank failu

i.e., a short period of rapid bank migration, leads to episodic point bar accretion. The

sediment load resulting from the bank erosion leads to a large amount of deposition d

the point bar accretion such that the elevation of the new accretion is relatively high.

I propose the hypothesis that scroll bar topography is the result of systematic

tiotemporal variations in transverse bed slope, approximately proportional to local ch

curvature [Dietrich and Smith, 1983;Ikeda, 1989]. Downstream variations in transverse

bed slope are responsible for point bar-pool topography of meandering stream beds

hypothesis is illustrated in figure 3.6.Leopold and Wolman [1960] observed floodplain

stratigraphy in a trench on Watts Branch, MD, and found that their “observations

[appeared] to confirm the…hypothesis that point-bar building is the primary process
44
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flood-plain development in flood plains of this type.” According to the present hypoth

the height of the point bar and, thus, the floodplain surface elevation are determined 

transverse bed slope. When the latter slope is large (or small), the point bar is high 

low), and the pool is deep (or shallow). As the channel migrates the channel curvatur

thus, point bar height may vary. If these variations are oscillatory and periodic or qua

periodic, then scroll bar topography may result from the lateral accretion of point bar

varying height.

Kinoshita [1987] found stratigraphy resembling that idealized in figure 3.6 in a

trench across the Teshio River, Japan, floodplain and perpendicular to the inner ban

the channel. According toHasegawa [1989, pp. 220-221],

Kinoshita…deduced that a scroll bar may be formed from
an embryonic sand bar (at the core of each scroll bar). Each
such sand bar is generated by the deposition of suspended
sediment swept inward due to the action of large-scale,
near-bank separation vortices stretching downstream from
the apex of an inner bank.

Unfortunately, the latter study included neither assessments of channel migration ra

curvature where and when the deposits were made nor explanations of how the dep

mechanism was deduced.

In this chapter, I report observations and measurements of natural scroll bar t

raphy. I found the spectral power density of scroll bar topography to determine whet

is periodic or merely quasi-periodic. A finding of periodicity would tend to contradict 

hypothesis that scroll bar topography is the result of constant levee deposition and r

domly fluctuating migration rates, or vice versa. The scroll bar topography spectra s

also allow quantitative comparison of natural scroll bar topography and model result
454545
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McKenney, et al. [1995] found that deposition and scour during floods increased the r

on gravel floodplains of Ozark streams. I examined the stratigraphy of floodplain dep

on a sand-bedded stream to find whether fine flood deposits steepened or smoothe

relief of the deposits from lateral accretion. I also hoped that the stratigraphy might h

reveal the mechanism of scroll bar topography formation. Finally, I measured vegeta

stem and trunk diameters to ascertain relative rates of lateral point bar accretion. De

examination of scroll bar topography was limited to relatively low-energy, unconfined

single-thread meandering streams, but observations at some of the sites studied byMcKen-

ney, et al. [1995] were also included to find any similarities or differences between the

scroll bar topography on the floodplains of the different stream types.

3.1.4 Bank Failure and Roughness

The mechanism of bank failure can have a large influence on channel planfor

because different mechanisms can lead to different patterns of bank retreat and, thu

channel migration. Field observations of macro-pores and slump blocks indicate tha

some cases, seepage erosion is the dominant mechanism of bank erosion. This pro

leads to faster bank retreat not where bank shear stress is greater but, rather, where

groundwater head gradient is greater. Therefore, scour and seepage erosion, respe

produce dissimilar channel planforms [Pederson and Cornwall, 1998]. Some models of

meandering (e.g.,Crosato, 1990) include a bank height-, or near-bank depth-depende

term in the equation for lateral channel migration under the hypothesis that the high 

bordering pools are more subject to seepage-induced failure following decreases in

stage. However, most models of river meandering assume that the bank migrates as

result of scour, i.e., the pattern of bank migration rate mimics the pattern of bank sh
46
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stress or, in most models, the magnitude of the near-bank velocity, and several stud

bank erosion support this assumption (e.g.,Hasegawa, 1989; andPizzuto and Meckeln-

burg, 1989).

The flow affects the form of the bank through scour, and the form of the bank

turn affects the flow through bank roughness.Thorne and Furbish [1995] studied the

effect of bank roughness on the flow through a meandering channel bend. They foun

after removing vegetation and making the outer bank smooth, the high velocity flow 

approached the outside bank more closely and made its closest approach further do

stream. They found that bank roughness limited the approach of the core by increas

width of the rough turbulent flow (RTF) boundary layer. The size of bank roughness 

ments determines the width of that boundary layer, the rate of turbulent energy dissip

and the length of bank over which that energy is dissipated through bank shear stre

erosion. In turn, bank erosion and the bank failure mechanism influence bank morph

bank roughness element size, and meandering channel planform. Therefore, charac

ing the bank is integral to understanding the meandering process.

I made observations and measurements of bank roughness elements and the

ested bank in general on the outside bank of a meander bend to discover the relatio

among bank failure, roughness scale, and their respective mechanisms. For a fores

bank, I expected the trees to play an important role but was unsure of the extent and

of that role. I also made observations and measurements to find the controls on and

anisms behind an evolving neck cutoff. Partly, the latter observations address wheth

chute and neck cutoffs are fundamentally different or not. Chutes are formed by flood
474747
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scour. Are neck cutoffs formed by scouring flood or main channel flow, i.e., are they

eroded from the top down or from the sides in? This question leads to another: Wha

trols the lower limit on neck width?

3.1.5 Study Sites

To study compound bend formation, scroll bar topography, and bank roughne

elements as part of meandering I studied the meandering process in isolation from o

processes and landscape-imposed controls. On the other hand, I also wished to stu

interaction of meandering and other landscape processes. For isolation, I studied un

fined, actively meandering streams. These include: the Mississippi River below its co

ence with the Arkansas River; the Ellis River, a tributary to the Androscoggin River in

western Maine (see location maps, figure 3.7); and several streams in Alaska. I cond

only remote analyses of the Mississippi River and the Alaskan streams and both rem

and field studies of the Ellis River.

The Red Leaf, AR, quadrangle, shown in figure 3.3, is on the Mississippi Rive

blue in figure 3.3) downstream of its confluence with the Arkansas River and covers

of the point bar surrounded by an oxbow lake formed by a neck cutoff on the Mississ

The channel is approximately 1000 meters wide. This area is part of the Mississippi 

delta and has relief of the same order of magnitude as the channel depth, ~15 mete

floodplain covered by the Red Leaf, AR, quadrangle has scroll bar topography and s

floodplain channels. The part of the floodplain surrounded by the oxbow lake is isola

from the main river channel by a manmade levee system visible in figure 3.3. The sc

bar topography has lower relief, ~5 meters, than the levees, the main channel, and t

floodplain channels.
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Figure 3.7:Location maps of the Ellis River, ME.

The Ellis River forms both compound bends and multi-bend loops (see figure

Its valley has a wide, flat bottom and steep sides. Large parts of the floodplain are co

with mostly deciduous forest, though some areas are coniferous. The latter trees are

ally on slightly higher ground than the deciduous trees and larger than 20 cm in diam

The bed material is mostly sand but has some fine gravel, rarely larger than pea-size

floodplain has hummocky, ridge-and-swale topography and many oxbows, some of w

are connected to the main channel by tie channels. The floodplain surface is compo

silt and fine sand. Observations at the site are consistent with little or no floodplain s

In the historical record and the field, I observed only neck cutoffs and no chute cutof

Bankfull discharge is approximately equal to the discharge with a return period of 1.5

according to a 20-year gaging station record. This gaging station is located at the co

bridge visible in the photo of figure 3.8 (at the only road crossing the river in the pho

The bankfull hydraulic geometry is shown in table 3.1.

Ellis R
iver

Androscoggin River

area shown
in aerial
photograph

Maine

New 
Hampshire

Vermont
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Figure 3.8:1965 aerial photograph of the Ellis River, Maine.
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Channel and valley slopes were estimated from a 1:24,000 scale topographic

with a map wheel, though the main reach of the Ellis crosses only one contour. I estim

the elevation at two tributary confluences by assuming the tributaries, each crossing

contours, have constant slope on the valley floor and, thus, calculated two values of

nel slope and, by measuring sinuosity over the reach, also valley slope. The channe

valley slopes shown in table 3.1 are the means of the two estimates, and the stated 

tainties are the differences between the estimates. These estimated slopes are not 

the present analysis and are shown only for reference.

The Alaskan streams were digitized from topographic maps. Reaches were

selected that are: (a) single-threaded, i.e., not braided; (b) intensely meandering; an

unconfined by terraces or valley walls. The streams are listed in table 3.2. I measure

channel widths from the maps with the digitizer at many points along each reach an

the means and standard deviations of these measurements in table 3.2.

a. From USGS discharge measurement of April 4, 1982.
b. Slopes measured from topographic map.

Table 3.1: Ellis River bankfull hydraulic geometrya

parameter value

discharge 92 m3/s

cross-sectional area 88 m2

top width 26 m

average flow depth 3.4 m

average flow velocity 1.0 m/s

channel slopeb

valley slope

0.00020 0.00007±

0.00029 0.00010±
515151
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The Current River (and Jack’s Fork of the Current River) in Missouri, the Buff

River in Arkansas, and Schoharie Creek in New York serve to illustrate meandering 

ferent settings and in interaction with other landscape processes. The first two strea

located in the Ozarks of Missouri and Arkansas, respectively (see location map,

figure 3.9). The present study of these streams is limited to observations in the field 

from DEMs and measurements from topographic maps. Schoharie Creek is located

Catskills of New York. The present study of Schoharie Creek is limited to DEM analy

Table 3.2: Meandering stream reaches

stream reach
quadrangle map(s)

(all AK)

mean channel
width ,

meters

reach
length,
channel
widths

Preacher Creek Ft. Yukon (A-2) 1300

Takotna River Iditarod (C-2) 650

N. Fork Kuskokwim River, Mc. Mt. McKinley (D-6) 460

Melozitna River Melozitna (B-3) 990

Teklanika River Fairbanks (B-5, B-6) 1100

Dishna River Ophir (C-3) 510

Birch Creek Ft. Yukon (A-2) 1160

N. Fork Kuskokwim River, Me. Medfra (B-2, B-3) 380

Innoko River Ophir (C-3) 370

σ±

31.2 7.0±
33.9 12.0±
38.3 7.4±
46.2 16.0±
48.0 16.6±
50.4 13.7±
57.7 14.1±
95.5 24.1±
113. 18.±
52



 is

ern

 are

vial

us

ood-

 in

con-

been

wn the

ation
Figure 3.9:Location map of Ozark sites.

The Buffalo River flows west to east in northern Arkansas (see figure 3.9) and

tributary to the White River. The Current River flows northwest to southeast in south

Missouri. Jack’s Fork flows west to east, tributary to the Current River. The channels

often confined by bedrock, especially on the Buffalo, but migrate rapidly through allu

deposits where unconfined. The incising meanders of the Buffalo are relatively sinuo

(see figure 3.2). New floodplains on these rivers are mainly gravel and have many fl

plain channels. Some characteristics of Jack’s Fork and the Buffalo River are shown

table 3.3.

Schoharie Creek flows west out of the Catskills of New York, then north to its 

fluence with the Mohawk River, tributary to the Hudson River. The headwaters have 

captured by the steep gorges of Kaaterskill Creek and other streams flowing east do

Catskill escarpment to the Hudson River. Several studies have examined digital elev

Arkansas

Buffalo River

Current River

Jack's Fork

Missouri

Ozark Plateaus
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models of the Schoharie Creek basin, e.g.,Tarboton, et al. [1991],Montgomery and Fou-

foula-Georgiou [1993], andIjjasz-Vasquez and Bras [1995]

3.2 Methods
In this section I describe the methods used to study the phenomena and mech

described in the Introduction. In general, I studied morphology to infer process dyna

3.2.1 Compound Bend Formation

To gain insight into the mechanisms which contribute to compound bend form

tion, I looked for examples of compound bend formation in the historical migration of

Ellis River by examining aerial photographs spanning the period between 1943 and 

I digitized the photos with a scanner, extracted the channels, and super-imposed the

show the time evolution. This exercise revealed two examples of compound bend fo

tion, and observations on the ground at one of the sites corroborate and complemen

remote observations.

a. FromMcKenney, et al., 1995.
b. Estimated assuming same Manning roughness as Jack’s Fork.

Table 3.3: Characteristics of Jack’s Fork at the Burnt Cabin site and the Buffalo
River at the Shine-eye sitea

reach Jack’s Fork Buffalo River

contributing area, km2 789 2150

average bankfull channel width, meters 75 100

average bankfull flow depth, meters 1.7 3.0

1.5-year discharge, or bankfull, m3/s 200 870b

channel slope 0.000667 0.00097

valley slope 0.0015 0.0006

geometric mean grain size of bed, mm 21.0 24.6
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To measure the importance of compound bend formation on channel planform

over many bends, I analyzed the planforms of the Alaskan streams. The channel ce

lines were digitized by hand, and, to eliminate errors and bias, The digitized planform

were corrected by visually comparing the digitized and mapped planforms and movi

deleting points as necessary.

I developed several statistical functions with which to measure the importance

characteristics of compound bend formation in channel planform features such as a

meander belt width and channel sinuosity. These measures are generally useful for 

tive characterization of meandering channel planforms. The statistical functions are 

on: (a) the relative width of the active meander belt expressed as the ratio of cross-va

down-valley standard deviations of the channel centerline coordinates; and (b) sinuo

the channel centerline. The measurements are made for all possible channel reach 

and expressed as functions of reach length.

The variances of thex- (down-valley) andy- (cross-valley) components of stream

point coordinates are measures of how scattered those points are along each of the

Thex-axis is parallel to the line fit to the reach’s point coordinates by the least-squar

method. The expected variances inx andy, respectively, are

(3.1)

(3.2)

σX
2 s′( ) 1

N s s s′+,( ) 1–
------------------------------------ x si( ) µX s s s′+,( )–[ ]2

si s s s′+[ , ]∈
∑〈 〉=

σY
2 s′( ) 1

N s s s′+,( ) 1–
------------------------------------ y si( ) µY s s s′+,( )–[ ]2

si s s s′+[ , ]∈
∑〈 〉=
555555
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wheres' is the reach length;µX(s, s+s') andµY(s, s+s') are the expected values ofx andy,

respectively, for points on the channel betweens ands+s', inclusive;N(s, s+s')is the num-

ber of sampled channel points froms to s+s'; and the angle brackets indicate the expect

value over all values ofs. In practice, for the variances and the other measures define

below, the expected value indicated by the brackets is calculated for a small range of

abouts'. The relative width of the active meander belt is defined as

(3.3)

If the cross-valley extent of the meander belt decreases relative to the down-valley e

as reach length increases, i.e., the meander belt is longer than it is wide, then the fu

W(s') will decrease ass' increases. If the mean downstream direction is independent o

down-valley direction, such as over smaller reach lengths,W(s') will be near unity. For

longer reach lengths over which the down-valley and mean downstream directions a

similar,W(s') will decay and approach zero as valley length approaches infinity. The a

measure does have the disadvantage that the orientation of the line fit to the digitized

nel points is dependent on the chosen stream reach’s length and location.

The above analysis is similar to that ofMatsushita and Ouchi [1989] andIjjasz-

Vasquez, et al. [1993]. These authors used the relative power-law scaling with section

length of thex- andy-variances of detrended sections of contour lines [Matsushita and

Ouchi,1989], river basin divides, and river courses [Ijjasz-Vasquez, et al., 1993] to deter-

mine fractal self-affinity, or lack of a characteristic scale of fluctuations. The present

W s′( )
σY

2 s′( )

σX
2 s′( )

----------------=
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method differs from theirs in that thex- andy-axis orientations are fixed in equations (3.1

(3.2), and (3.3), i.e., the sections are not each detrended.

Sinuosity is a commonly measured characteristic of channel planform and ha

ditionally been reported as a single value, but that value is not always reproducible. F

same stream, two measurements might yield different values depending on where an

what reach length they were made.Howard and Hemberger [1991] recognized that sinu-

osity could vary according to the reach length and location and divided the total sinu

into three factors, the full-meander, half-meander and residual sinuosities.

Measurements developed below characterize the distribution of sinuosity mea

ments as a function of reach length. For a range of stream lengths, I compute the me

variance of sinuosities measured at that length range. Sinuosity is measured betwee

pair of points along the reach; the sinuosities for point pairs are binned according to

streamwise distance between the points; and the mean and variance of the measur

in each bin are calculated. Thus, the sinuosity mean and variance are defined as fun

of reach length:

(3.4)

(3.5)

wheres' is the length of the channel segment;r(s, s+s')is the straight-line distance

between the segment’s end points ats ands+s'; and the angle brackets indicate the

expected value for all values ofs.

µS s′( )
s′

r s s s′+,( )
------------------------〈 〉=

σS
2 s′( ) s′

r s s s′+,( )
------------------------ µS s′( )– 

 2
〈 〉=
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Andrle [1994, 1996] developed the angle measure technique (AMT) to identify

characteristic scales and features of meandering channel planforms. Like the measu

introduced here, the AMT produces a function of reach length or scale rather than a 

number.

Figure 3.10:Illustration of the angle measure technique ofAndrle [1994, 1996].

The AMT is essentially a measure of average curvature at different streamwis

scales. The method is illustrated in figure 3.10, where, at points, for the three scales,s1,

s2, ands3, the angles areθ1, θ2, andθ3, respectively. For three points at equal intervals

along the channel, the streamwise length of that interval is the scale, e.g.,s2 in figure 3.10,

at which I measure the angle. I draw two straight lines connecting the first and secon

the second and third points, respectively, e.g.,r(s, s-s2) andr(s, s+s2). The supplement of

the angle between those two lines is the angle measure, e.g.,θ2. The smaller the angle

between the two lines, the larger the curvature and the angle measure. For example

angle between the lines,r(s, s-s2) andr(s, s+s2), is small, and, therefore, the angle mea-

sure,θ2, at that scale,s2, is large at points. The opposite is true for the scales,s1 ands3,

1
3

2

s1

s2

s3

r(s, s-   )s2

r(s, s+   )s2

r(s-   , s+   )s2s2
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such that the angle measures,θ1 andθ3, are small at points. In Andrle’s [1994, 1996] orig-

inal method, for each scale he found the angle measures at 500 points, chosen at ra

and averaged those measures to find the mean angle. In a modified version of the A

measured angles for all possible distances between discretized channel points (see

figure 3.10) and locations along the channel. The angles were binned according to s

and averaged to find the mean angle as a function of the streamwise scale:

. (3.6)

Andrle [1996] found that, for the meandering streams he tested, the mean an

was peaked at a certain scale. He reasoned that the magnitude of this peak was rel

sinuosity and the scale at which it occurred was related to meander wavelength. He

found secondary peaks for manifestly underfit streams, i.e., where stream meanders

smaller than the meander-like valley bends, and inferred that the secondary peaks w

indicative of the larger, valley-scale sinuosity.

The streams I measured are not restricted by the valley walls. Therefore, the 

measures andAndrle’s [1996] should indicate the importance of compound bend form

tion by revealing the scales of multi-bend loops resulting from compound bend forma

If compound bend formation is absent or does not lead to multi-bend loop formation,

the measures will have only the primary channel planform scale indicators correspo

to the meander bend length and no secondary channel planform scale indicators co

sponding to the length of multi-bend loops.

µθ s′( ) π r s s s′–,( )2 r s s s′+,( )2 r s s′– s s′+,( )2–+
2r s s s′–,( )r s s s′+,( )

-------------------------------------------------------------------------------------------------------- 
 acos–〈 〉=
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3.2.2 Scroll Bar Topography

At the Buffalo River and the Current River, including Jack’s Fork, in the Ozark

Arkansas and Missouri, respectively (see figure 3.9), I observed the scroll bar-like to

raphy documented byMcKenney, et al. [1995]. The result of these observations is esse

tially a corroboration of their results.

For the Ellis and Mississippi Rivers, I calculated power spectra of floodplain c

sections (“transects”). For the Mississippi River floodplain, I used ERMapper (TM) G

software to extract several transects of scroll bar topography from the Red Leaf, AR, 

(see figure 3.3). On the Ellis River floodplain, I surveyed several transects of scroll b

topography on the floodplain, detrended each transect by subtracting from the data a

least-squares fit to that data, and found the power spectra using theLomb [1976] method

[Press, et al., 1997] for spectral analysis of unevenly sampled data. The Mississippi

transects are evenly sampled, but the Ellis transects are not, so I chose the Lomb me

use the same method for all transects. The Lomb method produces a normalized pe

odogram, or spectral power as a function of wave number, and significance levels o

spectral power with respect to the null hypothesis that the data are independent, Ga

distributed random values. The significance level of a value is the probability that the

value was produced by the above random process. The spectrum is not smoothed.

To examine the stratigraphy of scroll bars on the floodplain, I sampled soil cor

a depth of one meter at some points on the Ellis transects. The cores were taken in 

tions. Based on the look and feel of the samples, descriptions of the material in each

tion of each core were recorded. For example, if the soil could be rolled into balls, th
60
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was clayey. If it was gritty like sandpaper, then it was sandy. If it was powdery, then it

silty. I assigned each section a grain size class based on the descriptions recorded 

field and, by this method, determined to a reasonable degree of accuracy the relativ

tures of the sampled materials.

Also on the Ellis, I measured shrub stem and tree trunk diameters along seve

sections perpendicular to the downstream direction to estimate the relative variation

space of lateral accretion rate on the point bar. The diameter data defines an upper 

on the vegetation age and, by proxy, the point bar age at a point. Where the gradien

diameters is large, the age change per distance is large and indicates a slow migratio

the opposite is true where the gradient of diameters is small.

3.2.3 Bank Failure and Roughness

I observed and measured bank features to determine the mechanisms and sc

bank erosion and roughness. To find the scale of the bank roughness elements, inc

slumped blocks and spaces left by slumps and failures, along the outer bank of a be

the Ellis River, I measured: (a) the bank roughness elements’ dimensions in the cros

downstream directions; (b) the diameters of slumped trees; and (c), where the bank

undercut but had not failed, the depth (cross-stream) of undercutting. Observations

included sketches and written descriptions of the bank roughness elements. For sca

text, I measured the dimensions of sand dunes on the bed. I also observed and mea

the dimensions of a relatively new cutoff on the Ellis.

3.2.4 Meandering and the Landscape

To detect the interactions between the landscape and river meandering, I stu

variations in valley width and the relationship between slope and contributing area. I
616161
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examined the Schoharie Creek valley as represented by 30-meter horizontal resolut

DEMs of the Hunter and Kaaterskill, NY, 7.5’ USGS quadrangles.Tarboton, et al. [1991]

pieced together these DEMs, filled the pits, calculated contributing areas by routing 

pixel’s contributing area downstream in the steepest single flow direction. The steep

downhill slope for each pixel is plotted against contributing area. I also binned points

according to log-area and plotted the average slope of points in each bin against the 

average contributing area.

On the Buffalo, changes in valley width correspond to changes in lithology. Th

valley is narrow where the channel is on massive, Ordovician sandstone and wide w

the channel is on cherty, Mississippian limestone. Conventional wisdom says that, w

valley is wider, the bedrock is weaker, or more erodible. However, it is possible that, i

wider valley, the laterally eroding flow is more erosive by way of a mechanism that is

independent of erodibility. Both of these formations can form cliffs, but the Boone lim

stone has a large chert component which breaks up into relatively fine gravel. The B

formation also has a well developed Karst system of caves and conduits.

The main channel of a river, such as the Buffalo, that has been actively incisin

uplifting plateau for sufficient time should be at or approaching dynamic equilibrium. 

fact that the Buffalo River basin has on the order of 300 meters of relief indicates tha

has probably been incising for sufficient time to approach dynamic equilibrium. If the

trols on channel incision, e.g., either detachment-limited or transport capacity-limited

the discharge are similar through different lithologies, then channels on more erodib

transportable lithologies will have a lower slope (I address the detachment-limited ca
62
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more detail in Chapter 5). Conversely, less erodible or transportable lithologies will h

higher slopes at dynamic equilibrium.

The controls on incision of the Buffalo are not well established, but if I assume

adjacent reaches through valleys of varying width, that: (a) bank erosion is a detach

limited process; (b) bank erosion equals lateral channel migration; (c) channel incisi

detachment-limited; (d) uplift and channel incision are, at least approximately, in dyn

equilibrium; (e) discharge is approximately constant with respect to distance downstr

and (f) valley width corresponds to rock erodibility; then channel slope should vary w

rock erodibility and, therefore, be greater (or smaller) where the valley is narrower (o

wider).

To test this hypothesis, I measured channel slopes from 1:24,000-scale topog

maps in the wide valley shown in figure 3.29 and the narrower valleys, i.e., more simi

the topography shown in figure 3.2, up- and downstream of the wide-valley reach. If

rock forming the wide valley has greater erodibility, then, under my assumptions abo

the slope through this reach would be lower than in surrounding narrow-valley reach

3.3 Results
3.3.1 Compound Bend Formation

Compound bend formation is evident in the historical Ellis River channel plan

forms, extracted from aerial photographs and overlain in figure 3.11. The 1943 (dark

gray) channel appears too wide in a loop, later cut off, at bends 1-7 due to the effect

direct glare in the photograph. Note the existence of multi-bend loops in the vicinity 

bends 8-13. These loops indicate that compound bend formation is an active part of
636363
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Ellis’ channel planform evolution. In figure 3.12 two examples of compound bend for

tion on the Ellis River are enlarged to show these cases in greater detail.

In figure 3.12(a) the time sequence illustrates compound bend formation follow

a cutoff and a subsequent wave of accelerated migration. According to other aerial p

not shown, bend 2 cut off between 1972 and 1981. Subsequently, the “new” bend 2 

oped and migrated rapidly downstream. This migration perturbed bend 4 such that i

now compound. Upon inspection of the site, I discovered that the middle, reversed s

of bend 4 has a cut bank at the inside and a small point bar at the outside of the ben

tures indicating that this part of the bend has started to migrate in the opposite direc

from the migration of the rest of the bend. This reach is unconfined by terraces or be

except for the downstream end of bend 7, which is confined by bedrock. The whole 

shown is forested.

In figure 3.12(b), the rapid migration of the “new” bend 12 follows a cutoff of t

“old” bend 12 before 1943. A wave of channel migration has propagated downstream

led to a curvature reversal in the upstream part or limb of bend 13. The migration of 

12 may have been further accelerated following the cutoff at bend 8 and the subseq

rapid migration of bends 8-11 after 1965. The reach is wholly unconfined. Cut banks

this reach are generally unforested, though some have a thin line of riparian trees, a

bend 10’s outside bank is forested at the downstream end.
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Figure 3.11:Ellis River channels extracted from aerial photos and super-imposed.
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Figure 3.12: Close-ups of Ellis River, ME, channels from figure 3.11. Lighter gray
more recent. Bends are numbered for reference. Flow is from left to right in both (a) 
to south) and (b) (west to east).

To assess the role of compound bend formation in the Alaskan streams, I app

the sinuosity and belt width measures and modified AMT to the planforms of the stre

listed in table 3.2. The reaches are shown in figure 3.13. Normalized reach curvatur

plotted against normalized downstream distance in figure 3.14. For normalization, cu

ture is multiplied by the channel width, and downstream distance is divided by chann

width. The curvature shown is a moving average of local curvature at three points.

Channel curvature in figure 3.14 is indicative of bend shape. If the channels w

sine-generated curves, then the curvature function would be sinusoidal, but, in fact, 

wave forms are quite jagged. Bends commonly have two pronounced curvature max

the beginning and end of the bend, respectively. In between, the curvature often dro

1

2 3

4
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7
(a)

(b)
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nearly zero for a short distance and is nearly constant at an intermediate value for th

remainder of the bend’s length. In some bends, where the curvature becomes small

crosses zero, i.e., it reverses sign. Such bends are compound by the present definiti

figure 3.14 indicates that these compound bends are an end member of the continu

typical bend shapes. As examples, a portion of the curvature plot for Birch Creek is

enlarged and inset in figure 3.14, and the part of the channel covered by the inset is

lined in figure 3.13. The seemingly minor details of bend shape described above are

ently indicative of a mechanism that, as shown below, is important on the scale of ch

reaches many times longer than a single bend.

The sinuosity mean and variance, relative belt width, and mean angle are plo

against reach length normalized, again, by channel width (see table 3.2) in figure 3.

The sinuosity means have large breaks in slope that correspond to peaks in the sinu

variances, changes in slope of the belt width, and peaks in the mean angle. The mea

peaks are consistently at lower values of reach length than the above features in the

plots. This is explained by referring to figure 3.10, where the large angleθ2 corresponds to

streamwise distance,s2, and the large sinuosity between the two pointss-s2 ands+s2 cor-

responds to a streamwise distance of2s2. Therefore, features of the sinuosity mean and

variance and the belt width occur at a scale apparently twice the scale of the same fe

of the mean angle. There is no real difference in scale; they are simply measured di

ently.
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 part
Figure 3.13:Digitized meandering stream reaches from topographic maps. Outlined
of Birch Creek corresponds to inset in figure 3.14.
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Figure 3.15: Sinuosity mean and variance, relative meander belt width, and mean 
plotted against normalized reach length (i.e., length divided by channel width) fo
streams listed in table 3.2 and shown in figure 3.13.

The smallest scale at whichµS levels off (µS > 1),σS
2 peaks,W begins to decay,

andµθ peaks (collectively, channel planform scale indicators) is similar to a meander

wavelength, and the level at whichµS finally levels off is the mean reach sinuosity. The

first channel planform scale indicators occur at similar scales for all of the streams, i

range of 20-40 channel widths (20-40 b) for the first three measures. From the curvatur
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plots of figure 3.14, it is apparent that this scale is actually the length of a single mea

bend, or half the meander wavelength.

For many of the streams, the sinuosity rises and levels in more than one step

sponding to more than one peak inσS
2 andµθ and convex or straight-line decay ofW (e.g.,

Takotna, N.F. Kusk. Mc., Melozitna, Innoko, especially). There is even some consist

in the scales of the second peaks inσS
2 at ~100 b. Takotna and Innoko have two large

peaks bracketing the 100 b scale. These secondary channel planform scale indicators 

respond to the scales of multi-bend loops, or the length of several bends. Their exac

acteristics may change over time and from stream to stream. For example, on the E

River parts of two multi-bend loops cut off between 1965 and 1986, and such chang

would be reflected in the magnitudes and scales of secondary channel planform sca

cators.

Multi-bend loops are different among the Alaska streams. On Birch Creek the

have irregular shapes, but the multi-bend loops of N.F. Kusk. Mc., Melozitna, and In

are more clearly composed of individual, regularly shaped bends. This difference is 

ent in the plots of figure 3.15. For the latter group of streams, the secondary channe

form scale indicators are separated from the primary channel planform scale indicat

a significant difference in scale, andµS for N.F. Kusk. Mc. and Innoko is flat between th

primary and secondary channel planform scale indicators. The separations in scale 

indicate that compound bends on these latter streams are more likely to separate in

tinct bends. That greater likelihood leads to repeated separations and, thus, multi-be
717171
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loops. In comparison, compound bends on Birch Creek may separate into distinct b

less often.

The measures contain more information than whether compound bend format

important or not. They reveal the differences in the planforms, even among those wh

compound bend formation leads to multi-bend loops.

Lateral elongation is apparent in the belt width plots. Most of theW’s start at their

maximum value, near one, but some rise slightly to a maximum at the first channel p

form scale indicator before decaying. This rise indicates lateral elongation at the sca

the meander bend length. This effect is strongest in the most sinuous streams, Birch

and Innoko River. But, Melozitna is nearly as sinuous as Birch Creek, and the effect

entirely absent. The effect is apparent in Dishna, Birch, N.F. Kusk. Me., and Innoko.

Mean angle is not an exact measure of sinuosity—magnitudes ofµS andµθ are not

always consistent. The highestµθ is for Innoko, which also has the greatestµS, but not at

the same scale. Melozitna’sµθ peak is much greater than N.F. Kusk. Mc.’s, but the latte

has the higher first plateau inµS. Innoko and N.F. Kusk. Me. have similar firstµS plateau

magnitudes, but Innoko has much greaterµθ. The magnitudes of the secondaryµS increase

andµθ peak are also not similar. For example, compared to Innoko, the secondary inc

in µS for N.F. Kusk. Mc. is not large, but the secondary peaks inµθ for the latter are as

large or larger than the secondaryµθ peaks for Innoko. Peak magnitudes ofσS
2 andµθ are

not generally similar either, but I might expect the magnitudes of mean and variance 

fer. Forµθ, the first peak is always the largest; not so,σS
2.
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The mean angle appears closely related to belt width. Magnitude ofµθ corresponds

to non-concavity ofW. Where the angle is large,W is straight or convex; otherwise,W is

concave. Comparing the plots for N.F. Kusk. Mc. with those of Melozitna, I find that 

shapes of theµS andσS
2 plots for the two are similar, thoughσS

2 and the maximumµS are

larger for Melozitna. TheW andµθ plots are quite different between the two streams, b

for each stream,W andµθ are similar: for N.F. Kusk. Mc., the maxima of both are smal

but relatively level through the secondary channel planform scale indicators; for Mel

itna, the maxima of both are large and decay to low values through the secondary ch

planform scale indicators. These facts indicate that mean angle is related to both sin

and meander belt width but may be more closely related to the latter. Upon inspectio

the channel planforms, I find that the apices of the longest bends on N.F. Kusk. Mc. te

point upstream, and this fact explains the low belt width at the bend scale.

A useful observation derived from these plots is that streams may have both 

mary and secondary sinuosities corresponding to the single bend and multi-bend loo

scales, respectively. The mean sinuosity plots of figure 3.15 show that streams may

in both the primary and secondary sinuosities and that the magnitude of one does n

essarily indicate the relative magnitude of the other. For example, the primary sinuos

N.F. Kusk. Mc. is greater than that of Birch Creek, but the secondary sinuosity of the 

is greater than that of the former. Such inconsistencies suggest that mechanisms lim

sinuosity on the bend scale do not necessarily limit sinuosity at the multi-bend loop s

I will revisit the subject of primary and secondary sinuosities in Chapter 5.
737373



 and

 The

ects’

alls of

 of

 many

peaks

nd

ave

uch

ntain

ntially

er, the

are not

non-

, there-

mi-
3.3.2 Scroll Bar Topography

The locations of the Mississippi floodplain transects are shown in figure 3.16,

the transects themselves are shown as plots of elevation vs. distance in figure 3.17.

power spectra are shown in figure 3.18. These power spectra characterize the trans

relief in the wave number domain. In some cases, though, the spectra reveal the pitf

applying spectral analysis to a non-stationary signal.

All of the spectra have peaks above the 0.1 significance level, i.e., the chance

peaks of that magnitude occurring by a Gaussian random process is one in ten, and

of the spectra have peaks which are significant to a much smaller level. Most of the 

found in these spectra are listed in table 3.4 with significance level, wave number, a

wavelength. The total length of each transect is also shown. Some of the transects h

large peaks at wavelengths at the same order of magnitude as the transect length. S

peaks, while large, should be viewed with suspicion because the transect cannot co

more than one or two complete waves.

The transects have different lengths, and some of the transects cover substa

similar parts of other transects, e.g., transects 1, 5, 7, and 8 (see figure 3.16). Howev

corresponding spectra are not necessarily similar because some of these transects 

stationary. The periodic forms evident in, e.g., the 0.00257 m-1 peak of transect 7 are,

upon inspection of the transects, apparent in transect 8, but the latter also contains 

scroll bar topography such as levees and channels that have much greater relief and

fore, spectral power than the scroll bars. Therefore, the spectrum of transect 8 is do

nated by peaks at the lower wave numbers.
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Figure 3.16:Plan view of Mississippi River floodplain on the Red Leaf DEM with ele
tion in grayscale and showing transect locations by number.

Figure 3.17:Mississippi floodplain transects (see figure 3.16); elevation exaggerated
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 lines
Figure 3.18: Power spectra of detrended Mississippi floodplain transects. Dashed
indicate significance levels.
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The scroll bars’ signal is especially evident in the spectra of transects 2 and 7

These transects do not extend beyond the area where the scroll bar topography is d

nant. Note that the peak wavelength for transect 7 is greater than either of the peak

lengths of transect 2 because transect 7 is not as nearly perpendicular to the scrolls

transect 2. Smaller amplitude peaks at similar wavelengths are evident in other tran

but some do not register as significant at even the 0.9 significance level.

Table 3.4: Spectrum peak wave numbers, k (1/meters), wavelengths, L (meters),
and significance levels, P, for Mississippi transects, total length shown.

transect 1, 4860 m transect 2, 3170 m transect 3, 3680 m transect 4, 2900 m

k L P k L P k L P k L P

3.60e-4 2780 6e-3 7.09e-4 1410 0.76 5.42e-4 1840 0.01 1.12e-3 893 2e

6.71e-4 1490 2e-3 2.52e-3 396 0.14 9.52e-4 1050 2e-3 1.64e-3 611 0.

9.26e-4 1080 0.15 2.92e-3 342 9e-3 1.97e-3 507 0.49 2.50e-3 400 0.

1.23e-3 810 0.82 3.71e-3 269 7e-3 4.63e-3 216 0.86

4.65e-3 215 0.79

6.17e-3 162 0.68

Table 3.4: (cont’d.) Spectrum peak wave numbers, k (1/meters), wavelengths, L
(meters), and significance levels, P, for Mississippi transects, total length shown.

transect 5, 4780 m transect 6, 5100 m transect 7, 2610 m transect 8, 13,500 m

k L P k L P k L P k L P

2.62e-4 3820 0.62 2.00e-4 5010 4e-4 1.24e-3 805 0.65 1.98e-4 5040 2e

5.74e-4 1740 0.05 4.90e-4 2040 0.55 1.72e-3 581 0.65 5.18e-4 1930 1e

1.31e-3 764 0.02 1.67e-3 600 0.08 2.20e-3 455 0.17 8.33e-4 1200 4e

2.93e-3 341 0.79 3.04e-3 329 0.27 2.58e-3 387 2e-3 1.15e-3 870 6e

3.06e-3 327 0.06 1.57e-3 635 0.37

3.53e-3 283 0.20

4.78e-3 209 0.11
777777
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Figure 3.19: Ellis River survey sites super-imposed on 1992 aerial photograph. N
transect sites on bend 6 are projected onto axes showing their relief, and some site
projections are connected by lines to their mapped locations.
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Figure 3.20:Ellis River transects and one-meter soil core samples shown to vertical 
at sampling locations. Vertical scale is exaggerated. Bends 4 and 6 were surveyed w
ferent benchmarks.
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Figure 3.21: Power spectra of detrended Ellis River transects. Significance levels
shown with dashed lines. For bend 4, transect 3, a second spectrum is shown for t
tion of the transect between 7 and 41 meters. For bend 6, transect 1, the spectrum is
for the portion between 2 and 61 meters.

Spectral analysis of the Mississippi floodplain, even when applied to relatively

short transects with only scroll bar topography, such as 2 and 7, does not show mor

quasi-periodicity. Some transects have peaks that are significant to a small level, bu

peaks among the transects do not line up with one another. Furthermore, even for tra

2 and 7, neither of the spectra contain a single, clearly dominant peak.
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The survey sites on the Ellis River floodplain and their east-north axes are ove

on the 1992 aerial photograph in figure 3.19. The transects are shown with arrows in

ing the (arbitrary) direction of increasing distance in the transect plots of figure 3.20.

soil core data are also shown in figure 3.20.

The transect spectra are shown in figure 3.21, and the wave numbers, wavele

and significance levels of spectral peaks are listed in table 3.5. Most of the spectra h

peaks with significance levels less than 0.9 at 9-11 meter wavelengths. In general, t

spectral peaks for these transects are not significant to as small a level as the Missi

spectra (see figure 3.18) because the latter transects contained many more scroll ba

the Ellis River transects.

I attempted a more general mapping of the point bar of bend 6 to resolve fea

such as the emergent bar forming a back bar chute shown in figure 3.22 (sites conn

by lines to projection on north-elevation axes in figure 3.19) and the first point bar rid

adjacent to the channel (sites connected by lines to projection on east-elevation axe

figure 3.19). It is possible that the morphology shown in figure 3.22 is the pre-cursor

scroll bar topography. Back bar chutes are a common feature of meander bends. In

case, it appears that the colonization of the bar by stabilizing vegetation may allow t

morphology to persist and, in time, add another ridge and swale to the point bar. How

Table 3.5: Spectrum peak wave numbers, k (1/m), wavelengths, L (m), and
significance levels, P, for Ellis River transects, total length given.

bend 4, transect
1, 54.2 m

bend 4, transect
2, 31.5 m

bend 4, transect
3, 49.9 m

k L P k L P k L P

0.0599 16.7 0.13 0.0952 10.5 0.04 0.0251 39.9 0.48
818181
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this bar traverses only a minor part of bend 6 at its upstream end, whereas the first 

bar ridge borders the channel for most of the bend. Mid-channel bars and, more gen

topographic maxima bordering flat areas on point bars are commonly observed at th

upstream ends of meander bends (see, e.g.,Dietrich and Smith, 1984).

Figure 3.22:View upstream from bend 6, survey site 13, of bar and back bar chute.

Table 3.5: (cont’d.) Spectrum peak wave numbers, k (1/m), wavelengths, L (m), and
significance levels, P, for Ellis River transects, total length given.

bend 4, transect
3, 27.2 m

bend 4, transect
4, 32.8 m

bend 6, transect
1, 58.1 m

k L P k L P k L P

0.0459 21.8 0.28 0.0662 15.1 0.81 0.0344 29.1 4e-4

0.0917 10.9 0.47 0.107 9.37 0.80 0.0952 10.5 0.23

0.412 2.43 0.88

0.467 2.14 0.55
82
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The grain size classes for each core section are shown by a number and a sh

gray according to the key shown in the upper right of figure 3.20. In figure 3.23, I sho

sections 2-6, still in the coring tool, of the core marked with a star in figure 3.20.

Figure 3.23:Sections 2-6 of core marked with star in figure 3.20.

With few exceptions, I did not find soil classes 0-6 at the surface very far from

present channel, usually not beyond the first point bar ridge. On the floodplain, I typi

found classes 7-13 to varying depths above classes 0-6. For bend 4, transects 1 an

bend 6, transect 1, the layer of classes 7-13 is thicker toward the upstream end of the

plain, and in parts of these transects, classes 7-13 extend to the full sampling depth

meter. The layer of finer materials is thicker in the swales than on the ridges.

The coarser classes are more likely laterally accreted point bar deposits, and

finer classes are more likely vertically accreted overbank deposits. Therefore, the int

between the coarser and finer classes likely approximates the elevation of the top o

original point bar. The cores in figure 3.20 show that the elevation of the interface mi
838383
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the topography in that highs and lows along the interface generally correspond to hi

and lows on the surface and indicate that the vertical accretion of fines has lowered 

relief of the original scroll bar topography. This result is consistent with those ofLeopold

and Wolman [1960].

Figure 3.24:Vegetation stem/trunk diametervs. distance from the top of the first point ba
ridge, increasing away from the water’s edge (site locations shown in figure 3.19).

The vegetation diameter data are shown in figure 3.24. Distance on the horiz

axis of the plot is relative to the location of the top of the first point bar ridge (see

figure 3.19). The vegetation on this ridge is rough and relatively homogeneous in siz

type (see figure 3.25), though several maple saplings were measured. This rough ve

tion is prevalent on the inside banks of bends throughout this reach. The locations o

measurement sites are indicated in figure 3.19. The data are too few and the appare

migration rates too similar to differentiate among the measurement sites. In figure 3.

it appears that the reach bordering these measurements migrated uniformly with res

the downstream direction between 1965 and 1992. The vegetation diameter data co

rate this observation from the aerial photos.

transect 1
site 17
site 18
site 19

-5 0 5 10
0

10

20

30

meters distance

di
am

et
er

, c
m

84



ugh
eter.

he

n

 parallel

 that

,

 at ~10

cate

ult is
Figure 3.25:Photo looking upstream from site 19 (bend 6) of flat point bar top and ro
vegetation on first point bar ridge. Stadia rod in foreground is marked in tenths of a m

The data do indicate differences in migration rate along the distance axis of t

plot in figure 3.24. This spatial variation corresponds to temporal variation in migratio

rate because the data were taken along transects perpendicular to the channel, i.e.,

to the migration direction. If the data provide adequate resolution, then they indicate

the first point bar ridge accreted more quickly than the swale behind it (in figure 3.20

bend 6, transect 1, the first point bar ridge is at ~4 meters distance, and the swale is

meters). If these data are typical of scroll bar topography on the floodplain, they indi

that the lateral accretion rate of floodplain ridges is greater than for swales. This res
858585
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contradictory to the hypothesis that scroll bar topography is due to a constant levee 

sition rate and variable lateral migration rate. Rather, the data indicate that levee de

tion is more rapid when migration rate is greater.

Figure 3.26:Bands of willows at the Burnt Cabin site on Jack’s Fork of the Current R
Missouri. Flow is from left to right and towards the observer. Vegetation bands are
end-on.

Figure 3.27:Band of young willows on a gravel bar on the Current River, Missouri. F
is from left to right and away from the observer.

ridges/vegetation bands
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Figure 3.28:Gravel bar at Shine-Eye site on the Buffalo River, Arkansas. Arrow poin
person standing on gravel ridge. Flow is from right to left and toward the observer.

Figure 3.29:Buffalo River at Jamison Creek confluence. Flow is toward the observer

My observations on the Buffalo and Current Rivers corroborate the conclusion

McKenney, et al. [1995]. They found that ridges on the point bar correspond to the loc

tions of bands of same-age vegetation (see figure 3.26). Their conclusion was that t

form of the vegetation was due to events of seed deposition along the water line foll

by periods lacking flows great enough to remove the seeds or the young vegetation,

the young band shown in figure 3.27. Once the bands of vegetation take hold, they l
878787
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zones of increased roughness and, therefore enhanced deposition of gravel along th

bands. Conversely, flow concentrates in the areas between the bands and leads to e

scour there (see figure 3.26). At the Current River sites, these vegetation bands lead

scroll bars, or something very much like them.

The same phenomenon is active on the Buffalo, but, as found byMcKenney, et al.

[1995], the bands tend to be less coherent, bigger, and fewer in number, and the cha

more constrained from lateral migration. The ridge and swale topography shown in

figure 3.26 has relief of less than a half-meter. Ridges on the Buffalo, however, can e

two meters in height (see, e.g., figure 3.28), and multiple bands, such as those in

figure 3.26, are rare. Even where the valley is relatively wide, as in figure 3.29, flood

gravel bars on the Buffalo tend to develop a maze of anabranching channels where 

main channel may switch from year to year. An example is shown in figure 3.29 wher

main channel changes frequently. As recently as 1992, I observed that the main cha

course was in the middle of the vegetated gravel bar in figure 3.29. Now, the main ch

is on the right-hand side of the photo. The floodplain channels form the topographic 

while the spaces between them are vegetated and, in general, form the topographic

though these areas are often filigreed with smaller floodplain channels and do not fo

distinct series of bands similar to those observed on the Current River.

3.3.3 Bank Failure and Roughness

My observations and measurements on the Ellis River indicate that bank failu

occurs when the bank is undermined by scour rather than seepage erosion. The me

ment data are shown in table 3.6.
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I observed that, at an outer bank location without slump blocks (visible in the

background of figure 3.22), the roots of the bank vegetation formed a thick (~1 mete

table 3.6) mat, and these roots were stripped of soil material and scoured such that 

were smooth to the touch. This mat was undercut by more than half a meter on aver

(see table 3.6). There were only small (diameter < 10 cm) trees near the bank at this

tion.

In general, where there are large trees on the bank they greatly influence ban

and overall channel roughness. Where the root wads of larger trees have been unde

the bank has slumped in blocks defined by these root wads. The slumps lead to a sc

bank and, thus, a bank roughness defined by their size (see table 3.6). Often, the tre

remain rooted on the slump blocks, even when they have slumped to a horizontal po

and, by remaining in the channel, contribute to bed and channel roughness. In one s

a. Dunes not measured at bankfull stage.

Table 3.6: Measurements taken on the outside bank of Ellis River bend 6

measurement mean
standard
deviation

number of
measurements

embedded log diameter 26 cm 4 cm 3

slumped tree diameter 41 cm 9 cm 4

slump block length (s-dir) 2.8 m 0.4 m 2

slump block width (n-dir) 2.4 m 0.9 m 3

slump block area 5.8 m2 2.8 m2 2

scallop length (s-dir) 3.3 m 2.7 m 5

scallop width (n-dir) 1.2 m 1.3 m 5

scallop area 6.4 m 9.5 m 5

depth (n-dir) of undercut 56.7 cm 15.9 cm 7

vegetation mat thickness (z-dir) 90 cm N/A 1

dune wavelengtha 1.4 m N/A 1

dune height 9 cm N/A 1
898989
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case, the trunk of the tree spanned the pool, and the top of the tree rested on the po

where it formed a small woody debris jam. A drawing of this slumped tree and a ban

scallop is shown in figure 3.30. Trees spanning the pool increase the hydraulic roug

of the channel there, and debris jams increase bed and channel roughness. Other ex

of woody debris associated with slumped trees are visible along the outside bank of b

in figure 3.31, “top”.

On the channel bed, many dead logs lay partially buried or pinned by other lo

and at least some of them may remain on the bed indefinitely until covered by latera

floodplain accretion and later unearthed by bank erosion, as evidenced by three log

truding from the bank in bend 6. One such log, visible on the un-slumped bank in th

background of figure 3.22, was embedded in the root mat and protruded 1.9 m from

bank. In general, the embedded log diameters were smaller than those of the slump

trees, but, given the observed variability in both groups and the small number of sam

cannot rule out the hypothesis that the embedded logs are from old slumped trees. A

possible explanation for the embedded logs is that they simply fell in the forest and 

been buried by vertical floodplain accretion, but this explanation appears to be possib

only one of the three observed logs that was found at an elevation similar to the low

veyed floodplain elevations. The other two embedded logs were at elevations lower 

any of the surveyed elevations.
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Figure 3.30: Drawing of slumped tree at Ellis River bend 6. At top,s-, n-, andz-direc-
tional axes are shown

When slump blocks are removed from the bank a scallop, or an inward undula

is formed (e.g., see figure 3.30). The depth of the scallop depends on the size and o

tion of the slump block prior to removal. If the tree has slumped to a nearly horizonta

position, then the scallop depth will be approximately equal to the thickness of the ro

wad. On the other hand, if the tree is more nearly vertical, then the scallop depth wil

approximately equal to the width of the tree’s root wad. I observed some slump bloc

which were covered only by herbaceous vegetation, and these blocks tend to be sm

than those associated with trees. The sizes of the slump blocks are less variable tha

sizes of the scallops, some of which are as long (s-direction) as two average sized slump

blocks. Some slumped sites had more than one block. Removal of adjacent blocks is

responsible for the larger observed bank scallops.
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Figure 3.31: Neck cutoff of Ellis River bend 7. Top: Flow toward observer on right a
away on left. Bend 6 is visible on right. Bottom: Nearly bankfull stage, view from out
bank of downstream limb of bend 7. Flow through cutoff is toward observer. Flow 
right to left in foreground. Bend 6 is visible in background.

From the data and observations at the Ellis River, it is apparent that: (a) ripar

trees control the bank roughness scale; (b) slumped trees, by spanning the channel

forming small woody debris jams, strongly influence channel and bed roughness; (c)

woody debris tend to accumulate on the bed as more recently slumped trees hold p

ously deposited trees in place; (d) at least some of the accumulated large woody de

remains in place indefinitely even as the channel migrates; and (e) large woody debr
92
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ied by lateral floodplain accretion may later be unearthed by bank erosion and again

tribute to bank and channel roughness.

The mechanism behind and characteristic sizes of bank scallops are closely r

to the formation of neck cutoffs. An actively evolving cutoff is shown in figure 3.31. T

neck is 7 meters wide at the cutoff. The channel through the cutoff itself is 5 meters 

except where the slump block visible on the right of the top photo in figure 3.31 cons

the upstream opening to 1.3 meters. That slump block is 3.1 meters long in thes-direction

by 2.5 meters wide in then-direction, and the slumping tree is 38 cm in diameter. At th

flow stage of the top photo, only a small amount of seepage under debris and slump 

contributes to flow through the cutoff. The debris and slumped bank material fill the 

tom of the cutoff such that it is less than 2 meters deep below the neck surface. In th

tom photo, at near bankfull stage, there is substantial flow through the cutoff channe

Between July, 1996, and October, 1997, the times of my first and latest visits to the 

respectively, the cutoff has not changed visibly. This lack of change is likely due to the

that there is substantial flow through the cutoff only at relatively high and, therefore, 

quent stages.

I observed the clear effects of scouring flood flow on the top of the neck (beh

the observer in the top photo of figure 3.31). This scour produced small channels se

centimeters wide and deep, and intact tree roots spanned these small channels. Th

channels did not span the entire width of the neck. This neck is the only place I obse

incontrovertible evidence of floodplain scour.
939393
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The cutoff channel dimensions are consistent with the hypothesis that (a) the c

was formed by adjacent slumping events, one on each side of the neck, and (b) the 

slump blocks places a lower limit on the width of necks before they cut off. Furtherm

the data are consistent with the hypothesis that floodplain scour does not form chute

appreciable size even at the lower limit on neck width imposed by the slumping mec

nism: (a) the scoured channels visible on the floodplain surface are too small to unde

trees; (b) the lack of large trees slumped to fall across the cutoff channel indicates th

scoured channel did not lead to slumping of trees of size sufficient to create the cuto

channel opening; and (c) the orientation toward the main channel of an actively slum

large tree with a root wad of size comparable to the cutoff channel dimensions indic

that bank erosion on the main channel by channel flow undermined the trees which

slumped to form the cutoff. Subsequent to the cutoff formation, the banks of the cuto

channel have been undermined such that several small trees have slumped toward 

ter of the cutoff channel (see figure 3.31).

3.3.4 Meandering and the Landscape

The Schoharie Creek valley (see figure 3.1) shows signs that lateral channel m

tion is or has been active. The valley floor is relatively wide and flat and has visible t

races. These features should have a measurable effect on a plot of slope vs. contrib

area.

The slope-area plot for the Schoharie Creek valley is shown in figure 3.32. Th

average slopes increase with area at low values of the latter, a pattern which is cons

with hillslope diffusional processes. At larger areas, the average slope generally dec

with increasing area, indicative of fluvial processes, but the average slope is level ne
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middle range of contributing area. There is a large amount of scatter in the slopes a

the whole range of contributing area, nearly two orders of magnitude at low areas. T

vertical resolution of the DEM is 1 meter such that the smallest non-zero slope poss

one meter drop per diagonal distance across a pixel, or 0.71 m/30 m. Zero slopes ca

plotted on the log-log plot but do contribute to the plotted average. Note the visible d

cretization of contributing area at the lower end of the horizontal scale.

Figure 3.32:Slope vs. contributing area for the part of the Schoharie Creek basin s
in figure 3.1. The data for each pixel are shown with the gray dots. Average slope vs
age contributing area is shown with the dark circles.

The trend of the average slope at areas between 10 and 50 pixels is steeper 

areas larger than 200 pixels. This steepness indicates that the profiles of these sma

streams have greater concavity than the larger streams. Such concavity could be the

of the flattening of the valley floor by meandering. The slopes of streams entering th

ley may be affected by that flattening. Such flattening would influence the slopes of

streams over a range of contributing areas such that their slopes would be essential

pendent of contributing area and could therefore be responsible for the nearly const

average slope at areas between 50 and 200 pixels. The findings ofIjjasz-Vasquez and Bras

[1995] are consistent with the hypothesis that meandering leads to the features I ha

100 101 102 103 104 105 10610-1

100

101

102

103

contributing area, 900 m  pixels2

sl
op

e,
 m

/3
0m
959595



eature

ea

ys are

 obser-

ot the

ea-

 in

The

com-
noted in the slope-area relationship.Ijjasz-Vasquez and Bras [1995] observed this effect in

the slope-area plots of many, but not all, river basins, and meandering is a common f

of many, but not all, rivers. I would expect the prominence of the kink in the slope-ar

relationship to vary with the relative importance of meandering in river basins. These

results do not, however, indicate why some rivers meander more, or why some valle

wider, than others. The modeling study ofTucker and Bras [1998] indicates that shallow

landsliding may be responsible for the slope-area features described above, but my

vations in the field of the Schoharie Creek basin suggest that shallow landsliding is n

dominant hillslope process.

In order to test hypotheses concerning the mechanism of valley widening, I m

sured Buffalo River channel slopes from topographic maps in the wide valley shown

figure 3.29 and the narrower valleys up- and downstream, e.g., similar to figure 3.2. 

results are shown in table 3.7 and show that the channel slope in the wider valley is 

a. First measurement is just downstream of the confluence with the
Little Buffalo River; last two are downstream of the confluence with
Bear Creek.

Table 3.7: Measured channel slopes of Buffalo River and corresponding strataa

slope

between
elevations

 (feet) valley stratum

0.00087 740-720 narrow Ordovician

0.00082 720-680 narrow Ordovician

0.0011 680-640 wide Ordovician, some Boone

0.00093 640-600 wide Boone

0.00085 600-560 wide Boone

0.00062 560-540 narrow Ordovician

0.00061 540-520 narrow Ordovician

0.00053 520-500 narrow Ordovician
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parable to or greater than slopes through the narrower valleys. If my assumptions of

previous section are valid, then this result contradicts the hypothesis that the valley 

wider because the rock is weaker.

3.4 Discussion
3.4.1 Channel Planform Characteristics and Evolution

I examined two cases of compound bend formation on the Ellis River, and bo

arise from the same mechanism. This mechanism is related to characteristics of ben

shape, and the phenomenon is reflected in measurements of channel planform. Plo

bend curvature show that bends often have curvature magnitude maxima at the beg

and end of bends and a curvature magnitude minimum in the middle. The minimum

only approaches zero but also crosses zero, i.e., changes sign, in compound bends

shown with the Ellis River study that low-curvature reaches reverse curvature sign w

migration rate at the beginning of the bend increases due to the propagation of rapid

migration from upstream bends.

I was motivated to find and/or derive measures of channel planform because s

objective measures exist in the literature. Probably the most often quoted measures

meandering channel planforms are sinuosity and meander wavelength [Leopold and Wol-

man, 1960;Schumm, 1967]. However, these measures are problematic because they 

generally non-reproducible. Both numbers vary according to location, reach length, 

method of measurement. For example,Brice [1974] showed two sets of measurements 

meander wavelength for three reaches of the White River, Indiana, one calculated in

study and the other set from a previous study, and the numbers differed by as much
979797
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factor of two.Brice [1974] also attempted to quantify the meanders of the White River,

in terms of bend size and orientation.

Howard and Hemberger [1991] performed a multivariate statistical analysis dis-

criminating among static stream planform data and two models, the disturbed period

model (DPM) [Ferguson, 1976] and the model ofHoward and Knutson [1984] (HKM).

TheHoward and Hemberger [1991] analysis is objective and quantitative, but this type

analysis is designed to discriminate among given groups of a given data set, i.e., the

form of the discriminant functions is determined by the data. Interpretation of the resu

functions is not entirely straightforward because so many statistics are combined to 

duce them.Howard and Hemberger [1991] did conclude that (1) the HKM streams were

more sinuous than the real ones; (2) the HKM bends were more asymmetric, with th

point of maximum curvature near the bend entrance; and (3) “natural streams have 

irregularity of planform at large scales and numerous, low-sinuosity short half-mean

as well as a wider range of half-meander sizes.” Their analysis did not address the is

compound bend formation and its effect on the channel planform, but compound ben

mation could lead to the many short half-meanders observed byHoward and Hemberger

[1991].

The new measures presented here andAndrle’s [1996] show the effect of com-

pound bend formation on the reach scale. A stream with a fully developed but simpl

meander pattern, i.e., one with no compound bends and a meander axis closely foll

the down-valley direction, will have a steeply increasingµS(s') for s' smaller than the

meander wavelength and a flatµS(s') for s' larger than the meander wavelength.
98



dica-

orms

 as

 sinuos-

 in

na has

f

end

nds do

e cut

d

nswer

ls. The

aps.

s-

ow

I am

pro-

 bend
Compound bend formation leads to the secondary channel planform scale in

tors detected in the planform measurements. Repeated compound bend formation f

multi-bend loops observed in the digitized planforms and aerial photos and detected

secondary channel planform scale indicators, such as secondary increases in mean

ity, peaks in sinuosity variance, convexity of relative belt width, and secondary peaks

mean angle. Not all of the streams have these secondary features. Specifically, Dish

oneµS plateau, oneσS
2 peak, concave decay ofW, and only a low-magnitude secondµθ

peak at 100 b. Andrle [1996] found similar low-magnitude secondary peaks for rivers

without multi-bend loops and concluded that they were simply an artifact. The lack o

prominent secondary channel planform scale indicators indicates the lack of multi-b

loops. The Dishna has many compound bends, but, apparently, either compound be

not initiate the formation of multi-bend loops or there were multi-bend loops that hav

off. If the former, then the reason some compound bend formation leads to multi-ben

loop formation and other compound bend formation does not is a question I cannot a

at this stage. The Dishna is laterally unconstrained, as are all of the digitized channe

answer must lie elsewhere, with a mechanism not apparent from the topographic m

Another question I would like to answer is whether multi-bend loop formation is nece

sary for the channel planform scale indicators observed for the Alaska streams. I kn

compound bend formation is not sufficient and that multi-bend loop formation is, but 

not certain that a highly sinuous stream with no multi-bend loop formation could not 

duce secondary channel planform scale indicators. I address the issue of compound

and multi-bend loop formation with the meandering model in Chapter 4.
999999



 what

es for

rent

 they

 end-

t

f sec-

., N.F.

ng

hich

esult-

 a

ro-

r

The measures reveal other differences among the streams, but I do not know

mechanisms are responsible for the differences. All of the measures give similar valu

normalized meander bend length, but the meanders of the different rivers have diffe

characteristics. The measures tend to have distinctive features at similar scales, but

still measure different things. For example, Melozitna has one of the largestµθ peaks at a

scale corresponding to largeσS
2 andW but only moderateµS. LargeW indicates lateral

elongation; largeσS
2 indicates great variation of sinuosity; and largeµθ indicates large

curvature of three points along the stream but not necessarily close proximity of the

points of the angle-forming segments. Note that large sinuosity of a channel segmen

requires the endpoints to be close together. The measures all reflect the presence o

ondary scales and reveal the various characteristics of the corresponding forms; e.g

Kusk. Mc. has large secondaryµθ peaks which correspond to convexity inW, but the sec-

ondary rise inµS and peak inσS
2 are not relatively as great. Clearly, different meanderi

channels have some similar features which are not, however, universal.

3.4.2 Floodplain Topography

My discussion of floodplain topography addresses the various mechanisms w

build the floodplain, including point bar accretion and overbank deposition, and the r

ing forms, including scroll bar topography and the floodplain stratigraphy.

I have shown two cases of scroll bar topography, on the Mississippi and Ellis

floodplains. Spectra of transects of the scroll bar topography show that there is only

small probability that the elevations are the result of a normally distributed random p

cess. The probability is as small as 0.002 on the Mississippi and 0.04 on the Ellis fo
100
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wavelengths attributable to scroll bar topography. For the latter, observations on the

ground indicate the scroll bar topography is not a product of floodplain scour. Levee

mation is a possible mechanism.

Though the scroll bar topography spectra have significant peaks, these spect

often have several significant peaks, and their wavelengths and relative power are n

same among different transects. Some variation of peak wave number among trans

expected because: (a) the transects are drawn at varying angles, not all perpendicu

the scrolls; and (b) wavelength may be related to migration rate such that parts of the

with different migration rates have scroll bar topography with different wavelengths. 

spectra may lack a clearly dominant peak because: (a) some swales may be widene

floodplain scour; or (b) as meander bends themselves have a characteristic scale bu

in length from bend to bend, scroll bar topography also has a characteristic scale, b

not precisely periodic.

A review of the data: The Mississippi channel is about 1000 m wide; the Ellis

channel is about 26 m wide. The Mississippi bend length is approximately 19b, or 19

times the channel width; the length of bend 4 on the Ellis is approximately 12b. For the

Mississippi, the smallest scroll bar topography wavelength corresponding to a spect

peak with significance level below 0.1 is 269 m (sig. level of 0.007), or 0.27b and 0.014 of

the bend length; for the Ellis, the smallest wavelength with significance level less tha

is 10.5 m (sig. level of 0.04), or 0.40b and 0.034 of the bend length. In summary, the M

sissippi scroll bars tend to have shorter wavelengths as a proportion of both channel
101101101
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and bend length than the Ellis scroll bars. As I do not know what the scroll bar topogr

mechanism is, it is even more difficult to explain this difference in scroll bar size.

From the soil core observations it is apparent that, past the first point bar ridg

major component of floodplain deposition is from fine particles falling out of suspens

as the flood flow crosses the floodplain. Given the decreasing thickness of this fine m

rial with distance from the upstream end of the point bar, the fines probably fall out o

pension at a high rate at the upstream end where the shear stress gradient is negat

large, and that rate decreases downstream as the flow is depleted of fines and the s

stress gradient is smaller. Given the greater thickness of fines in the swales, the fine

ably fall out of suspension more quickly there because the increasing depth of flood

leads to a flow deceleration and, thus, decreasing bottom shear stress from the ridge

swale.

Because the sandy materials are usually found at the surface only near the ch

it is likely that they are carried primarily by the channel flow. The new accretions to t

point bar are colonized by densely stemmed and, therefore, hydraulically rough vege

[McKenney, et al., 1995]. This vegetation produces a large increase in hydraulic rough

and, therefore, a large negative gradient of shear stress from the main channel flow

near-bank area such that fine sand is deposited in the area colonized by the vegeta

This deposition may form the observed ridges.

The above reasoning does not adequately explain all of the soil core observa

Sandy material is found below fines in the swales on the floodplain as well as on the
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ridges. In all of the transects, the top of the first point bar ridge is the highest level at w

sandy material of that coarseness is found on the transect.

The measurements of stem and trunk diameters on the point bar do not yield

absolute lateral accretion rate, but, if the rate of diameter increase is constant in time

these results do indicate variation of lateral accretion rate over space. Curiously, the

of the diameters is flat over the point bar ridge and steep in the swale. If the hypothe

that slow migration equals more deposition per distance and, therefore, leads to a ri

and fast migration equals less deposition per distance and, therefore, leads to a swa

the vegetation diameter data contradict the hypothesis because they indicate that th

site pattern of migration rate applies—fast where high, slow where low. It is possible

the fast migration created a disturbed area ideal for the vegetation colonizing the rid

and the high roughness of that vegetation led to a high rate of sand deposition. It is 

possible that the mechanism behind the accelerated migration is also associated wi

greater sediment flux. Clearly, bank erosion does input sediment to the channel, but

not know if sediment from the bank ever enters the system rapidly enough to lead to

observed patterns of deposition.

The formation of the first point bar ridge may be associated with the compoun

bend formation on bend 4. Aerial photographs indicate that bend 4 became compou

between 1981 and 1986 but changed very little between 1986 and 1992 (see

figure 3.12(a)). The rapid migration leading to compound bend formation on bend 4 

the corresponding point bar accretion may have created the disturbed point bar surf

now colonized by rough, sediment trapping vegetation, and the corresponding rapid
103103103
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erosion may have caused pulses of sediment to move downstream and deposit on t

newly accreted point bar to form a ridge.

3.4.3 Bank Failure and Roughness

Measurements of bank roughness elements indicate that the sizes of bank sc

or inward undulations, covered a wider range than the sizes of slump blocks. Also, t

sizes of bank roughness elements are greater than the dune forms on the bed. Note

size of dunes is stage dependent while the size of bank roughness elements is not. 

bank roughness element size is determined by the sizes of trees on the bank and ho

they can be undercut before their weight leads to bank failure. The bank has a typic

roughness scale whose wavelength and amplitude are controlled by the length and 

respectively, of the slump blocks formed by the trees’ root wads (see table 3.6). So, 

roughness elements have a characteristic scale which is largely independent of the 

roughness, though the collapsed trees also contribute to bed and general hydraulic 

ness. The trees lead to bed roughness over the point bar and general hydraulic roug

where they span the pool (see figure 3.30).

The slumping mechanism may also control the minimum thickness of meand

necks and, to some degree, where they cut off. The neck shown in figure 3.31 is as w

two slightly larger than average slump block widths, and the channel through the cut

as wide as one slightly larger than average slump length. It is apparent, then, that th

of slump blocks controls how thin a neck can get before it is cut off, and the exact loc

of the cutoff is dependent on the locations of slumps on either side of the neck.
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The bank scallops on bend 6 lack vegetation and, therefore, appear to be rela

new. That observation and the fact that many of the slumped trees are still alive may

cate that these slumps and the new cutoff resulted from the same rapid erosion that

compound bend formation on bend 4 and the high first point bar ridges observed on

point bars, including those of bends 4 and 6.

3.4.4 Landscape-Meandering Interactions

I hypothesize that scatter and deviations from scaling in the slope-area plot fo

Schoharie Creek may be due to meandering rather than some stochastic process. T

DEM clearly shows bend-shaped scarps adjacent to a flat valley bottom. Such forms

would surely lead to both steepening and shallowing of slopes relative to the mean b

ior. These forms could also be responsible for the observed deviations from mean s

area scaling. The flattening at moderate slopes apparent in figure 3.32 is often obse

(e.g.,Ijjasz-Vasquez and Bras, 1995;Tucker and Bras, 1998), andTucker and Bras [1998]

found that using pore-pressure-induced shallow landsliding (e.g.,Montgomery and

Dietrich, 1989, 1994) in a landscape evolution model produced a similar flattening in

slope-area relationship. Given the ubiquity of this flattening, however, it may be poly

genetic, and G.E. Tucker does not believe that shallow landsliding is not the cause (

sonal communication, 1998). It may be that valleys with wider bottoms exhibit this sl

area effect more prominently.

The pertinence to valley width of my measurements of Buffalo River channel

slopes is contingent on several assumptions listed in the Methods section. The contr

the Buffalo River’s incision, whether detachment- or transport capacity-limited, are n

well established. If the assumption of detachment-limited incision does not hold, i.e.
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incision is transport capacity-limited or controls on incision change downstream, the

channel slope and rock strength might not be simply related. If the channel is uniform

transport capacity-limited and lithologies with greater transport capacity are also mo

erodible, then my reasoning still holds. However, if more erodible lithologies are less

transportable, or the greater lateral erosion that comes with greater erodibility produ

greater quantity of sediment for the channel to carry, then my reasoning does not ho

In any case, the mechanism for valley widening is most likely related to what 

pens to the rock from the valley walls once it is detached. In general, if it breaks up i

small-gravel bedload and, therefore, increases the topographic steering effect, the pr

of the gravel may tend to make the valley wider by increasing lateral migration. On t

other hand, there are at least two other reasons why the slope of the Buffalo, in part

might become steeper through weaker rock. First, the bedload component of the tot

iment load may be relatively larger because of the chert gravel such that the reach is

port-limited rather than detachment-limited. The river’s slope may have adjusted to c

the large quantities of gravel bedload, but the valley side walls are not shielded by s

bedload and are, therefore, vulnerable to erosion. Second, the river may lose a sign

amount of flow to Karst conduits through the limestone, and the slope may have adj

to compensate for this lost erosive flow.

3.5 Conclusions
Most of my conclusions at this point are really questions. Can I explain compound

formation and scroll bar topography? Can a new model of river meandering reprodu

explain these phenomena? How may I represent bank roughness in a new model?

new model shed light on the interactions between meandering and the landscape
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does compound bend formation lead to multi-bend loops in some cases and not in 

What mechanisms are responsible for the differences in the channel planform scale 

tors of the Alaskan streams?

I have found that compound bend formation is fundamental to meandering. It

responsible for typical bend shapes and the multi-bend loops observed in the data. 

pound bend formation is more active in some streams than others, though the mech

for this variation is beyond the scope of this chapter.

My studies have raised some interesting questions regarding scroll bar topogr

Scroll bar topography on gravel bed streams in the Ozarks is thoroughly explained b

McKenney, et al. [1995], who determined that vegetation plays the key role. My obser

tions and measurements on the Ellis River are less conclusive. They point to a poss

role of vegetation, but an unexplained variation of migration rate may be the missing 

of the puzzle. The data indicate that the newest ridges on the point bar laterally accr

rapidly relative to the lower areas behind these ridges. Therefore, it is unlikely that th

topography may be explained by a combination of variable migration and steady de

tion rates. Limited possibilities remain:

1. Migration rates are quasi-periodic in space possibly due to episodic rapid migr
following upstream cutoffs such as the rapid migration following the cutoff of bend 2
Where the point bar rapidly accretes laterally, rough vegetation colonizes the disturb
area. That roughness leads to a high vertical accretion rate on the newly accreted p
of the point bar such that rapid vertical and lateral accretion coincide. Also, the rapid
erosion may supply additional sediment to the stream such that the deposition rate o
point bar increases.

2. The height of laterally accreting point bars is quasi-periodic in space due to sy
atically changing secondary flow hydraulics in migrating channel bends. Vegetation 
also play a role by favorably colonizing the higher and, therefore, drier parts of the p
bar.
107107107
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These proposed mechanisms do not explain why the most recent ridge on the

floodplain is the highest and made entirely of sand or why the Mississippi bend has 

scrolls on its floodplain than the Ellis, i.e., the wavelengths of the scroll bar topograph

the Mississippi are smaller relative to both the channel width and the meander wave

than the scroll bar topography on the Ellis. The Mississippi is also not as wide relativ

the bend length. Are these observations generally the case? What characteristic of 

meandering stream determines the scroll bar topography wavelength? The new mod

developed in the next chapter can simulate floodplain topography only by variations

point bar height. The present study of scroll bar topography indicates that modeling i

mation may require a detailed treatment of processes beyond the scope of the mode

the present work.

I found that the scale of the bank roughness element is independent of the sc

bed forms, though the elements contributing to bank roughness, namely the trees, a

contribute to bed and overall hydraulic roughness. It is possible that this vegetative r

ness is related to the scroll bar topography wavelength. I have found a likely role of ro

young vegetation in the formation of scroll bar topography, and the scale of this vege

may also be related to scroll bar topography wavelength. A model of river meanderin

likely need to model or parameterize bank and bed roughness independently in orde

predict correctly both flow hydraulics and the scale of dissipation of turbulent energy

the bank.

I have not shown conclusively that meandering affects the slope-area relation

The two things, that the slope-area relationship is stepped and meandering has flatt
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the valley bottom and steepened some parts of the valley walls, may be unrelated. H

ever, I believe that they are related, that the flat valley bottom is responsible for the n

ous low-slope points at low areas, that the steepened valley wall points are responsi

some of the large slopes at slightly larger areas, and that the flattening of the valley fl

responsible for the mean slopes’ lack of area-dependence at even larger areas.

I have drawn into question the hypothesis that wider valleys are due to more 

ible valley walls, but, again, the evidence is not conclusive. The limestone walls of th

wide valleys of the Buffalo probably are weaker than the sandstone forming the narr

valley walls. The surrounding area may be eroding more quickly and delivering a gre

load such that the river has steepened to carry the extra load. But the smaller bedloa

size and larger bedload supply probably do increase the lateral migration rate more 

can be explained by the greater erodibility.

The models presented in the following chapters will address some of the issu

compound bend formation, scroll bar topography, bank roughness and failure, and m

dering-landscape interaction presented in this chapter. The present chapter address

of the morphologic features of meandering streams and their surrounding landscape

model development in the next chapter focuses on the physical mechanisms necess

meandering in general and whether they are sufficient to explain some of the above

cific features.
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Chapter 4

The Topographic Steering River
Meandering Model

In this chapter, I present a simple nonlinear model of river meandering. This new mo

based on the phenomenon known as topographic steering introduced in Chapter

comparison with the natural channels of Chapter 3, I use the planform measure

developed there on the results of the new model and compare those results to the

examples of compound bend formation. I also compare my new model to a mean

model from the literature. The new model simulates meandering with compound ben

mation and predicts that the frequency of compound bend formation is sensitive to 

parameters. For example, decreasing the mean bedload particle size increases co

bend and multi-bend loop formation frequency.

4.1 Introduction
The review of Chapter 2 suggests that topographic steering plays a key role in ban

sion and meandering. Based on the these results, I reason that a positive feedback

to one described byDietrich and Smith [1983], exists between point bar formation an

bank erosion: a small point bar develops in a small bend; the small point bar stee

flow such that the outside bank is eroded; this bank migration makes the channe

curved; the point bar grows; and so on. The hypothesis is that this topographically in

lateral transfer of flow momentum provides the major part of the flow momentum lo

bank shear stress. By modeling topographic steering, I can model meandering.
111111111
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I develop a simple, nonlinear river meandering model to test the topographic 

ing hypothesis [Dietrich and Smith, 1983;Dietrich and Whiting, 1989]. The model is not

based on a perturbation solution, linear or nonlinear, of the flow equations. Rather, i

topographic steering river meandering (TSRM) model I have sought to simplify the p

ics of the problem such that it yields a solution which is both nonlinear and computa

ally efficient. Efficiency is of interest because of the ultimate goal of integrating the

meandering model with the landscape evolution model presented in Chapter 5.

4.2 Model
I assume, as a first approximation, that the downstream flow velocity field is constan

a given channel cross-section and given by the Manning equation:

(4.1)

whereU is the downstream flow velocity;R is the hydraulic radius;Sf is the downstream

friction slope measured over a long distance relative to the channel width; andnm is the

Manning roughness coefficient. I assume that equation (4.1) adequately describes t

effects of the total channel roughness and water surface slope on the average flow v

over a length of several bends. GivenU, I consider secondary flows: curvature-induced

helical flow; and topographically induced lateral and vertical flows; and derive bed to

raphy and bank shear stress resulting from these secondary flows, respectively. I as

that lateral migration rate is proportional to the bank shear stress.

4.2.1 Transverse Channel Bed Slope

Several authors [Odgaard, 1986;Ikeda, 1989] have found the transverse bed slo

necessary to maintain equilibrium between the opposing forces due to gravity and c

U
R2 3/ Sf

nm
---------------------=
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ture-induced helical flow. These equilibrium models provide a good approximation o

bed topography, though others (e.g.,Johannesson and Parker, 1989a;Nelson and Smith,

1989a, b;Blondeaux and Seminara, 1985;Seminara and Tubino, 1989, 1992) provide a

more detailed description by coupling the equations of flow and sediment transport t

reveal the feedbacks between flow and bed topography.

Figure 4.1: (a) Maximum pool depth is2H, and the point bar may not break the water s
face. (b) Successive channel cross-sections defining directional axes,s, n,andz; channel
width, b; average flow depth,H; and change in half-section area,dAcs, per change in dis-
tance downstream,ds.(c) Flow momentum differential over a distance,dl, for lateral and
vertical flow velocities,V andW, respectively, and unit dischargesqn andqz, respectively,
due to the change in half-section area,dAcs. (d) Rotational flow momentum,qrVr, pushes
bed sediment inward while lateral flow momentum,qnV, pushes sediment outward; th
resulting flat-topped point bar is represented by a single transverse bed slope.

The expression presented here is based onIkeda’s [1989] description of bed topog-

raphy as a function of local curvature and depth of flow. I modify his expression to acc

for bed form drag from dunes (see Appendix A) and solve for the transverse slope,ST, at

the channel centerline, where I assume that the depth is equal to the average depthH:

(4.2)

whereC is channel centerline curvature; andK is described by

(4.3)

dAcs

qnVqzW

b/2

H

dAcs

dAcs
s

n

(c)

z(b)(a)

dl

ds

1
ST

qnV

qrVr

(d)

hmax = 2H

ST KHC=

K
Ψ′
Ψ
------ Ψ′

Ψcr
--------- 0.570

11.0Ψ′H
Ψd50

---------------------- 
 ln 0.361–=
113113113
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whereΨ' is dimensionless (Shields) skin friction;Ψ is total Shields stress;Ψcr is critical

Shields stress; andd50 is median bed sediment grain size (see Appendix A for derivatio

Limits on the bed topography are necessary such that the pool does not beco

arbitrarily deep or the point bar arbitrarily high whenST is large. The maximum possible

elevation of the point bar is the water surface elevation (zero depth at the inside ban

the maximum pool depth is twice the average depth (depth equals2H at the outside bank)

(see figure 4.1(a)).

To test the bed topography model, I compare the results of equation (4.2) for 

average curvature of a Muddy Creek bend (see table 4.1) to digitized channel sectio

[Dietrich and Smith, 1983;Dietrich and Whiting, 1989] (see figure 4.2). The prediction i

good, and equation (4.3) is an improvement onIkeda’s [1989], which predicts slopes

about twice as large.

Table 4.1: Parameter values used in model simulations
Discharge, width, roughness, grain size, valley slope, and dissipation scale are held constant d
ing the simulation; depth, channel slope, and radius of curvature are given only for reference.

Site: Muddy Cr., WY

discharge, m3/s 1.6

width, m 5.5

average depth, m 0.5

Manning roughness 0.036

median grain size, mm 0.7

channel slope 0.0014

valley slope 0.0021

radius of curvature, m 8.0

dissipation scale, m 15.
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Figure 4.2: Comparison of actual and predicted bed topographies for Muddy Cree
top the predicted channel section is compared to several actual sections such that t
terlines and water surfaces of the predicted and measured sections coincide. In sub
views, the actual and predicted sections are adjusted such that the bed topographi
lap at the channel centerline. All of the predicted sections shown are identical.

There is an apparent “phase lag” [Zhou, et al., 1993] between curvature and bed

slope in Muddy Creek; the maximum curvature in the bend is at section 14, while the

imum transverse slope is at section 22.Johannesson and Parker[1989a, 1989c] used an

effective curvature with upstream weighting in their LFE model; however, A.D. Howa

(personal communication, 1996) reports that the correction does not have a significa

effect on the model results.

4.2.2 Lateral Flow Acceleration

Convective accelerations due to the presence of the point bar cause a lateral

placement of flow and a resulting transfer of momentum from the high velocity core t

outer bank, as described in Chapter 2 and the Introduction. The present approach to

mating the magnitude and spatial pattern of that transfer is based on continuity of m

Smith and McLean [1984] solved the continuity equation,

0

-1

-3 -2 -1 0 1 2 3

section 14

section 18

section 19b

section 20

section 22

n, meters

z,
 m

et
er

s

section 14
section 18
section 19b
section 20
section 22
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(4.4)

whereU is the depth-averaged downstream velocity;V is the depth-averaged cross-strea

velocity;h is the depth of flow; ands andn are the downstream and lateral coordinates,

respectively (see figure 4.1(b)); for the lateral unit discharge,

. (4.5)

 Their expression is

. (4.6)

I divide the channel cross-section into two half-sections and assume that the 

stream flow velocity is uniform with respect tos andn, to solve equation (4.6) for the lat-

eral flow at the channel centerline,n = 0:

(4.7)

whereAcs is the cross-sectional area of the inside half channel, between the bank atn=-b/

2 and the centerline atn=0. I calculateAcs from the bed geometry derived in the previou

section; except for very large curvatures (see figure 4.1(a)),  is proportional 

 and, therefore, . For the planar bed described by equation (4.2), the v

cal unit discharge averaged over the outside half-channel, betweenn=0 andn=b/2, is

approximately equal in magnitude to the lateral unit discharge atn=0, or

(4.8)

1
1 nC–
----------------

s∂
∂

Uh
n∂

∂
Vh

VhC
1 nC–
----------------–+ 0=

qn Vh=

qn
1

1 nC–
----------------

s∂
∂

Uh 
  nd

b
2
---–

n

∫–=

qn U
s∂

∂Acs–=

Acs∂ s∂⁄

ST∂ s∂⁄ C∂ s∂⁄

qz W
b
2
--- qn–= =
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whereqz is the vertical unit discharge averaged over half the channel width; andW is the

vertical flow velocity, also averaged over half the channel width. Using equations (4.

(4.7) and (4.8), I solve for the lateral and vertical flow velocities at the channel cente

n=0, and in the outside half-channel, respectively:

(4.9)

(4.10)

where h in equation (4.5) has been replaced byH, the average depth and, for the simplifie

bed topography, the depth at the channel centerline.

At a bend entrance, the increasing channel curvature implies an increase in t

verse bed slope. Therefore, the cross-sectional area of the inside half-channel (n<0)

decreases, while the cross-sectional area of the outside half-channel (n>0) increases.

Thus, flow is displaced away from the point bar (across the channel) and down into 

pool. The unit discharges,qn andqz, are the volume discharges per downstream distan

therefore, the magnitudes of the vertical and lateral discharges are

. (4.11)

I hypothesize that the momentum transferred to the channel bank as shear stress is

ference between the lateral and downward discharge momenta [Chow, 1959], or the

change in momentum along the path in figure 4.1(c):

(4.12)

V
U
H
----

s∂
∂Acs–=

W U
2
b
---

s∂
∂Acs=

Qz Qn= U
s∂

∂Acs sd=

Fd n ρ QnV QzW–( )=
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whereρ is water density. The lateral discharge momentum is greater than the vertica

half-width greater than depth (see equations (4.9) and (4.10)). Substituting equations

(4.10), and (4.11) in equation (4.12) yields

(4.13)

wheredFn has units of force. It is the incremental lateral transfer of flow momentum d

to topographic steering and dissipated by bank friction. I refer todFn as the “lateral

momentum transfer” or “bank shear force increment”. Note that this “force” is felt at 

bank as shear stress, not as a normal force.

In the model, the convective acceleration described by equation (4.13) is calc

lated only where the point bar is rising, i.e., the inside half-section area (Acs) is decreasing

downstream ( ), and not where the pool is becoming shallower. The later

momentum transfer,dFn, is largest at the bend entrance. Because  is proportio

to  (usually; see figure 4.1(a)), . Terms with similar dependenc

on  may be derived from the scaled, depth-averaged flow momentum equatio

under the assumption, based on the results ofDietrich and Whiting [1989], that changes in

the downstream (s) and lateral (n) directions are of similar magnitude and occur over si

ilar distances (see Appendix B).

In Appendix C, I show that, for the special case of a sine-generated channel c

line, dFn and the integrated bottom shear stress are of similar magnitude. For maxim

flow direction angles, with respect to the down-valley direction, greater than 1.0 radi

Fd n ρU2 1
H
---- 2

b
---– 

 
s∂

∂Acs
 
 

2

sd=

Acs s 0<∂⁄∂

Acs s∂⁄∂

C s∂⁄∂ Fn C∂ s∂⁄( )2∝d

C s∂⁄∂
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the lateral force is somewhat larger than the bottom shear (see Appendix C). This re

consistent with the findings ofDietrich and Smith [1983].

I have made several simplifying assumptions that influence the accuracy of

equation (4.13). I assumed uniform downstream velocity with respect to the downstr

and cross-stream directions.Dietrich and Smith [1983] showed that flow over the point ba

decelerates as the high velocity core moves to the outside bank. Therefore, this assu

may lead to underprediction of lateral discharge. I assumed uniform transverse bed 

using different slopes across the channel has an insignificant effect on the magnitud

the lateral momentum transfer. I decouple the bed topography from the bed shear s

associated with topographic steering; i.e., bed topography is determined by helical fl

only (see figure 4.1(d)). My model, therefore, does not represent overdeepening and

nance [Parker and Johannesson, 1989;Blondeaux and Seminara, 1985] and, according to

figure 4.2, may overpredict the transverse bed slope and, therefore, the lateral flow 

the bend entrance. The errors due to flow deceleration and overprediction of transve

bed slope near the bend entrance will tend to cancel each other. I have neglected in

equation (4.13) the effect of curvature on the vertical discharge. With large curvature

outside half-channel has more volume per downstream increment (at the centerline)

the inside half-channel, and vertical discharge is increased relative to lateral dischar

such thatdFn is decreased. In the numerical model, I make a correction that decreas

effectivedFn in sharper bends by selecting the component ofdFn perpendicular to the flow

direction at the downstream end of a discrete channel segment (see figure 4.3(a)). A

lier version of the model omitted this correction with little difference in model results.
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Figure 4.3: (a) The lateral momentum transfer,dFn, is adjusted to account for the differ
ence in downstream direction angle between successive points. (b) Conceptual diag
lateral acceleration of the high velocity core and the resulting lateral profiles of near
downstream flow velocity; the profile is steep where the core reaches the ban
becomes less steep downstream, though the position of the core is nearly constant.
width, B, used in the lag function,L, is the distance between the inner and outer banks
depth ofH/2. (d) The valley is conceptually infinite in the + and -y-directions and “falls
off” at set values ofx at either end of the valley; channels are cut off when they cross
end boundaries.

4.2.3 Bank Shear Stress

The bank shear stress associated with the lateral momentum transfer is felt d

stream, where the high-velocity flow core reaches the bank (see figure 4.3(b)). I der

simple expression to describe this downstream “lag”.

Neglecting curvature in the continuity equation (4.4), substituting with

equation (4.5), and letting

(4.14)

I get

si
si+1dFn

dFnsin dFncos

(b)

(c)

∆φ
2

∆φ
2

∆φ
2

n
b(z)

Bn = 0 n = - b
2

z(n)

∆φ

si+2

(a)

n

u(n)
0

Umax

1Svalley

∞

∞–

y
x

(d)

qs Uh=
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I simplify equation (4.15) further to derive an estimate of the downstream distance

between the convective acceleration of equation (4.13) over the point bar and shear

on the opposite bank. If I ignore changes in depth and integrate, equation (4.15) redu

. (4.16)

I replace  withB, the effective, “depth-averaged” channel width (see figure 4.3(c)):

(4.17)

and  withV and write the downstream lag as

. (4.18)

The lag in equation (4.18) is analogous to a translation of a shear force increment fro

point bar to the opposite bank downstream and laterally at the downstream and later

velocities, respectively. The lag between lateral acceleration at the bend entrance an

shear stress clearly exists, otherwise bends would migrate upstream.

One possible improvement over equation (4.18) might be to follow the increme

progress of the high-velocity core across the channel. Such a calculation could amo

solving the nonlinear flow equations for the cross-stream variation of downstream flo

velocity and would complicate the model considerably and unnecessarily.

n∂
∂qn

s∂
∂qs–=

s
U n∂

V∂
----------–=

n∂

B
1
H
---- b z( ) zd

z 0( )

z
b
2
---– 

 

∫=

V∂

L
UB
V

--------=
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The bank shear stress is proportional to the large lateral gradient of downstre

flow velocity that is created where the high velocity core approaches the outside ban

That gradient increases as the core approaches the bank and decreases downstrea

bank friction and the development of a rough turbulent flow boundary layer between

core and bank (see figure 4.3(b)). I parameterize this downstream boundary layer de

ment with a Gaussian bank shear stress function. The bank roughness is parameter

a constant dissipation scale. The bank shear stress is the integral over upstream po

the Gaussian-weighted and lag-offsetdFn’s:

(4.19)

wheres’ is a dummy variable indicating points upstream ofs where thedFn’s are gener-

ated;λ is the dissipation scale; andho(s) is the depth at the deepest part of the channel 

tion.

In LFE models, dissipation of turbulent energy in the downstream direction is

modeled by an exponential decay term (see Appendix D), and the rate of decay is g

erned by the bed friction factor,Cf. Johannesson and Parker [1985] usedCf as the calibra-

tion parameter and found that the calibrated values were larger than the calculated v

It is likely that the larger calibratedCf reflects bank friction.

Similarly, the dissipation scale,λ, is the calibration parameter for the TSRM

model. The value ofλ is not well constrained by theory or existing data. This scale is

related to the scale of bank roughness elements, such as fallen trees or herbaceous

τw s( )

s s′ L s′( )+( )–( )2–
2λ2

---------------------------------------------exp Fn s′( )d
s′
∫

λ 2πho s( )
------------------------------------------------------------------------------------=
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tion clumps, but I have not attempted a derivation of the value ofλ from observations of

bank roughness such as those in Chapter 3. In general, greater relative bank rough

should result in smaller values ofλ and, therefore, shorter meander bends.

In equation (4.19) I have parameterized the frictional dissipation of the bank s

stress at the bank, but, as the flow depths are different over the point bar and in the 

the effect of bed friction is also different near the different banks. The effect of bed fric

is likely small where the channel is deep but may be large over the point bar where 

channel is shallow. Therefore, an effective “bank” area parameter lumping the effect

bed and bank friction would be large not only in the pool, where the actual bank are

large, but also over the point bar, where the effect of bed friction becomes large thou

actual bank area is small. This parameter would have a minimum at intermediate val

actual bank height, i.e., where the channel is approximately rectangular. In the prese

model, this parameter isho(s) (see equation (4.19)), the outside bank depth. Using the 

side bank depth where the channel is actually shallow reflects the larger bed friction 

4.2.4 Implementation

In the model, bank migration rate,ζ, is proportional to bank shear stress,τw (posi-

tive on the left bank, negative on the right), and perpendicular to the downstream flo

direction:

(4.20)

whereE is the bank erodibility coefficient; andn is the lateral unit vector (see

figure 4.1(b)).

ζ E τw⋅( )n=
123123123
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 The expression for bank shear stress, equation (4.19), does not yield an ana

solution. Instead I discretize the equations and solve them numerically at points alon

discretized channel. The model results may be sensitive to the scale of that discretiz

(as in, e.g., numerical solutions of the diffusion equation) because of the dependenc

dFn on the downstream rate of change of channel curvature and, thus, the inverse o

downstream distance increment. I assume that cross- and downstream changes occ

comparable distances and, therefore, use a default channel discretization which yie

average of∆s=b; i.e., one channel width. When two adjacent channel points are farth

apart than twice the default∆s, a new point is added between them.

In the simulations of this chapter, the model’s initial condition is a noisy straig

line (seeHoward and Knutson, 1984, orHoward, 1992). The model boundary conditions

represent an infinitely wide valley floor with a uniform slope and truncated at both th

upstream and downstream ends (see figure 4.3(d)). Neck cutoffs occur when two ch

segments come close enough to one another that the channel cross-sections would 

I do not model chute cutoffs.

To visualize the model’s evolution, the channel is super-imposed on a regular

discretized at one-third of the channel width. Before each iteration, grid points at the

side bank, channel centerline, and inside bank are set to the bed elevations corresp

to those locations, respectively. After channel movement, all channel grid point eleva

are reset to the average bed elevation. Pixels that are abandoned by the channel du

iteration retain their previously set elevations. Finally, I may impose “uplift” or “incisio

by adding elevation to all grid elevations except for channel points. Thus, as a chann
124
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erodes at the outside bank (next to the pool), a floodplain is built by abandonment o

points at the inside bank (next to the point bar). Inside bank pixels are assigned a de

thickness,hdep:

(4.21)

wherezpb is the elevation of the point bar at the inside bank; andzcl is the elevation of the

bed at the channel centerline, or the average bed elevation for the channel section; ahdep

is restricted to positive or zero values ( ). I must emphasize that in these rules

sion” and “deposition” are only conceptual and are not governed by mass balance c

tion.

4.3 Results

In the following sections, I report the results of two groups of simulations with the Mu

Creek parameters (see table 4.1). I simulate streams in spatial domains much longe

the length of a single bend ( ) and streams and topography over 

shorter domain ( ) to visualize the model results in three dimensio

First, I briefly explain the model parameter set. Next, I break up the results into three

tions focusing on the forms and evolution of meander bends, the floodplain, and the 

der belt, respectively. These sections progress from details to the bigger picture to s

how the former is reflected in the latter. Inevitably, there is some overlap of themes a

sections. For comparison with the Topographic Steering River Meandering (TSRM)

model, I draw on both examples from the field (see Chapter 3) and results from a m

hdep zpb zcl–=

hdep 0≥

Lvalley 100 Lbend×>

Lvalley 10 Lbend×>
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based onJohannesson and Parker’s[1989c] LFE model (see Appendix D). Finally, I

investigate the TSRM model’s parameter sensitivities.

4.3.1 Parameters

Parameters were obtained from published data, shown in table 4.1 [Dietrich and

Smith,1983;Dietrich and Whiting,1989].

The dissipation scale was varied to calibrate the model channel bend size to 

size of the Muddy Creek bend studied byDietrich and Smith [1983] (the “study bend”).

Also, fromDietrich and Smith’s [1983] detailed map of the study bend, I measured the

distance from the locus of maximum bank erosion to the ends, both upstream and d

stream, of the cut bank on that bend. Both cut bank measurements and the calibrate

of λ (see table 4.1) are all approximately equal.

4.3.2 Meander Bends

Figure 4.4: Meander model evolution over long domain with Muddy Creek parame
Display every t = 5000 arbitrary model time units, except magenta, at t = 250 units; c
at t = 5500. units; red is at t = 10,500 units; green is at t = 15,500 units; blue is 
20,500 units. The meander belt, or the area swept by the channel in all time slices, 
ing many not shown, prior to and including t = 15,500 units is outlined and filled w
speckled pattern. There is little transgression from this area during the last 5000 uni

Several time slices from the long domain TSRM model simulations are shown

figure 4.4. The model produces realistic, complicated meander patterns. Individual b
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forms vary among many “typical” shapes, and the great variety of these shapes give

appearance of irregularity. In figure 4.5, I compare a short section of model channel 

the simulation of figure 4.4 to a digitized natural river channel, the Kuskokwim River,

Alaska (see figure 3.13).

Figure 4.5:Comparison of Kuskokwim River, AK, and a TSRM model channel. (a) D
tized natural channel centerline (see Chapter 3). (b) Model channel segment from th
ulation of figure 4.4.

The channel segments shown in figure 4.5 illustrate some of the similarities a

differences between natural and TSRM model channels. The comparison illustrates

the model reproduces many of the types of forms found in real channels, such as co

pound bends, loops that point upstream, relatively straight reaches, and some pecu

characteristic forms which defy nomenclature. Some of the natural shapes are irreg

comparison with the ideal shapes simulated by the model. In other cases, the natura

shapes are even smoother than the simulated.

(a)

(b)
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Figure 4.6: Model channels (drawn in solid black) superimposed with the predicted b
shear stress (drawn in dashed gray at a distance proportional to its magnitude fro
perpendicular to the corresponding channel segment) to show evolution. Flow is fro
to right. Frame numbers are from an animation of the channel evolution where fram
drawn every t = 10.0 units.

A TSRM model time series from a short domain simulation that illustrates som

the possible channel forms and how they evolve over time is shown in figure 4.6. Not

the frames in figure 4.6 are not chosen at equal time intervals but are, rather, chose

exhibit the details of the model evolution. An interesting result shown in figure 4.6 is 

model’s formation of compound bends. Frame #101 shows the channel prior to an im

nent cutoff at x=150m. In frame #123 the cutoff has developed into a new, downstre

migrating bend. In frame #125 the latter bend has “pushed” into the downstream ben

led to an instability and large shear stress on the inner bank of the bend at x=200m; 

ter bend is now compound, defined as such by the small curvature reversal at x=200

frame #137 the compound bend has separated into three “daughter” bends; the mid

the three is migrating quickly and eroding into the inner bank of the third; the migratio

the latter, in turn, has led to compound bend formation at x=225m; the bend at x=10

has recently cut off. In frame #143 the bends at x=200m and 225m have become rel

stable; the compound bend at x=225m has not separated to form daughter bends; a

200

250

300
Frame #101 123 137125
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new bend at x=100m has initiated another “wave” of rapid channel migration downstr

In frame #154, as a result of that wave, a bend at x=150m is now compound and the

downstream have changed. In frame #163 two more cutoffs, at x=150m and 225m, 

initiated two waves, respectively, of accelerated channel migration. Finally, in frame 

the bend at x=100m has formed a series of bends resembling the “daughter” bends

x=200m in frame #154, though the two mechanisms are different. These frames show

in general, bends first migrate downstream when they are small, grow laterally when

are of medium length, and finally grow upstream when they are long. This result is c

tent with the decreasing “phase shift” with increasing bend length found byOdgaard

[1987] and predicted byFurbish [1991].

The model produces compound bends similar, both in form and evolution, to t

observed in the field. The “dog-leg” bend at the bottom of frame #154, at x=150m is

acteristic of a shape often produced by the model and found in nature. I showed an 

ple from the Amazon River basin in figure 3.4. In figure 3.12 I showed two examples

compound bend formation on the Ellis River, ME, which formed by a mechanism sim

to that described above and shown in figure 4.6.

4.3.3 The Floodplain

I emphasize again: in these “floodplain” results I do not calculate the sedimen

mass balance. Thus, when, in the context of the model visualization, I use terms suc

deposition, incision, and uplift, I mean them figuratively.

Two time slices of the figure 4.6 simulation with uniform uplift are shown in

figure 4.7, one slice at an early stage of the simulation and the other slice at a time
129129129
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(between frames #137 and #143 of figure 4.6) much greater than the time for the ch

to rework most of the meander belt. Both elevation and alluvial thickness shadings a

shown. If there were no uplift in the simulation, the surfaces with non-zero deposit th

nesses (alluvial shading other than white) would be floodplain surfaces higher than 

average channel bed elevation.

The time of figure 4.7(c) and (d) is chosen to show the early development of t

compound bend at the center of the domain; this is the same compound bend as tha

in frame #123 of figure 4.6. The blue shading of the new point bar indicates that the 

is growing rapidly compared to bends without blue-shaded point bars. As shown abo

waves of accelerated migration, such as often follow cutoffs, lead to a punctuated ev

tion of alternating slow and rapid channel migration. This punctuated evolution is evi

from the variations in topographic slope on the modeled point bars (detail shown in

figure 4.7(e) and (f)). The uplift rate is constant; therefore, topography will be steepe

when channel migration is slower. Flatter surfaces indicate locations of more rapid c

nel migration.

Sloughs (seeHoward, 1992) form on the point bars of bends (marked by arrows

figure 4.7) which are short enough that the lateral momentum transfer at the bend en

leads to shear stress which carries over into the next bend (e.g., see frame #137 in

figure 4.6) and erodes the point bar of that downstream bend. Where the point bar is

eroded, the channel moves away from the pool, rather than from the point bar as is 

usual, and points which were last occupied by the pool form a slough which resemb

those observed in the field and in the modeling ofHoward [1992].
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Figure 4.7: Visualizations of “incised” meanders. (a), (b) Time = 300 units. (c), (d), 
(f) Time = 12,490 units. (a), (c), and (e) Elevation shading, low to high: blue, tan, br
light and dark greens; stretched at low elevations. (b), (d), (f) Alluvial shading, ~0
meters: white; yellow; yellow, green and dark grays; light and dark browns. (e), (f) D
of point bar, (e) elevation and (f) alluvial shading.

(a) (b) (c)

(d)(e)

(f)
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Figure 4.8: Visualization of model evolution without uplift to show floodplain topogr
phy.   Elevation shading is similar to that of figure 4.7 except that here greater elev
are stretched to show scroll bar topography. A close-up perspective view of the c
area is inset. Flow is from left to right, and I have removed the valley’s downward e
tion trend.

Deposit thicknesses appear as bands of alternating light and dark in many loc

(some examples are circled in figure 4.7). These bands of contrasting deposit thickne

similar to scroll bars observed in the field (see figures 3.3 and 3.16) and are not form

other models (e.g.Howard, 1992). In the simulation without uplift, shown in figure 4.8,

the scroll bar-like topography is more evident. These model scroll bars are the resul

oscillating channel curvature—which determines point bar height through equations

and (4.21)—during the evolution of the meandering channel.
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To better understand this mechanism and others, it is useful to compare TSRM

LFE model bends. In figure 4.9, I plot the shape, curvature, and shear stress for ben

ical of each model: small bends and the same bends just prior to cutoff. Note that no

model parameters were calibrated. The plots of curvature and bank shear stress as

tions of downstream distance are normalized by the maximum curvatures and shear

stresses and the bend lengths, respectively, for the small bends. These normalizatio

ues are listed in table 4.2, along with the similar quantities from the Muddy Creek st

bend.

From equation (4.20), the bank migration rate,ζ = 40 cm/yr, measured at the

Muddy Creek study bend, and the TSRM model-predicted maximum bank shear streτw

= 1.1 N/m2, the bank erodibility predicted by the TSRM model is

.

Shear stress distributions in the small bends are fairly similar, but subtle diffe

ences become more pronounced in the long bends. The different mechanisms drivin

shear stress in the two models are evident in the different bend shapes and shear st

tributions. The reader should refer to figure 4.9 in the following explanatory paragrap

Table 4.2: Bend characteristics for both models and Muddy Creek study bend

LFE model  TSRM model Muddy Creek

bend length, m 42.1 25.2 25.2

max. curvature, m-1 0.0902 0.136 0.13

E ζ τw⁄ 0.36 m3 N yr⋅⁄= =
133133133
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Figure 4.9: Comparison of the LFE and TSRM models. (a), (b), (c), and (d) plot cha
centerline curvature (solid black) with bank shear (dashed gray); (e), (f), (g), and (h)
the channel planforms (solid black) with bank shear (dashed gray), where its magni
proportional to the perpendicular distance from the channel. (a) and (e) show small
from the LFE model, and (b) and (f) show the same bends near cutoff. Similarly, (c
(g) show small bends from the TSRM model, and (d) and (h) show the same bend
cutoff. The curvature and shear plots, (a), (b), (c), and (d), have normalized axes; th
zontal axes are normalized by the lengths of the small bends (arrows) of each mod
vertical axes are normalized by the maximum values of curvature and shear in the
small bends. Both cases use the Muddy Creek parameter set.

In the LFE model, the effective bank shear stress is linearly dependent on a

weighted integral of local and upstream curvature (see equation (D.0.1)). The curva

function peaks shortly downstream of the crossover between bends and decays throu

bend, and the bank shear stress function has a similar shape peaked downstream o

curvature. The curvature and shear stress functions and channel planforms are quit

lar from bend to bend, and the curvature changes gradually through the bend. The b

tend to “lean” upstream but continue to elongate laterally because the loci of maxim

shear stress are at the bend apices.

In the TSRM model, bank shear stress is nonlinearly dependent on the downs

rate of change of curvature. Curvature peaks twice, at the beginning and end of each
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In between, the curvature is nearly constant for much of the bend and, for a small pa

the end of the long bends, approaches zero. These curvature changes occur over s

tances. The model bend curvature is strikingly similar to some of the natural channe

curvature plotted in figure 3.14.

The bank shear stress function peaks early in the bend, downstream of the fi

peak in the curvature function, and may drop to nearly zero due to the nearly consta

decreasing curvature through the middle of the bend. Thus, the direction of maximu

channel migration shifts away from the down-valley or lateral directions toward the u

valley direction. This tendency for long bends to “point” upstream limits the bend’s lat

elongation and is commonly observed in the field (see, e.g., figures 4.5(a) and 3.4). 

shear stress due to the second curvature peak carries into the next bend and somew

counteracts the shear stress from the opposite lateral momentum transfer at the beg

of that next bend. Note that I do not explicitly model the flow field; that said, the latte

counteraction effect is similar to what happens to the flow field in the transition betw

bends. At a bend entrance, if the high velocity core is accelerating toward the inside 

it takes some force to reverse that acceleration and steer it towards the opposite ban

which might otherwise be expended as shear stress.

The spatiotemporal coevolution of curvature and bank shear stress forms scr

bars, as shown in figures 4.7 and 4.8. This phenomenon bears some discussion here

two long bends in figure 4.9(d) and (h), smaller curvature peaks at the crossover an

beginning of the first bend lead to a longer downstream lag than in the second bend,

the curvature peaks are larger. In the latter bend, bank shear stress is concentrated
135135135
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atively high curvature reach such that high points are left behind by the migrating cha

in the former bend, bank shear stress is peaked where curvature is small such that 

points are left behind as the channel migrates. Such differences in the downstream 

exist among bends and over time in the same bend. As the lag changes over time, t

like nature of the curvature function leads to similarly abrupt differences in floodplain

vation. Two other simple mechanisms also come into play: (a) where bank migration

localized, curvature at that locus increases; and (b), in loci of less bank migration, lo

curvature decreases.

I further examine the model scroll bars by repeating the spectral analysis of C

ter 3 for transects extracted by scan line conversion of line segments between spec

endpoints onto the model grid (see figure 4.10). This is the same method used to su

pose the TSRM model channel segments onto the grids in figures 4.7 and 4.8. The 

bered transects from figure 4.10 are shown in figure 4.11.

I employed the same spectral technique used for the natural channels in Cha

to find the power spectra of the transects (see figure 4.12). Many of the transect spe

not have peaks with confidence levels smaller than 0.5, and none of the spectral pe

have confidence levels smaller than 0.1 (see table 4.3). This result indicates that the

scroll bar topography is only quasi-periodic, though many of the spectra have peaks

similar wave numbers. The mean peak wavelength, excluding transects 4, 15, and 2

9.6 m. The results of the model spectral analysis are not dissimilar to the results of t

Ellis River spectral analysis (see Chapter 3, especially figure 3.21) which also did not

many peaks at confidence levels smaller than 0.1. Neither the Ellis nor the model tra
136
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are long enough to contain many oscillations at the peak wavelength because their 

bars contain few scrolls, but even the Mississippi scroll bars analyzed in Chapter 3 w

only quasi-periodic.

Some of the peak wavelengths are close to twice the channel discretization. 

mations of the formation of these scroll features indicate that some of them result fro

channel discretization where the channel runs perpendicular to the ridges. Much of 

model scroll bar topography, however, is indeed produced as the curvature through s

channel points oscillates as the bend migrates. Note that transects 4 and 12 are pra

on top of one another but have different maximal peaks, testimony to the lack of a d

nant periodicity in the model topography.

.

Figure 4.10: Gray scale image of the model simulation of figure 4.8 with locations
transects. Numbered transects are drawn with a thicker line than the rest.
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n in
Figure 4.11: Elevation plotted vs. distance for the numbered transects show
figure 4.10. Note that the grid point spacing is 1.83 meters in both thex- andy-directions.
Therefore, the minimum possible transect increment is 1.83 m.
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 2, 4, 7,
Figure 4.12:Power spectra of the numbered transects shown in figures 4.10 and 4.1
plots show power vs. wave number. Only those spectra with maximum power abo
0.50 confidence level are shown. The confidence levels of the maxima are as fo
0.19, 0.20, 0.40, 0.27, 0.17, 0.30, 0.37, 0.22, 0.10, and 0.33 for spectra of transects
8, 10, 12, 14, 15, 16, and 20, respectively.
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4.3.4 The Meander Belt

The meander belt according to one definition is drawn in figure 4.4. In figures

and 4.8, the meander belt consists of points visited at least once by the channel. Are

completely surrounded by “visited” points could also qualify and are visible in figures

and 4.8 but are not represented in the following statistics. When past channel locatio

not recorded, the meander belt is defined by the present channel.

Cumulative distribution functions (CDFs) of meander belt age and the time de

opment of meander belt width are shown in figure 4.13 for the simulation of figure 4.

The CDFs show that most of the material in the meander belt is relatively new; i.e., t

channel reworks ~70% of the meander belt every ~3000 model time units. But the d

bution has a tail which grows longer through time and indicates that the probability o

finding older surfaces remains relatively high for times much longer than 3000 units;

after 13,100 units, the probability of finding a surface older than 10,000 units is grea

a. Grid discretization is 1.83 m; channel discretization is variable, on average 5.5 m, or one
channel width.

Table 4.3: Confidence levels of spectral peaksa

transect peak wave number, m-1 peak wavelength, m confidence level

2 0.10 9.6 0.19

4 0.033 30. 0.20

7 0.12 8.5 0.40

8 0.091 11. 0.27

10 0.091 11. 0.17

12 0.12 8.3 0.30

14 0.11 9.1 0.37

15 0.18 5.6 0.22

16 0.11 9.4 0.10

20 0.063 16. 0.33
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than 10% (see figure 4.13). The meander belt reaches a stable maximum width

(figure 4.13(b)) after 3000-5000 time units, though the channel often approaches the

edges (see figure 4.7).Lathrap [1968] found the oldest of his archaeological sites on th

Rio Ucayali, Peru, on the edge of the meander belt.

Figure 4.13: Cumulative distributions of floodplain age and maximum meander 
width. Time (horizontal) axes are of approximately equivalent scale. Results are fro
simulation shown in figure 4.7. (a) Cumulative distributions of ages of meander belt m
rial are shown for several times after meander belt widening has nearly ceased; onl
tions which have been visited at least once by the channel are included in the distrib
(b) Maximum meander belt widthvs. time. Maximum meander belt width is defined b
the longest row (i.e., cross-valley) of grid points which have been visited by the ch
(see figure 4.7).

Meander belt stability is also illustrated in figure 4.14, where the normalized p

ability density and non-normalized frequency distributions of they-coordinate values of

channel points are shown for the long domain simulation time slices of figure 4.4.

Between the first and second times, the number of points and the meander belt widt

increase dramatically; after t = 5500. units, the number of points and the meander b

1310 2620 3930 5240 6550 7860 9170 10480 11790 13100

0 2000 4000 6000 8000 10000 12000 140000

50

100

150

200

250

0

0.2

0.4

0.6

0.8

1.0

0

T, model time units

m
ax

. w
id

th
, m

et
er

s
P

ro
b[

ag
e 

<
=

 T
]

(a)

(b)
141141141



ean-

attern

de-cor-

n the

 con-

ant to

tabil-

trasts

the

lid
 dark
black,
nnel

d

l chan-

ristic
width increase little, but the likelihood of a channel point lying near the edge of the m

der belt increases greatly. The last time slice in figure 4.14 shows that the channel p

eventually loses its “memory” of the initial channel location and that, in so doing, they-

coordinate values of disparate parts of the meander belt become uncorrelated. This 

relation leads to the bimodal distribution ofy-coordinate values for the last time slice in

figure 4.14. But, even as different sections of the channel occupy different regions o

y-axis, the major part of the channel remains within a range whose width is relatively

stant throughout the simulated channel’s evolution. Note that these plots are not me

predict patterns of deposition, which could affect meander belt location, width and s

ity. The finding that meander belt width remains nearly constant after some time con

with Howard’s [1996] finding that his meander model produced logarithmic growth of 

meander belt width with time.

Figure 4.14: Distributions ofy-coordinates of simulated channels from figure 4.4. So
light gray, t = 250. units; dashed light medium gray, t = 5500. units; dot-dashed
medium gray, t = 10,500. units.; dot-dot-dashed dark gray, t = 15,500. units; dotted 
t = 20, 500. units. (a) Normalized sample distributions of probability of finding a cha
point at a giveny-coordinate; (b) non-normalized sample distributions.

In figure 4.15, I show the results of applying the measures (sinuosity mean an

variance, meander belt width, and mean angle) developed in Chapter 3 to the mode

nels at several times during the simulation of figure 4.4. First, note that the characte
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features change over time. The first slice has a single plateau and single peak inµS and

σS
2, respectively.W decreases monotonically with a convexo-concave profile; convex 

the peak ofσS
2 and whereµS is increasing, concave whereµS is level.µθ has a single

peak, though a subtle bump is apparent after the peak. In all subsequent time slicesσS
2

has more than one peak corresponding to more than one step inµS and convexity ofW.

Correspondence to peaks inµθ is also apparent though less consistent. The number of

channel planform scale indicators is not monotonically increasing through time, and

primary sinuosity remains nearly constant. The secondary sinuosity, however, varies

secondary features correspond to large multi-bend loops, then the cutoff of such for

will eliminate corresponding channel planform scale indicators. Apparently, there wa

least one major cutoff event between times 5450 and 10,450. Similar forms have be

reestablished as of time 15,450. The scale of the primary channel planform scale in

tors is nearly constant in time at ~20-30 b. Secondary channel planform scale indicators

are also at similar scales over time, at ~100 b. These characteristics and scales are simi

to those of the natural channels in Chapter 3.

For comparison, I show several time slices from the LFE model simulation ov

domain the same length as the TSRM model simulation of figure 4.4 in figure 4.16 an

results of my planform measures in figure 4.17. I have already pointed out some of th

ferences in form in figure 4.9. Note the different model times bearing no correspond

to times of the TSRM model simulations shown. The LFE model simulation has com

forms but lacks multi-bend loops and other forms typical of compound bend formatio

such as that in figure 3.4. Computation time for the simulation shown was an order o
143143143
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magnitude longer than that of figure 4.4, and the LFE simulation time corresponds to

much less time than in figure 4.4 in terms of the lifetime of a simple bend. This versio

the LFE model needed a much finer discretization than the TSRM model, and the co

spondingly greater number of channel points led to much of that longer computation

Others, e.g.,Howard [1992] use a channel discretization comparable to that used her

the TSRM model.

Figure 4.15: Sinuosity mean and variance, relative meander belt width, and mean 
vs. normalized reach length for the TSRM model simulation of figure 4.4.

Figure 4.16: Meandering channels simulated with the LFE model and shown at se
times. Magenta, cyan, red, green, and blue are after 20, 40, 60, 80, and 100 time
respectively.

There are some interesting differences in the planform measures of the LFE m

simulations. The shapes of theσS
2’s are most strikingly different. The integral or mass o

σS
2 for the LFE model simulation is smaller and more closely distributed around the 

value. There are secondary peaks, but they are limited to spikes, i.e., they are not a

ated with much of theσS
2 mass, and they look more like noise. Similarly,µS does not have
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distinct secondary steps. Peak values ofW are larger than for either natural or TSRM

model streams. Two slices (excluding noise) are not monotonically decreasing and a

peaked at the scale of the peak inσS
2. I observed this peak inW for TSRM model simula-

tions not shown, but it appears to be less common and may vary with parameters. T

are no significant secondaryµθ peaks. The scale of channel planform scale indicators 

approximately constant over time at ~20-40 b, though there is some increase over time

which may or may not be significant. I observed that LFE model bend growth is bou

only by spatial limitations, whereas the TSRM model bends tend to become compou

By the last time slice, the maximumW has decreased to a value similar to that typical o

the TSRM model.

Figure 4.17: Sinuosity mean and variance, relative meander belt width, and mean 
vs. normalized reach length for the LFE model simulation of figure 4.16. The steep ri
mean angle for scales approaching 1000 channel widths at t = 60 and t = 80 are arti
the measure.

4.3.5 Model Sensitivity to Parameters

I have analyzed the model’s sensitivities by running simulations varying each

parameter, and I show some of the more interesting cases in this section. Paramete
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changes can have complicated effects due to the interplay among the various mode

ponents described in the previous section.

The dissipation scale is the major control on the size of the simulated meand

bends. Smaller (or larger) dissipation scales lead to smaller (or larger) bends. The re

ship between dissipation scale and bend length is linear. The dissipation scale was 

ibration parameter because it most directly controls meander bend length.

Parameter changes that increase the difference between the lateral and verti

momenta in equation (4.12) usually result in increased migration rate. Such change

include increasing channel width (see figure 4.18) and slope and, counter-intuitively,

decreasing discharge; when channel width is held constant, a decrease in discharge

decreases the depth such that the width-to-depth ratio and, therefore, the difference

between the lateral and vertical momenta, also increase (see equation (4.13)). How

discharge and width do not, in general, vary independently in natural channels.

Figure 4.18: Illustration of the model’s sensitivity to channel width. In (a), simulati
with default channel width,b = 5.5 m; in (b), simulation withb = 10. m. Both simulations
are shown after and for equal times. Earliest times shown in bold black; latest tim
bold medium gray; intervening times, from early to late, shown in thin light gray to bla
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Figure 4.19: Illustration of the model’s sensitivity to median grain diameter. In (a), sim
lation withd50 = 2 mm; in (b), simulation withd50 = 0.4 mm. Both simulations are show
after and for equal times. Earliest times shown in bold black; latest times in bold me
gray; intervening times, from early to late, shown in thin light gray to black.

Changes in grain size affect both the rate and style of channel migration (see

figure 4.19). Decreasing the grain size can have a dramatic effect because of the tran

bed slope’s dependence on grain size (see equation (4.3) and equations (A.1.4) and

(A.2.10)). Smaller grain size corresponds to greater transverse bed slope and, thus,

. The lateral momentum transfer increases as  (see equation (4.1

and the downstream lag decreases as the inverse of  (see equation (4.18)).

tion rate increases with lateral momentum transfer. Shorter downstream lags, relativ

the dissipation scale, promote more compound bend formation, such as in the run o

figure 4.19(b), because the bank shear stress is applied earlier in the course of the b

showed in Chapter 3 that bends of the Ellis River became compound when the chan

the beginning of the bend migrated rapidly (Aside: note the marked similarity, in both

shape and evolution, between the bend at the bottom of figure 4.19(b), atx = 250 meters,

and the Ellis River bend #13 in figure 3.12(b).). Thus, parts of the channel migrate in
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same direction as, and elaborate on the patterns of, earlier bends to form sinuous, “

piece” patterns. This type of pattern is prevalent, for example, on the Melozitna and

Innoko Rivers, Alaska (see figure 3.13).

4.4 Discussion
The model suggests answers to some of the past riddles concerning the evolution o

dering channels and the effect of that meandering on floodplain and meander belt ge

phology.

4.4.1 Conditions for meandering and channel stability

It has been suggested [Schumm, et al.,1987;Howard, 1992] that cohesive bank

material and mobile bedload are necessary for meandering. My model supports the

sity of the latter and, implicitly, the former conditions.

 Without stabilization by cohesive materials and vegetation, the floodplain and

channel banks are eroded until the stream is fully braided, as shown in the experime

Schumm, et al. [1987] and my own field observations in the Missouri Ozarks (see Cha

3). The TSRM model assumes that the channel banks and floodplain are stabilized 

some mechanism though I do not model that mechanism explicitly. The bed topogra

model assumes that the bed is composed of mobile bedload material. Therefore, mo

bedload is necessary in the TSRM model, and experimental observations also supp

necessity of bedload for meandering [Schumm, et al., 1987;Smith, 1998].

Bend migration may become small under several conditions, as indicated in t

results. The model predicts a punctuated evolution, fast when bends are small and s

when bends are either long or “incoherent”, i.e., lacking a consistent scale, such as 
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period just following a cutoff. The latter phenomenon is apparent from the long time

between the first two frames of figure 4.6. Changes in bedload material may also aff

channel stability, as shown in figure 4.19. If the bedload source for a meandering ch

were to coarsen and that coarsening were the only change, then, according to the m

the channel migration rate would decrease as transverse bed slopes and, thus, late

momentum transfers became smaller. Deeper, narrower channels should also migra

quickly.

On the other hand, I have shown several situations in which migration rate is 

ticularly large. Of course, increases in parameters which reflect the available energy

as discharge and valley slope, lead to increases in migration rate. This sensitivity to

is consistent withSchumm’s [1993] observations andSchumm, et al.’s [1987] experimental

results. But, the model also predicts some less obvious sensitivities. In the model, w

channels with smaller bedload migrate more rapidly, as shown in figures 4.18 and 4

and small bends migrate quickly and lead to rapid migration in bends downstream.

I, and others, have observed that meandering channels occur only in valleys o

slope. According to equations (4.3) and (4.13), migration should be more rapid when

ley slope is larger because larger bottom shear stress due to the slope increase lead

greater transverse bed slope. However, flow on the floodplain will also be swifter, an

deposition of stabilizing fines and seeding of stabilizing vegetation will be less likely.

Therefore, such streams are more often braided, as per the discussion above.

Dietrich and others (personal communication, 1995),Howard [1992], andSmith

[1998] have observed that some sinuous, low-slope channels do not migrate at all. A
149149149
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noted above, my model suggests that migration should decrease with lower channel

If there is a critical shear stress for bank erosion, migration could cease entirely whe

channel slope is small enough. I experimented with a critical shear stress for bank e

and modeled some cases in which migration stopped after the sinuosity increased, 

thus the channel slope decreased, beyond a threshold value.

4.4.2 Meander bend shape and evolution

The present results indicate that details of meander bend shape may have pro

implications for the meander belt as a whole. Most of the differences in bend shape

between the TSRM and LFE models are due to their dissimilar dependencies on ch

curvature, as explained in the results section.

In the LFE model, the channel migration rate’s linear dependence on channe

vature discourages, and may even disallow, compound bend formation.Howard [1992]

noted the absence of compound bends in his LFE model simulations. In the LFE mo

bends remain stable with respect to variations in curvature as long as the curvature 

not change sign, even as these bends become quite long. Such bends never develo

than one pronounced curvature maximum (see figure 4.9).Howard [1992] conjectured

that un-modeled secondary processes, such as migrating alternate bars, or condition

as heterogeneous bank erodibility, are responsible for compound bend formation.

Seminara and Tubino [1992] reasoned “that strongly nonlinear effects may play

non-negligible role for fairly small values of channel curvature.” The TSRM model is

strongly nonlinear, and this nonlinearity plays an important role in meander evolution

the results, I showed how bank shear stress may approach zero (see figure 4.9) in l
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bends. In such cases, the model’s nonlinearity promotes planform instability due to r

tively small variations in curvature. The bank shear stress dissipation scale determin

length over which such variations are smoothed out and bends remain stable. For b

longer than that stable length, small increases in curvature promote instability which

turn promote the formation of compound bends. The lateral momentum transfer’s no

ear dependence on changing curvature is both necessary and sufficient for compoun

formation.

The sensitivity analysis suggests, and I have observed, that compound bend 

tion is more likely when the downstream lag is small relative to the dissipation param

λ. The lag is smaller with smaller channel width (see equation (4.18)) and greater la

flow velocity relative to the downstream velocity (see equation (4.9)). Greater lateral

velocity is generally due to greater transverse bed slope, e.g., for small grain diame

Greater downstream slope leads to an increase in transverse bed slope, a decrease

depth, and, therefore, a disproportionate increase in lateral flow velocity relative to d

stream flow velocity ( , ) because lateral velocity increases with both

transverse bed slope and the inverse of flow depth (see equation (4.9)), the latter de

ing with greater channel slope (see equation (4.1)). Therefore, the lag decreases wi

increasing slope ( ), and the lateral momentum transfer increases linearly w

slope ( ).

4.4.3  Meander belt and floodplain evolution

It is apparent from the model results that the style or mechanism of bend evol

has a significant impact on the meander belt as a whole. Compound bend formation

V Sf
0.65∼ U Sf

0.3∼

L Sf
0.35–∼

dFn Sf∼
151151151
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motes planform complexity, which is reflected in stream sinuosity. When bends cut o

simpler, less sinuous channel pattern replaces the original. When bends divide, how

more complex and sinuous channel pattern replaces the original.

This type of complexity enhances system memory, defined as the time over a

extent to which current form reflects prior conditions, as discussed in Chapter 3. As s

in the Results, compound bend formation leads to puzzle piece channel planforms. 

puzzle pieces enclose significant areas of the meander belt without encroaching on 

Such areas may contain remnants of the point bar of the original bend on which the p

piece is an elaboration. In this case, the lifetime of that point bar remnant is extende

the several bend lifetimes over which the original bend has divided and re-divided. T

lifetime extension is one mechanism by which floodplain surface remnants may pers

times much greater than the time the channel takes to re-work most of the floodplain

evident in the long tails of the CDFs of floodplain age shown in figure 4.13 and by th

unvisited surface remnant visible in figure 4.7(c).

This result is consistent with field observations. T. Abbe [personal communica

1996] has found trees whose age greatly exceeds the estimated, or expected, perio

between channel occupations on alluviated floodplains in the Queets River watershe

the Olympic Peninsula of Washington.

The relative importance to the planform of compound bend formation is appa

in the planform measures as secondary channel planform scale indicators. Both the 

channels from Chapter 3 and the TSRM model channels exhibit these secondary ch

planform scale indicators, but the LFE model, which lacks compound bend formatio
152
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also lacks secondary channel planform scale indicators, though the LFE and TSRM 

channels have similar total sinuosity at the last times measured (see figures 4.15 and

Thus, not only does the new model reproduce a natural phenomenon not captured b

vious models, but also the new statistical measures of channel planform distinguish

between the presence and absence of that phenomenon in model and natural chan

The model results have implications with respect to the meander belt width. M

bends develop such that their apices point more nearly upstream/up-valley as they g

longer, e.g., in the last frame of figure 4.6. This detail of bend development implies th

the absence of net aggradation, which could cause the channel to avulse, the mean

width may be self-limiting and, thus, narrower in the TSRM model than in, e.g., the L

model, where bends are more laterally elongated. However, one implication of enha

system memory from compound bend formation is that channels will continue to mig

in the direction of a prior bend. Such migration tends to increase the meander belt w

(see figure 4.19). In aggrading systems, channel avulsions may also widen the mea

belt.

The most surprising model result is the formation of scroll bar-like topography

Traditionally, scroll bars have been thought to result from alternating periods of slow l

formation and rapid bank erosion. Such a mechanism is consistent with the experim

observations of C.E. Smith [personal communication, 1998], who developed non-du

unvegetated scroll bars under experimental, steady flow conditions. As shown in the

present results, the TSRM model channels do not evolve at a steady rate, and the a

ing periods of slower and faster migration are visible as bands of steeper and more g
153153153
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slope, respectively, in figure 4.7(a), (c), and (e). Migration rate and deposit depth at a

are not correlated, but, given that the locus of bank erosion is distal from the point o

eral momentum transfer, this lack of correlation does not necessarily imply independ

My observations and analyses of natural channels and point bars do not rule o

hypothesis that scroll bar topography is produced by a mechanism similar to that of 

model scroll bars. Like the natural scroll bar topography, the model scroll bar topogr

is only quasi-periodic. Many of the model transects have a maximum peak at a wave

that is close to a multiple of the average channel discretization, and I cannot rule out 

effect as the mechanism responsible for the model scroll bar topography in some ca

From the field investigation of scroll bar topography on the Ellis River in Chap

3, I favor the hypothesis that scroll bar topography is related to episodic rapid chann

migration due to the occurrence of upstream cutoffs. The TSRM model channel migr

is characterized by episodic rapid channel migration. From figure 4.6 and an animat

the model, it is evident that the episodic migration in the TSRM model is due to the o

rence of cutoffs.

4.4.4 Other Model Verification Methods

Some authors (e.g.,Johannesson and Parker, 1985;Garcia, et al., 1994;Howard

and Knutson, 1984) have evaluated the capability of models to predict observed chan

evolution. Others (e.g.,Johannesson and Parker, 1989a;Nelson and Smith, 1989a, b) have

compared details of the flow and bed topography of models and nature.Howard and Hem-

berger [1991] developed a multivariate statistical channel planform analysis.
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It is nearly impossible to use the model to predict specific, observed migration

from an observed initial condition because the TSRM model is strongly nonlinear and

sitive to initial conditions. The stability of LFE models may allow them to better predi

short-term channel migration. As noted previously, the TSRM model is not designed

predict details of flow and bed topography. I have, however, shown striking similaritie

between model and natural channel planform and evolution styles.

4.5 Conclusions
The TSRM model simulates meandering channel evolution and produces realistic ch

patterns and floodplain topography, including scroll bars and sloughs. The model’s

cessful simulation of meandering supports the topographic steering hypothesis, i.e

bank shear stress arises mainly from forces associated with topographically induce

vective accelerations. More generally, the bank shear stress’ dependence on the

stream rate of channel curvature change is probably sufficient to produce meanderin

nonlinearity of that dependence is certainly sufficient and may be necessary for com

bend formation.

I have derived an expression for transverse bed slope of sand-bedded chann

The modification ofIkeda’s [1989] formula permits accuracy in sand-bedded channels

because the modified version accounts for the effect of form drag associated with du

Unlike most models of river meandering, the TSRM model is strongly nonline

as noted above. The simplified physics makes such nonlinearity approachable not o

conceptually but also computationally. The model’s computational efficiency allows

observation of the long-term, complex, and often surprising model results in great de

over short valley domains, as in the incising meander simulations, and less detail ove
155155155
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domains. The model formulation’s conceptual “modularity” allows ready identification

modeled phenomena and their attribution to specific mechanisms.

The present approach apparently captures physics that other models do not. 

most meander models, the TSRM model forms compound bends and allows predict

the sensitivity of compound bend formation frequency to model parameters that affe

transverse bed slope. Specifically, the model predicts that, all other parameters rem

constant, a decrease in bed material grain size increases not only the rate of chann

migration but also the prevalence of compound bend formation. With greater migrati

rate, the rate at which the meander belt widens is, of course, greater. I have also sho

a meander belt with more compound bend formation is wider than one with less com

pound bend formation. Thus, a decrease in grain size has a disproportionate effect 

rate of valley widening. Another result of more compound bend formation is the incre

likelihood that parts of the valley floor will remain untouched for longer periods of tim

This result may have profound implications for archaeology in alluvial valleys. The

model’s sensitivity to grain size also suggests a mechanism for observed downstrea

changes in valley width on the Buffalo River. The valley is wider where the river cross

cherty limestone unit that produces relatively small gravel bedload; the valley is narr

where the river crosses a massive sandstone unit that produces cobble-size bedloa

The model predicts a heretofore unrecognized mechanism behind the format

scroll bar topography. As the model channel migrates, curvature and, thus, point bar 

change. These changes are sudden and systematic in space and time such that, as

der bend evolves, the varying point bar heights form ridges and swales, or scroll bar
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have not verified this prediction, but neither do my studies of natural channels falsify

The model results are consistent with another scroll bar formation theory based on t

sodic nature of channel migration. TSRM model channel migration rate fluctuates, v

in the “incising” meanders (see figure 4.7) as banded areas of alternating gradual and

slope reflecting fast and slow migration, respectively. These bands are consistent w

Ellis River measurements indicating that alternating periods of fast and slow lateral p

bar accretion correspond to fast and slow vertical point bar accretion, respectively. A

given a constant rate of levee deposition, this bandedness would be expressed as rid

swale topography.

The new quantitative channel planform analytical methods can detect that the

ral and TSRM model channels form compound bends and the LFE model channels d

These measures also detect variations in the prevalence of multi-bend loops in the e

ing planform over time. Such time variations could be responsible for the lack of sec

ary channel planform scale indicators for channels which do have many visible comp

bends.

The TSRM model is incorporated in a new channel-hillslope integrated lands

development (CHILD) model in Chapter 5. The TSRM model is efficient enough to k

the larger computational burden of the coupled models well within the range of feasib
157157157
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Chapter 5

The Channel-Hillslope Integrated
Landscape Development Model

In this chapter, I present the channel-hillslope integrated landscape development (C

model. The model integrates the TSRM model from Chapter 4 and a landscape evo

model including hillslope and channel sediment transport. The integrated model 

result of a team effort including Nicole Gasparini, Gregory Tucker, and Rafael Bras

have developed the model so that it may be used for a wide variety of applications, i

ing distributed hydrologic and plate tectonic modeling.

5.1 Introduction
The model simulates landscape evolution, but its components are flexible enough to

a number of ends. The CHILD model is written in the C++ computer language, an

have attempted to take advantage of its features, including data hiding, the use of te

and inherited classes, and a fully object-oriented design. We sought a new appro

enable modeling of the interaction of a variety of processes. In this chapter I sho

development of the model to examine, among other things, the interactions between

erally migrating channel and the surrounding landscape. The CHILD model was des

in a group effort, to address a wider range of issues than I can address in the presen

and I will describe some of those wider capabilities even though their applicatio

beyond the present scope.
159159159
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5.1.1 Channel-Hillslope Interaction

I reviewed some approaches to modeling the coupled system of channels an

lopes in the landscape in Chapter 2. Such approaches are, however, limited to chan

that do not migrate laterally. In Chapter 3, I showed that lateral channel migration af

topographic slopes outside of the main channel. Also in Chapter 3, I discussed the w

that lithologic properties might control lateral channel migration and, in Chapter 4,

showed the effect of different bedload grain sizes and controls on channel width and

cussed the effects of varying slope and other factors. In Chapter 3 I discussed the p

effects of the interactions between the channel and the surrounding landscape on c

transport regimes and slope.

The CHILD model was designed to model all of the above effects, but a full tr

ment of all of them is beyond the scope of this chapter. Here, I have focussed on the

actions among uplift, bank (or bluff) height, and lateral channel migration because e

these relatively simple interactions have not been addressed in previous studies and

be addressed before more complicated cases. As reviewed in Chapter 2,Howard [1992]

discussed the constraints on bank erodibility and modeled the effect of confining val

walls by super-imposing the meandering model channel and a grid with two possible

ues of bank erodibility, one “floodplain” value for pixels previously visited by the chan

and another, higher “valley wall” value for unvisited pixels. In the long term, however,

interaction of the migrating stream and the valley walls will depend on both the uplift

and the bank erodibility’s bank height dependence. The latter, as discussed byHoward

[1992], is a complicated problem in itself, and the present model includes only a sim

parameterization of bank erodibility’s bank height dependence. This parameterizatio
160
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should be sufficient to test the hypothesis that meandering is more active during peri

quiescent uplift. More specifically, I will test this hypothesis for the case of meanderi

stream incision in a detachment-limited system. In Chapter 4 I showed that the chan

slope and the shear force increment have an approximately linear relationship. This

indicates that, if larger channel slopes result from greater uplift, then the latter may a

ally increase the lateral migration rate if the effect is not cancelled out or reversed by

effect of uplift on bank height.

Also, the valley form should be affected by compound bend formation. The va

simulated byHoward [1992] were, relatively, straight and of constant width. In Chapter

and 4 that greater frequency of compound bend and multi-bend loop formation led t

channels with a large secondary sinuosity. In an incising system multi-bend loop for

tion might lead to a sinuous valley formation because, as discussed in Chapter 3, m

bend loop formation tends to leave some parts of the floodplain for longer times betw

visits by the migrating channel. If the stream is incising, then these less frequently v

points would be uplifted for a longer time between channel visits. If the bank erodibili

dependent on bank height, then these uplifted areas would tend to resist lateral cha

migration and reinforce the tendency for the channel to form sinuous valleys. Depen

on the exact form those valleys took, the multi-bend loop formation might even cause

streams to appear to be underfit, i.e., appear to have valley bends that were formed

past when flows were greater and the channel was larger. In Chapter 4 I showed tha

channel slope and the downstream lag between shear force increment generation an

shear stress are inversely, though weakly, related ( , whereL is downstream lagL Sf
0.35–∼
161161161



com-

hould

cis-

er

fore,

 the

um-

 at

rectan-

nd

g an

f the

size
andSf is channel slope). That smaller downstream lag leads to greater frequency of 

pound bend and multi-bend loop formation. The model experiments in this chapter s

allow examination of the role of compound bend and multi-bend loop formation in in

ing river valley formation.

5.1.2 Model Requirements

Most previous landscape evolution models have mapped elevations—and oth

properties—on a rectangular grid (e.g.,Ahnert, 1976;Kirkby, 1986;Willgoose, et al.,

1989;Chase, 1992;Howard, 1994;Tucker and Slingerland, 1994;Moglen and Bras,

1995;Tucker and Bras, 1998). Such a grid is similar to that used in DEMs, sufficient to

represent the modeled processes, and convenient for programming. We were, there

reluctant to abandon this format. However, in order to incorporate the TSRM model,

new model needed the capability to represent: (a) channel point locations with real-n

ber coordinates; (b) lateral channel migration; and (c) different landscape processes

their appropriate, often different scales. Superimposing the meandering model on a 

gular grid, as in Chapter 4, was a possible approach.Howard [1996] used a grid of erod-

ibilities to represent meandering in a confining valley and with resistant clay plugs, a

the latter situation was modeled bySun, et al. [1996] using a similar but more finely dis-

cretized grid. The latter grid is much too finely discretized to be practical for modelin

entire landscape and would not be suitable for simultaneously modeling channels of

widely varying size because the necessary discretization is dependent on the size o

channel.Howard’s [1992] coarser grid discretization was also dependent on channel 

and would, therefore, be similarly problematic.
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In order to represent channel point locations, it was necessary to model the la

scape on an irregular mesh.Braun and Sambridge [1997] developed a landscape evolutio

model using a Delaunay triangulated irregular network (TIN) of points. The Delauna

angulation is the unique set of triangles that connect a given set of points such that a

passing through the three points of any triangle contains no other points. Though th

Braun and Sambridge [1997] model has the capability of adding and moving points in 

landscape, their model was not sufficient for the CHILD model. Their model typically

adds points to resolve steep slopes, and their rules for movement of points were de

to model the tectonic motion of crustal plates, where moving landscape “nodes” will 

to deflect one another. The CHILD model needed to represent channel migration suc

nodes are deleted from the eroding bank and added to the accreting point bar.

We were also concerned that the model’s useful lifetime should not end with 

completion of the current project. Therefore, we designed the model as a set of obje

classes—in C++ an object is the set of data and functions which define a particular 

e.g., a “window” exists to the computer as a something with properties, like height a

width, and functionality, like opening and closing. Some of the objects written for the

CHILD model are general enough to be used in any application which uses a netwo

points in two-dimensional space, e.g., distributed hydrologic or plate tectonic modeli

This object-oriented approach enables the CHILD model to function as a modeling t

box in which the individual objects are the tools which may be used as needed by th

vidual user.
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In this chapter I present the CHILD model development and capabilities and 

model objects, or algorithms and data structures, as logical outcomes of the model’s

ceptual parts. I then describe a set of simulations to address uplift-bank-meandering

actions. These simulations specifically address the landscape-scale importance of b

erodibility’s bank height dependence at the channel scale and compound bend/mult

loop formation at the bend scale. Beyond the visible morphologic features, the relati

ships between topographic slope and contributing area for the simulated landscapes

comparisons to the Schoharie Creek valley studied in Chapter 3.

5.2 Model Conceptualization
The CHILD model design allows simulation of any combination of a large number of 

morphic and hydrologic processes, mechanisms, and influences, including:

1. stochastic rainfall;
2. runoff generation;
3. flow routing;
4. fluvial erosion and deposition (vertical);
5. transport and stratigraphic representation of multiple sediment clasts;
6. lateral channel migration, or meandering;
7. floodplain deposition;
8. diffusive and other hillslope transport processes;
9. weathering/soil development;
10. vegetation; and
11. uplift.
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Figure 5.1: Flow chart showing the implementation of the basic processes in the CH
model. In the chart, “diffusion” might include other hillslope processes.

Implementation of the more basic processes is shown as a flow chart in figure 5.1; t

chart leaves out some of the processes enumerated above.

5.2.1 The Grid

The grid is the basic infrastructure of the model. In the CHILD model, what I ca

grid is actually a triangulated irregular network (TIN) of points, or nodes, at which mo
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processes are calculated. The nodes are connected by edges which define the conn

of and distances between points on the grid for finite difference calculations (see

figure 5.2). With a standard rectangular grid, the distances are uniform, and finite dif

ences are calculated for a standard set of neighbors, e.g., the eight neighbors of a g

With a TIN, the nodes are, in general, irregularly spaced and located, and the edges

general, unique. The connectivity of the irregular mesh is non-trivial and is only know

after finding the Delaunay triangulation. With a rectangular grid, the area associated

each node is rectangular, and its determination is, again, trivial. With the TIN, the ar

associated with each node is defined by the mesh’s Voronoi diagram, the inverse of 

Delaunay triangulation (see figure 5.2). Hereafter, I will often refer to the TIN as the 

Figure 5.2:Schematic illustration of model grid components.

A Voronoi diagram defines the Voronoi areas, or nearest neighborhoods, of e

node in the grid. The Voronoi area of a node is the locus of points in two-dimensiona

space which are closest to that node. For a set of rain gauges, the Voronoi diagram 

same as the Thiessen diagram [Bras, 1990]. The Voronoi area of a node is the intersecti

of the half-spaces defined by the perpendicular bisectors of the spoke edges. This a

polygon whose sides are connected by the vertices at the intersections of those bise

or, equivalently, the circumcenters of the triangles defined by the node and its neigh

The Voronoi diagram is the inverse of the Delaunay triangulation.

Edge

Voronoi Cell

Points (nodes)
166



. As

 run-

 the

een

fall

age

del

in-

that

 to

s spa-

unoff

h.
5.2.2 Hydrology

Hydrology in the model includes storm and runoff generation and flow routing

in most landscape evolution models, the CHILD model may use uniform rainfall and

off generation. But, unlike most other models (a recent exception isTucker and Bras,

1998), the CHILD model has the capability of using more complex hydrology.

The model has the capability of generating storms stochastically according to

Eagleson [1978] model. In this model, rainfall intensity, storm duration, and time betw

storms are all exponentially distributed random variables.

For uniform runoff generation, runoff is simply the difference between the rain

and infiltration rates. Discharge at a point is calculated by multiplying the point’s drain

area, or the area for which that point is the outlet for flow, by the runoff rate. The mo

may also generate saturation overland flow, also known as partial-area runoff to dist

guish it from uniform runoff (Beven and Kirkby, 1979;O’Loughlin, 1986). In this model,

accumulated flow at a point is compared to the capacity of the soil layer to transmit 

flow. If the accumulated flow exceeds that capacity, then the excess flow contributes

surface runoff or discharge:

(5.1)

whereP is precipitation rate;A is area contributing to flow;T is transmissivity; andbv is

the length of the Voronoi cell edge associated with the flow edge. This method allow

tio-temporal variations in soil layer material properties and depths to be reflected in r

generation through the transmissivity, the product of hydraulic conductivity and dept

Q
PA TbvS– PA TbvS>,

0 PA TbvS≤, 
 =
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5.2.3 Vertical Erosion and Deposition

The model is designed for both erosion and deposition of multiple sediment c

although the capability for handling multiple grain sizes is still under development by

another group member at this writing. In general, the time rate of change of elevatio

described by the sum of uplift and the sediment flux divergence:

(5.2)

whereU is uplift with dimensions ofL/T (T is time,L is length); andqs is unit sediment

flux with dimensions ofL2/T. The model uses a combination of detachment-limited ero

sion and capacity-limited transport similar to that ofHoward [1994],Tucker and Slinger-

land [1994, 1996, 1997], andLancaster and Bras [1995]. I prefer the term “capacity-

limited” to the more traditional term “transport-limited” because the former is more p

cise in denoting the limitation on the sediment carrying capacity of the transporting

medium.

Many models treat all materials as cohesionless and model erosion and depo

as the result of capacity-limited sediment transport, often as bedload. Such an appro

has two major problems. First, in general, all materials present some resistance to e

whether due to cementation, cohesion, vegetation, or some other mechanism. Seco

treatment of all material as bedload ignores that, in many situations, bedload is a mi

component of the total volume excavated by erosion, and suspended load is the ma

component. A significant portion of the load may also be material in solution.

t∂
∂z

U qs∇+=
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In this study, the model simulates only detachment-limited erosion of a homo

neous substrate, i.e., everything that is eroded, or detached, is carried out of the sys

flow with enough capacity to carry anything that is detached. The following equation

the time rate of elevation change represents these processes:

, (5.3)

whereKB is the erodibility coefficient with dimensions ofTm-1/L3m-1; Q is water volume

discharge with dimensions ofL3/T; S is the greatest downward-positive slope of the spo

edges and is dimensionless;KD is the diffusion constant with dimensions ofL2/T; andz is

elevation. The model described by equation (5.3) is essentially identical to that ofMoglen

and Bras [1994, 1995] except that the latter had spatially heterogeneous erodibility a

diffusion coefficients. The first term on the right-hand side of equation (5.3) describe

sion by running water both on hillslopes and in channels. The second term describes

sive hillslope processes such as transport by tree throw, burrowing animals [Black and

Montgomery, 1991], frost heave, and soil creep. This diffusion is detachment-limited 

the sense that, in equation (5.3), it is assumed that any diffusive infilling, e.g., of vall

and channels, is carried away by advective processes such that positive changes in

tion by diffusion are disallowed [Moglen and Bras, 1994]. The third term describes the

input of material at a point by uplift, assumed positive and constant. The detachmen

ited model is well suited to modeling stream incision into bedrock in a landscape und

ing active uplift, which enables the stream to reach whatever slope is necessary to e

the material input by that uplift.Howard [1994] noted that a detachment-limited model 

most appropriate to clayey badlands topography.

t∂
∂z

KBQmSn– KD z∇2 U+ += KD z∇2 0≤
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5.2.4 Meandering

The CHILD model uses an irregular, dynamic grid in order to incorporate late

channel migration. Otherwise, the model could employ a regular, static grid. To ade-

quately represent meandering, nodes must be removed from the eroding channel ba

moved with the migrating channel, and added to the accreting point bar.

Moving nodes is complicated because of the complicated connectivity of nod

the grid and the nature of the thing being moved. Our model may be a successor to

Braun and Sambridge [1994, 1997] (BS) model, but the latter dealt only with relatively

simple point movement issues. In the BS model, a moving node represented a part 

earth’s crust in tectonic motion, and, when that node approached another, the two re

one another as in a strike-slip fault. In the CHILD model the movement of a node doe

represent movement of the land itself but, rather, the location of the channel moving

that land, eroding its banks, and leaving behind a point bar. Recording stratigraphy i

necessary n the detachment-limited version of the CHILD model. More complicated

model cases, however, will require that, when a channel moves, the channel node ac

the subsurface characteristics of the location to which it is moving and leaves behind

nodes with the subsurface characteristics of the location it is leaving.

Removing nodes where the channel is eroding the bank is complicated by co

eration of not only the moving nodes but also the moving channels, i.e., the edges be

channel nodes. A bank node’s proximity to moving nodes, as inBraun and Sambridge

[1994], is not a sufficient criterion for removal. Rather, proximity to the channel, i.e., 

channel nodes and the edge between them, is the proper criterion because, otherwi
170
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bank node could slip between migrating channel nodes and escape removal as if a p

the bank were to escape erosion as the channel passed. Other issues, such as the 

tion of the channel edge and Delaunay-ness when it is close to a bank node, have a

become apparent in the process of model development, and, in general, the model m

designed to deal with all potential, even unlikely, scenarios.

The addition of nodes presents its own suite of issues in terms of not only the

tion of a node to the grid but also the characteristics of the added node and the time

place of addition. The BS model added nodes to increase the resolution of steep slop

adding those nodes was not strictly necessary. The CHILD model, on the other hand

add nodes to represent the channel at the fine discretization required by the TSRM 

and not leave gaps in the mesh as the channel migrates.

Only grid nodes with discharge greater than a critical value are subject to the

meandering process. Granted, meandering may be active over a broad range of sca

including some excluded by the discharge threshold criterion. Practically, however, m

els cannot resolve every process to the smallest level and must, therefore, employ s

size cutoff criterion.

The TSRM model is described in detail in Chapter 4. Here, I address only the 

specific to the incorporation of the TSRM model into the CHILD model, the issue of b

erodibility. As explained in Chapter 4, a TSRM model channel point’s migration is pr

portional to the shear stress on the bank and the bank’s erodibility (see equation (4.

but the absence of a surrounding landscape precluded further examination of the ro

bank erodibility because the landscape’s characteristics determine the bank’s erodib
171171171
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Bank erodibility is dependent on bank material properties and, possibly, bank height

the most simple case, all banks have similar material properties, bank erosion is pur

detachment-limited, and all undermined bank material is also detached by that unde

ing (seeHoward, 1992, section 2.2, and figure 5.3(a)). In this case, channel migration

is simply proportional to bank shear stress because bank erodibility is independent o

height.

Figure 5.3: Conceptual drawing of spectrum of bank erodibility’s dependence on b
height. (a) Bank erodibility is independent of bank height. (b) Bank erodibility is f
dependent on bank height. (c) Bank erodibility is partially dependent on bank height

On the other end of the spectrum, none of the undermined material is detache

figure 5.3(b)). The volume rate of material excavated per unit distance downstream 

(5.4)

whereE0 is the nominal bank material erodibility;τw is the bank shear stress; andH is the

average channel depth. IfhB is the height of the bank above water level, then the bank

migration rate is

∆n

hB

∆nhB

∆nhB

∆nhBHP
∆nhBH(1-P )

(a)

(b)

(c)

η E0τwH=
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, (5.5)

and the bank height-dependent erodibility is

, (5.6)

,

where enforcing a minimum erodibility of the nominal value ensures thatEB does not

become arbitrarily large.

The situation in most natural systems where seepage-induced failure is not a

important mechanism is probably somewhere between these two extremes, as illust

in figure 5.3(c) where part of the undermined material is detached. The size of that p

determined in the model by a parameter,PH, such that the effective bank erodibility is a

weighted average of the two extreme cases:

, (5.7)

wherePH is the fraction of bank material that does not behave as detachment-limited

stituting with equation (5.6), equation (5.7) reduces to

, (5.8)

, .

Finally, the nominal bank and bed erodibilities may not be the same even for 

tical materials. Even in a detachment-limited system, bedload may often shield the b

from erosion. The bank, on the other hand, is never shielded. Therefore, the bank’s 

ζ η
H hB+
-----------------=

EB
H

H hB+
----------------- 

 E0= hB 0>

E= 0 hB 0≤

Eeff PHEB 1 PH–( )E0+= 0 PH 1≤ ≤

Eeff E0 1
PHhB

H hB+
-----------------–

 
 
 

= hB 0>

E0= hB 0≤
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tive erodibility will be larger. To address this issue I have introduced a parameter,flat, that

is the ratio of the bank and bed erodibilities. This parameter allows control of the rel

strengths of lateral erosion and vertical incision.

5.3 Model Implementation
In this section I describe the data structures and algorithms used to implement th

cepts of the previous section. Except where noted, that implementation is new and

nal.

5.3.1 The Grid Object

The model grid exists as both a conceptual geometric entity and a C++ object

object consists of three linked lists of nodes, edges, and triangles, respectively, and a

functions used to construct, change, and determine the properties of the grid. The n

are the basic landscape units and contain data pertaining to location coordinates, Vo

area, geomorphic characteristics, and connectivity. The major issue addressed by the

data structure is the connectivity of its parts.

The first basic issue is the connectivity of a particular node to other nodes on

grid. This connectivity is stored as a linked list of edges which are dual and directed

for each line segment connecting two nodes there are two edges, one pointing from

first node to the second, the other pointing from the second to the first (see figure 5.

This dual edge data structure is derived from the QuadEdge data structure ofGuibas and

Stolfi [1985]. Each node is explicitly associated with a set of edges that originate at t

node and connect it to its neighbors.
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Figure 5.4: Illustration of the dual edge data structure, showing triangular lattice (bl
and corresponding Voronoi diagram (gray). (a) Directed edgeAB , its right-hand Voronoi
vertexa, next counterclockwise edgeAC, and its right-hand Voronoi vertexb. (b) Com-
plementary directed edgeBA , its right-hand Voronoi vertexb, next counterclockwise edge
BD, and its right-hand Voronoi vertexa.

In order to accommodate different programming styles, this connectivity is ac

plished in two ways. First, each node contains as a data member a spoke list, a link

of pointers to the edges originating at the node in counter-clockwise order. The spok

takes advantage of the generic linked pointer list class’ functionality for navigation,

manipulation, and data protection. Second, each node contains the first edge pointe

spoke list, and each edge contains a pointer to the next counter-clockwise edge. Thi

ture uses less memory but does not have the built in functionality of the generic linke

pointer list. A regular grid would not require explicit inclusion of edges in the data str

ture because the connectivity is trivial.

As explained in the previous section, the vertices of the Voronoi diagram are

defined by the circumcenters of the triangles. In the data structure, each directed ed

holds the coordinates of the Voronoi vertex on its right-hand side (see figure 5.4). As

spoke edges around a node are accessed in counter-clockwise order, the Voronoi e

C B

A a

b

A.edge = AB
AB.ccwedge = AC
AB.vvertex = a

Voronoi CellD

B.edge = BA
BA.ccwedge = BD
BA.vvertex = b

C B

A a

b

D

(a) (b)
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crossing that spoke edge is defined by the right-hand vertex coordinates held by that

and the next. The Voronoi vertices’ positions are calculated in the context of the trian

For each triangle, the circumcenter is found and assigned to each of the clockwise ed

the triangle (see figure 5.5). As mentioned in the previous section, these circumcente

the vertices of the Voronoi diagram.

Figure 5.5: Illustration of triangle data structure, including numbering of nodes, adja
triangles, and clockwise edges. Nodes and edges are listed in counter-clockwise ord
angles are listed in clockwise order and correspond to node at opposite vertex.

The triangle data structure is also used to locate on the grid an arbitrary poin

space. In order to add a node at a particular location, an algorithm finds the nodes to

the new node will be connected. The CHILD model employs a directed search algor

shown in figures 5.6 and 5.7, similar to that ofBraun and Sambridge [1997]. For each tri-

angle checked, the algorithm loops through its edges and finds whether the point lie

the right- or left-hand side of each edge. If the point lies on the left-hand side of the 

the algorithm proceeds to check the neighbor triangle on the other side of that edge

in figure 5.5, if the algorithm checks edgee0 and finds that the point is on its left side, th

algorithm will next search the neighbor triangleT1.

P2

P0

P1

T1
T2

T0

e0

e2

e1
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Figure 5.6:Flow chart of the directed search algorithm, which returns either a pointe
triangle or a null value. The latter indicates that the point lies outside the grid.

Figure 5.7: Illustration of the sequence of triangles checked by the directed search 
rithm.

Whenever a node is moved, added, or removed, the triangulation must be ch

and, if necessary, corrected. The Delaunay triangulation of the mesh is maintained b
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exploiting the fact that, by definition, if each triangle is locally Delaunay, i.e., Delaun

with respect to its neighbor triangles, then the mesh is globally Delaunay by the defin

stated in the Introduction. A triangle’s Delaunay-ness is ensured by checking whethe

of the edges between the triangle and its neighbors need to be flipped to satisfy the

Delaunay condition (see figure 5.8). The criterion for flipping is fromDu [1996] and is

illustrated in figure 5.8.

Figure 5.8: Illustration of flip-checking between two triangles. The edge between
common nodes is flipped to connect the opposite nodes ifθ2 > θ1 [Du, 1996]. This crite-
rion is equivalent to checking whether the node associated withθ2 in the left-hand triangle
falls within the circle defined by the nodes of the right-hand triangle.

The flip-checking algorithm is similar to that used byBraun and Sambridge

[1994], but our implementation of the algorithm is new. In this algorithm (see figure 5

triangles to check, e.g., the new triangles created by the addition of a node or triang

containing moving nodes, are added to a temporary list. Each triangle is removed fro

front of the temporary list and checked for local Delaunay-ness (flip-checked) agains

each of its neighbors. If this check results in an edge-flip, the two triangles on either

of the edge and the edge pair are deleted from the main list, two new triangles and a

pair connecting the formerly opposite nodes are added to the main list, and the two 

triangles are added to the end of the temporary list. The procedure repeats until no 

gles remain on the temporary list. This procedure guarantees local and, by definition

common nodes

opposite nodes

θ1

θ2
178
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the triangle list, as inBraun and Sambridge [1994].

Figure 5.9:Flow chart showing the iterative flip-checking algorithm.

Both the directed search and flip-checking algorithms are used when a node 

added to the grid. When adding a node, the triangle in which it falls is located with th
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directed search algorithm. That triangle is deleted, and three new triangles and edge

are added connecting the new node to the three vertices of the old triangle (see

figure 5.10(a)). Then, the new triangles are given to the flip-checking algorithm.

Figure 5.10: Illustrations of (a) point addition and edge flipping; (b) point deletion; 
point movement within local polygon; (d) point movement to neighboring triangle; an
point movement outside of local neighborhood. The small arrows on either side of an
indicate the edge is to be flipped in the direction indicated by the arrows.

Node deletion is conceptually simple and uses some of the same basic routin

node addition. The node to be removed and all of the edges connecting it to its neig

are deleted, and the resulting hole in the mesh is filled with new Delaunay triangles 

figure 5.10(b)) that are, in turn, given to the flip-checking routine. However, implicit in

both addition and deletion of nodes is not only the addition and deletion of edges an

angles but also the adjustment of the various relationships among data members (s

ures 5.4 and 5.5). These relationships are the key to the functionality of the model. W

node is deleted, edges and triangles must also be deleted in order to extricate the n

from the grid data structure. The procedure is shown as a flow chart in figure 5.11. T

procedure may be entered at any of the “begin” points, and the extrication and delet

add node

flip

delete nodeadd nodeflipflip

delete node
(a) (b)

(c) (d) (e)
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routines below that point in the flow chart are called from the higher routine to ensur

integrity of the data structure. Thus, a node cannot be deleted without also deleting 

associated edges, and the edges may not be deleted without also deleting the assoc

angles.

Node movement may result in three possible scenarios, shown in figure 5.10

(d), and (e) in order of increasing computational cost. In the first, the node moves w

the polygon defined by the node’s neighbors, and the flip-checking algorithm is suffi

to maintain the mesh. In the second, the node leaves that polygon but falls within on

the triangles neighboring the polygon, and the side between the polygon and the ne

ing triangle is flipped before the mesh is flip-checked. In the third case, the node leav

polygon and does not fall within one of the neighbor triangles, and the node is delete

added again in its new location before flip-checking the mesh.Braun and Sambridge

[1994] considered only the first scenario.

Any time the mesh is changed, whether by addition, deletion, or movement, t

basic characteristics of the mesh must be updated (see figure 5.1). This procedure, 

trated in figure 5.12, corrects each node’s neighborhood properties, i.e., the distance

node’s neighbors and its Voronoi area.
181181181



Figure 5.11:Flow chart illustrating the node deletion procedure.
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Figure 5.12:Flow chart illustrating the mesh updating procedure.

5.3.2 The Storm and Stream Network Objects

The storm object generates storms as defined by precipitation intensity and d

tion and interstorm duration, or the time until the next storm. These quantities can b

either constant or stochastically generated. In the stochastic option, all three quantit

exponentially distributed [Eagleson, 1978], though the object could be modified to acco

modate any probability distribution. The storm object could also be modified to read s

information from data.

The storm information is used to define the stream network properties. The st

network in the model is an object consisting mainly of functions for runoff generation

flow routing but also pointers to the grid and storm objects and runoff parameters, su

the transmissivity for equation (5.1). The functions are generally called together to u

the network after the grid has changed. This updating procedure is shown as a flow 

in figure 5.13.

Figure 5.13:Flow chart showing the stream network updating procedure.
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The surface discharge at each node is computed as a function of the upstrea

tributing area and the runoff at each of those contributing nodes. Each node is assig

drainage direction along the steepest downhill slope (edge) toward one of its neighb

nodes. The area contributing flow to a node is the sum of the Voronoi areas of all no

whose paths to the outlet pass through that node and the Voronoi area of the node i

In some cases a node may form a local depression, with no neighbors lower 

itself. This case can be handled in one of two ways in the model. The simplest meth

assumes that all water entering a “sink” evaporates at that point and forms a discon

in the network, i.e., not all nodes contribute flow to an outlet. Alternatively, an outlet 

be found for each sink using the “lake filling” algorithm. The lake filling algorithm sta

by creating a list of contiguous flooded nodes that initially contains just the sink itself.

perimeter of the flooded region (“lake”) is then iteratively searched to identify the low

node along the perimeter. If this node can drain downhill to a location other than the

itself, it is flagged as the outlet point for all nodes in the list. If not, it is added to the lis

a node is encountered that is part of a pre-existing lake (one initiated at a different si

is also added to the list. Finally, flow directions are arbitrarily assigned to the lake no

such that each node in the grid “drains” to one of its neighbors. Except for this final s

the lake filling algorithm is essentially identical to that employed in the model ofTucker

and Slingerland [1994]. The algorithm is robust enough to handle any arbitrary initial c

dition and is useful for modeling a rising base level or the damming of water and sed

behind an uplifting block.
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For a mesh with numerous sinks, the lake filling algorithm is probably slower t

the “cascade” algorithm ofBraun and Sambridge [1997]. However, in the more typical

case of a few isolated sinks, the lake filling algorithm is probably faster than the cas

algorithm. The number of iterations needed by the lake filling algorithm depends on 

number of flooded points, whereas the cascade algorithm requires a number of itera

equal to the maximum number of segments along any continuous stream regardless

number or depth of sinks. Typically, the lake filling algorithm is employed to route flo

past a low or high point along the main channel, where these anomalies usually aris

numerical instability.

The simulations shown later in this chapter use only a subset of the model’s h

logic capabilities: uniform, steady rainfall; uniform runoff production; and lake filling.

5.3.3 The Sediment Transport and Uplift Objects

These objects together calculate the finite-difference solution to equation (5.3

“vertically acting” processes: stream erosion, hillslope diffusion, and uplift. In this stu

use detachment-limited erosion, but the sediment transport object also contains optio

capacity-limited erosion/deposition and the combined detachment- and capacity-lim

transport described in the previous section.

The advective erosion term, the first term on the right-hand side of equation (

contains a channel slope dependence, but this erosion term applies to the landscap

i.e., over channel reaches long enough that water surface slope is adequately repre

by topographic slope. This approximation is reasonable over a distance of many cha

widths but, of course, breaks down over smaller distances approaching a single cha
185185185
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width. But, some channels will be discretized at approximately one channel width to

isfy the TSRM model’s requirements. This scale discrepancy is resolved by averagin

slope for finely discretized channels over a distance of ten channel widths (flow direc

are still determined by slopes to nearest neighbors).

5.3.4 The Stream Meandering Object

Figure 5.14:Flow chart showing the implementation of meandering.

In figure 5.14 shows a flow chart of the CHILD model’s implementation of the

TSRM model in the stream meandering object. First, the network is updated (see
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figure 5.13). Then, the meandering nodes are identified. A node is designated as a m

dering node if it: (a) has discharge greater than a critical value; (b) is not “flooded”, i.

a lake; and (c) is not a boundary node.

5.3.4.1Meandering Channel Reaches

Meandering nodes are next organized as meandering reaches (see figure 5.1

because the meandering model requires a list of points along the channel ordered fr

upstream to downstream (see section 4.2.4, “Implementation”, on page 123). For ea

meandering node, if none of the neighbors flowing to it are also meandering nodes, 

the node is a reach “head”, i.e., the node is at the upstream-most extent of a meand

stream reach. For each reach head, if the node downstream is: (a) a meandering no

(b) not already a member of a reach; then the downstream node is added to the pre

reach and marked as a “reach member”, and these criteria are applied iteratively do

stream until they fail. At the downstream end of each reach, if the downstream node

also meandering nodes, then nodes for a distance of ten of the last reach node’s ch

widths are added to the reach as “tail” nodes. Recall from Chapter 4 that the bank s

stress at a point is generally generated by lateral momentum transfers at points ups

Thus, bank shear increments generated at the end of a reach will be applied as ban

stress at points in the downstream reach. The distance of ten channel widths is arbi
187187187
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Figure 5.15:Flow chart illustrating meandering reach construction.

Once the reaches have been defined, distances between reach nodes are co

to a nominal downstream increment on the order of one channel width, the discretiz

required by the meandering model. If any distance is greater than twice that nominal

ment, the reach segment is interpolated by adding one node or, if the distance is larg

three times the nominal increment, two or more nodes at intervals approximately eq

the nominal increment. In order to avoid exact colinearity, which can cause the trian

tion algorithm to fail, a small amount of noise is added to the interpolation. In the cas
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adding more than one node, the nodes are added by generating a random walk with

form spacing along the original channel segment and random steps perpendicular to

line:

(5.9)

where∆ni is

(5.10)

wherex is uniformly distributed from -0.5 to 0.5 ( );A is some small num-

ber; and∆s0 is the nominal increment for the uniform spacing parallel to the line. The

nominal increment is used to scale the amplitude of the noise to the discretization sc

particular channel.

The inverse exponential ensures, or at least makes it likely, that the random w

deviation from the original line will not become arbitrarily large at any point and, mos

importantly, at the last interpolation point. A large deviation at that point could, in effe

reinforce the original grid spacing by adding a large step and, therefore, high curvatu

the regular intervals of the original uninterpolated mesh. Note that equation (5.10) d

not result in exponentially distributed random steps but, rather, represents a random

through a potential energy well in which steps away from the line become more dam

and steps toward the line more amplified when the step originates at a greater dista

from the line and the step magnitude is greater. Conversely, small steps close to the

are damped and amplified by only a small amount.

ni ni 1– ni∆+=

ni∆ Axe ni 1– x( )– s0∆=

x U 0.5– 0.5[ , ]∼
189189189



ary

d, if

rk (see

ecks

sults

re is

hould

nel

ous, as

the

ers to

re

 list in

 the
Figure 5.16: Illustration of meandering channel interpolation. Note that two tribut
channels take a shorter route to the main channel after interpolation.

As shown in figure 5.15, after the discretization of the initial reaches is checke

any interpolated nodes are added, then the procedure iterates: it updates the netwo

figure 5.16), redefines the meandering nodes, constructs new reaches, and again ch

the discretization. The iteration of this loop proceeds until the discretization check re

in no addition of nodes. Several iterations may be required the first time the procedu

called to add many points to a coarse mesh (see figure 5.16), but subsequent calls s

require interpolation infrequently and, then, only to add one point between two chan

points that have spread apart as the channel has lengthened and become more sinu

in Chapter 4.

When the reaches are complete, the CHILD model, written in C++, must call 

TSRM model, written in Fortran, to calculate the lateral migration of the channel

nodes.The CHILD model calls the TSRM model as a function/subroutine through a

“wrapper” function. The meandering reaches are constructed as a list of lists of point

meandering nodes. As evident from above, nodes in each of the latter pointer lists a

arranged in upstream-to-downstream order. The wrapper function takes each pointer

turn and constructs one-dimensional arrays for each node data member required by

threshold
discharge

reached

meandering
node
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TSRM model, e.g., arrays forx-coordinates,y-coordinates, discharge, channel slope an

bank erodibilities. The TSRM model passes back arrays of displacements which are

sequently scaled by the time step determined in the wrapper function. This time step

such that the greatest displacement does not exceed an arbitrary fraction of the cha

width, typically one-tenth, for stability.

5.3.4.2Channel Bank Erodibility

To find the bank erodibility at a particular channel node, the bank nodes mus

identified. The identification procedure is illustrated in figure 5.17. With respect to the

perpendicular to the channel node’s flow edge, the line remainder and perpendicula

tance are calculated for each channel node neighbor’s position. For example, for a p

(x0, y0) and a line defined by , the remainder,Rline, is

(5.11)

and has opposite sign for points on opposite sides of the line. Starting with the chan

node’s downstream neighbor, the algorithm proceeds through the neighbors in coun

clockwise order and finds the two pairs of consecutive neighbors which have remain

of opposite sign, i.e., the neighbors in a pair are on opposite sides of the line. The fir

found constitute the left bank and the second pair constitute the right bank. In figure

nodeA’s right bank nodes are nodesC andD at distancesd1 andd2, respectively, from the

line perpendicular to nodeA’s flow edge, edgeAB . The effective erodibility of each node

is found with equation (5.8), and the erodibility of that bank is an average, weighted 

distance, of the two nodes’ erodibilities:

ax by c+ + 0=

Rline ax0 by0 c+ +=
191191191
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whereE1 andE2 are the effective erodibilities of the two neighbor nodes, respectively

Figure 5.17: Illustration of right bank erodibility determination for nodeA. C andD are
right bank nodes ofA at distancesd1 andd2 from the line perpendicular toA’s flow edge,
AB . Delaunay triangulation is in thin lines; Voronoi diagram is in dashed lines; and
edges are in heavy black.

As the channel approaches the grid boundary, the bank erodibility is set to ze

Thus, the boundary presents an inerodible barrier such that a channel node may no

approach to within one-half channel width of a boundary edge.

5.3.4.3Channel Bank Erosion

Once the new positions of the channel nodes are known, the triangulation mu

prepared for the change by removing nodes from the channel’s projected path, i.e., 

that have been eroded by the migrating channel. The criteria for removalI are illustra

figure 5.18.

Ebank

E1d2 E2d1+

d1 d2+
-------------------------------=

d2

d1

flow direction

A

B

D

C
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Figure 5.18: Illustrations of criteria for removing points from the path of the migrat
channel. Heavy lines are flow edges; heavy black arrows are flow directions; gray
are channel segment neighborhoods; lettersa, b, andc are nodes to be deleted.

First, a bank node is deleted if it falls within a channel segment’s neighborhoo

defined by an ellipse with foci at the ends of the segment and perpendicular distance

the segment at the upstream node of one-half the hydraulic width; i.e., for a given no

the sum of the distances to the segment endpoints,D, must satisfy

(5.13)

where∆s is the length of the channel segment. In figure 5.18, pointa falls within the

neighborhood of a channel segment.

The latter criterion, equation (5.13), should prevent most potential problems. H

ever, to ensure the robustness of the channel migration under any and all conditions,

are tested to eliminate the possibility of two more scenarios.

First, nodes are deleted if they have been crossed by a channel segment, e.g.

channel nodes moved distances greater than one hydraulic width in an iteration, tha

nel segment could pass over a point such that its distance from the channel would s

a

b

c
d

D s∆ 2 1
2
---b2 b s∆ 2 1

4
---b2++ +≥
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equation (5.13) both before and after the movement (e.g., nodeb in figure 5.18) even

though, conceptually, the node should have been eroded by the channel. If, after mo

ment, any triangle’s nodes are clockwise and two vertices are connected by a flow e

and either a spoke of the third vertex intersects the flow edge or more than one neig

triangle has also become clockwise, then the third vertex node is deleted if it is neithe

a meandering node with greater discharge than either of the other two vertex nodes

(b) a boundary node. Failing the latter condition, then either or both of the other two n

are returned to their original coordinates, i.e., before movement, if their new coordin

were outside the mesh. Failing the former condition, then the more upstream of the 

two nodes is deleted instead. In figure 5.18, nodeb has been crossed by the migrating

channel segment indicated by the gray arrows denoting the approximate direction o

migration in the previous step. The triangle formed by nodeb and its two meandering

neighbors has become clockwise, and one of nodeb’s spoke edges intersects the flow

edge. Nodeb is neither a meandering node nor a boundary node and will, therefore, 

deleted.

The final test for node removal ensures that the integrity of the flow edges bet

meandering nodes is preserved. That integrity could be compromised if a point were

enough to the flow edge that, under flip-checking, the flow edge would be flipped. In

figure 5.18, nodec would be deleted to preserve the flow edge separating nodesc andd

where, to satisfy Delaunay-ness, the flow edge would be flipped to connect nodesc andd;

deleting the closer node,c, allows the flow edge to remain intact following re-triangula-

tion.
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5.3.4.4Point Bar Accretion

As the channel migrates and nodes are removed from its path to simulate ban

sion, nodes are left in the channel’s wake to resolve the point bar, as in the simulatio

superimposed on the regular grid in Chapter 4. The algorithm used to “drop” new poi

illustrated in figure 5.19. In summary, this algorithm essentially keeps track of a chan

node’s location where it last dropped a node. When the channel node is half of a hyd

width away from these old coordinates, the algorithm updates them by finding the ex

position on the bed at the water’s edge on that side of the channel, i.e., the point on t

at half of a hydraulic width away and on the line perpendicular to the flow edge. Dep

ing on the desired discretization, the algorithm either immediately places a new poin

the determined coordinates or waits to do so until the channel node has moved som

tional distance. In the latter case, the algorithm checks to make sure the old coordin

have remained on the same side of the channel and do not fall within any channel s

ments as defined by equation (5.13).

In more detail, each meandering node contains a four-member array with coo

nates in three dimensions and a flag indicating the side of the channel, right or left, w

those coordinates lie. When a node is recognized as a meandering node, itsx andy coordi-

nates are stored in the array as the “old” coordinates; the value ofz is left undetermined

and the fourth member of the array is set to zero as a flag to signify that the old coord

have not been finally determined.
195195195
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Figure 5.19:Schematic diagram illustrating the point-dropping algorithm. The nodes 
dashed gray boundaries presently occupy the “old” coordinates, i.e., the old coord
are initialized to the present coordinates.

Before migrating nodes are moved, if the flag is zero, the distance to the old 

dinates is measured. If that distance equals or exceeds half the hydraulic width, the

rithm determines the side of the channel where the oldx andy coordinates lie and updates

the old coordinates to the position of the bank on that side. The elevation of the bed 

bank is recorded as the oldz coordinate. The channel side determined above is recorde

plus or minus one for the left or right sides of the channel, respectively.

After node migration, the horizontal distance to the old coordinates is measur

again. If that distance exceeds a set fraction (or multiple) of the hydraulic width and 

old coordinates are (a) not in the channel, and (b) still on the same side of the chann

then a node is added at the old coordinates. The above fraction of the width must be

greater than or equal to half the hydraulic width; in figure 5.19, the value equals half

hydraulic width, and nodes are dropped as soon as the final oldx, y, andz values are deter-

former channel paths

area of detail

present channel

path of migrating node

previous old
coordinates

last node dropped
by migrating node

old coordinates

present position
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mined. In figure 5.19, this final determination is signified by the dashed gray lines dr

perpendicular to the node’s flow direction at the time of the determination. Note that 

coordinates at which the new nodes are dropped do not necessarily lie in the migrat

node’s path because they are the coordinates at the bank, whereas the node’s coor

are on the channel centerline. Implicit in the procedure described above is that the d

ization of the point bar is limited by the hydraulic width, i.e., the procedure would no

allow a discretization finer than half the hydraulic width, coarser than the regular grid

in Chapter 4.

5.4 Simulations
With the CHILD model, I ran simulations of meandering in landscapes with var

strengths of bank erodibility’s bank height dependence and rates of uplift to examin

effects of these variations both on the meandering and the landscape. The simu

reported here are relatively simple because, in working with the potentially complic

CHILD model, it is necessary to understand the simplest case before considerat

more complex cases. I began with a vertically incising river flowing through a valle

one end of the domain is a single inlet, and at the other end the whole side is an

boundary. I ran the model with detachment limited erosion until the valley was at dyn

equilibrium and, then, turned on meandering. These simulations show the effects of 

dering with the different parameter sets on the same initial valley.

The case of dynamic equilibrium is a particularly useful reference because I k

what the channel slope should be. For , discharge proportional to contribu

area, or , and where advective channel processes are dominant over diffusi

processes, equation (5.3) reduces to the following expression for channel slope:

z∂ t∂⁄ 0=

Q PA=
197197197



ith

mean-

y, of

oach

nnot

rs are

spect

ually

ar is

ising

hich

ted

tween

ain
. (5.14)

After the incising channel reached dynamic equilibrium, meandering started w

flat = 100 and ran for thirty thousand years. The result is the initial condition for the

remaining simulations. For the latter simulations, I increased the relative strength of 

dering by usingflat = 1000. Each simulation ran for ten thousand years and another

100,000 years for examination of the transient and long term responses, respectivel

the landscape to the meandering. In the long term, the system as a whole may appr

dynamic equilibrium, though the simple idea of no elevations changing at any point ca

apply because of the laterally migrating channel. The simulations and their paramete

listed in table 5.1. Note that the times are model years, which are uncalibrated with re

to real time. Because discharge in the advective erosion term of equation (5.3) is us

expressed in units of volume per second, the conversion to elevation change per ye

contained inKB (see, e.g., table 5.1).

The first task was to address the issue of bank height and erodibility for an inc

stream. The dependence of bank erodibility on bank height is a first order problem w

is not well understood, in part, because no landscape evolution model has incorpora

meandering. This incorporation is necessary in order to examine the interactions be

the migrating, incising river and the surrounding landscape.

In the simulations listed in table 5.1, the main purpose was to address the

responses to varying both bank erodibility’s bank height dependence,PH, and uplift,U,

after the onset of meandering. I also show the short term effect of varying median gr

S
U

KBPm
--------------- 

 1 n/
A m n/–=
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diameter,d50, but this is more of a parameter adjustment than a sensitivity analysis. T

sensitivity of the TSRM model tod50 was addressed in Chapter 4.

All simulations employed the lake filling algorithm and used a minimum discha

for meandering such that only nodes downstream of the inlet, i.e., points along the m

channel, were meandering nodes.

The initial condition for simulationA was a flat plane with minor elevation pertu

bations. The nodes were arranged in offset rows such that the polygon around each 

a hexagon, as is the Voronoi area. Nodes on the same row were spaced 100 meters

5.5 Results
The results reveal dramatic differences between the transient and long term respo

a. Other parameters are constant:Ainlet=108 m2; P=10-6 m/s;
KB=0.0316 m3/2 s1/2/yr.; mB=0.5; nB=1.0; KD=0.01 m2/yr.
b. Landscape is at dynamic equilibrium.

Table 5.1: Simulations and variable parameter valuesa

simulation
initial
condition

d50
(cm)

U
(m/yr) PH flat

tTotal
(k-yrs)

A noise NA 0.001 NA NA 320b

B A 0.5 " 0.0 100 30

C B " " " 1000 10

D B 1.0 " " " 10

E B " " 0.5 " 10

F E " " " " 100

G B " " 1.0 " 10

H G " " " " 100

I B " 0.002 0.5 " 10

J I " " " " 100

K B " " 1.0 " 10

L K " " " " 100
199199199
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the model meandering river valley and the landscapes resulting from different streng

bank erodibility’s bank height dependence as well as subtle but important difference

to the different uplift rates. These results also reveal the important, varying roles of

pound bend and multi-bend loop formation in the model river valley forms.

For each of the simulations listed in table 5.1, figures 5.20-5.31 each show th

perspective views of the simulated landscape. The first view maps color according t

vation and shows the landscape as a surface at a low enough angle to appreciate th

of the relief. The second view uses the same elevation color map as the first and sh

“wire” mesh of the model grid at a large viewing angle in order to show all of the nod

edges, and triangles. The third view maps color according to discharge and shows t

landscape as a surface at a large viewing angle in order to best show the model stre

work and, especially, the main channel down the center of the valley.

Plots of slope vs. contributing area are shown in figure 5.32. The slopes of the

vidual nodes are plotted vs. area as gray dots. Also on the slope-area plots I have d

lines described by equation (5.14); in the simulations with increased uplift, the origin

dynamic equilibrium line is solid gray and the new dynamic equilibrium is dashed gr

binned slope according to increments of log-area and plotted bin average slope vs. 

average area. These average slopes are shown with black rectangles. Note that eac

in the mesh has one point in the slope-area plot, but the nodes do not have equal Vo

areas. Therefore, nodes with smaller areas are effectively over-weighted in the aver

because the averages are not weighted by Voronoi area.
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Figure 5.20:Perspective views at end of simulationA.

The slope-area plots allow a quantitative assessment of the effect of meander

slopes in the landscape. The fact that meandering, by steepening valley walls and fl

ing the valley bottom, creates topographic slopes independent of contributing area s

be visible in the plots in figure 5.32.
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Figure 5.21:SimulationB.

Areas of the grid which have been visited by the channel are more finely dis-

cretized than the nominal discretization. This is visible as a dense mesh in the wire 

and darker reds in the discharge map—only these nodes with small Voronoi areas ca

discharge values low enough to reach into the dark red end of the color map. The m

ing nodes drop new nodes when they are 0.7b (seven-tenths of a channel width) from th

old coordinates. The channel is 30 meters wide.
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The valley at dynamic equilibrium, or simulationA, is shown in figure 5.20. The

channels, constrained to follow the regular network of edges, have an unrealistic, an

appearance, an effect common to most landscape evolution models. The points in th

slope-area plot (see figure 5.32) closely follow the power law describing dynamic eq

rium (see equation (5.14)).

SimulationA was the initial condition for simulationB. The latter ran with rela-

tively weak meandering, orflat much lower than for the following simulations, until the

initial channel lost its angularity and formed meander loops, and the simulation ende

before any major cutoffs occurred. The resulting landscape is shown in figure 5.21. 

weak meandering produced some scatter in the slope-area plot and added a numbe

nodes with contributing area smaller than any of the nodes in simulationA and many more

channel nodes with large contributing area because of the channel interpolation (se

figure 5.32). For the latter channel nodes, slopes are quite scattered. For the meand

nodes the slopes plotted were averaged over a distance of ten channel widths, and 

points along the channel are spaced at approximately one channel width (in these s

tions with constant rainfall, the channel and hydraulic widths are identical). Note tha

slopes have been scattered both ways: some slopes are steeper, e.g., nodes along 

bank of meander bends, while some slopes are more gradual. Most of the latter have

contributing areas and, therefore, must lie in the area of the main valley swept by th

migrating channel. Mean slopes at lower contributing areas, below about 5x104 m2, reflect

the influence of meandering and are nearly independent of area. The result of simulaB

was the initial condition for simulationsC, D, E, G, I , andK , while simulationsF, H, J,

andL  are continuations ofE, G, I , andK , respectively.
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SimulationsC andD, shown in figures 5.22 and 5.23, simulate meandering wit

 and varyingd50. I did not run long simulations with  because it would

not have been very interesting because of the minimal interaction between the migra

of the channel with the surrounding topography, but they are interesting as transient

valley width is more variable for the larger grain size, and the total area visited by th

channel is larger for the smaller grain size. Both of these results may be due to the l

lateral migration rates associated with smaller grain size. The valley for the larger gr

size widened appreciably only at the location of a sharp bend in the initial condition.

major result of these first runs is that the model grid represents meandering as inten

i.e., that bank nodes are deleted and point bar nodes added. Note the several isolate

which were not eroded by the main channel.

Not surprisingly, the slope-area plots (see figure 5.32) show that a large numb

nodes, those on the valley floor, have slopes much lower than they would at dynamic

librium and some nodes, those on the valley sides, have steeper slopes. These slop

changes have dramatically changed the mean slope trends. The effect for smaller a

similar to, though more pronounced than, the effect noted above for simulationB. For

larger areas, the mean channel concavity is greater, especially for simulationC, because

the slopes of tributaries close to the main channel were determined by the migrating

nel such that the mean slope near 106 m2 is nearly identical to the slope of the main cha

nel.

PH 0= PH 0=
204



Figure 5.22:SimulationC.
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Figure 5.23:SimulationD.

The remaining simulations form a more controlled and systematic experimen

examining the four possible combinations of two different values for each of two par

ters, uplift,U, and the bank erodibility’s bank height dependence,PH (see table 5.1).

In figure 5.24 I show simulationE, the result of settingPH = 0.5 and running for

10,000 model years. The migrating channel swept out a relatively flat valley floor, bu
206
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its widest, the valley floor is significantly narrower than the widest parts of the valley fl

in simulationsC andD (see figures 5.22 and 5.23) due to the non-zeroPH. The slope-area

plot for simulationE is quite similar to that of simulationD (see figure 5.32): the initial

increase in mean slope is due not to the transition from diffusion to advection domin

but, rather, to the low valley floor slopes at the smallest areas and the steep valley w

slopes at slightly greater areas. This effect is common to all of the transient cases.

Figure 5.24:SimulationE.
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The results of simulationF, the continuation of simulationE, are shown in

figure 5.25. Roughly half of the model domain was visited by the migrating channel 

is, therefore, finely discretized. The main valley narrowed considerably since the tim

simulationE. Nodes once visited by the channel are now on hillslopes or in small trib

ies. The point bars in simulationF have greater slope and relief than in simulationE. This

greater slope indicates that the channel migrated more slowly at the time of simulatiF.

Figure 5.25:SimulationF.
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Recall from the “incising” stream simulations with the TSRM model on a recta

gular grid in Chapter 4 that a grid cell’s topographic slope indicated the migration rat

the time the channel left that cell (see section 4.3.3, “The Floodplain”, on page 129). 

is similarly indicative here, though CHILD model nodes, once left by the migrating ch

nel, are modified by not only uplift but also diffusive and erosive processes.

Figure 5.26:SimulationG.
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Figure 5.27:SimulationH.

The slope-area plot for simulationF confirms that a lower proportion of the node

have shallow slopes. The plot more closely resembles what I would expect in the ab

of lateral migration, though the points are still relatively scattered. The number of no

with over-steepened slopes is not markedly different than in simulationE. The mean slope

falls below the fluvial equilibrium line for contributing areas less than approximately
210
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2x105 m2. In simulationA the slopes at only the lowest areas fall just below the line du

the influence of diffusion at these points. Therefore, discounting the effect of meand

on slopes in this basin and considering only the processes in equation (5.3) to be im

tant, I would overestimate the strength of diffusion.

The results of simulationG, identical to simulationE except thatPH = 1.0 in the

former, are shown in figure 5.26. Many of the results of simulationG are similar to those

of simulationE. The valley is, on average, narrower than the valley of simulationE due to

the largerPH in G. As inD andE, the valley width varies greatly and in places is nearly

indistinguishable from the valley without lateral channel migration.

The slope-area plot for simulationG is quite interesting. The initial increasing

mean slope trend, evident in the other transient cases, is particularly steep in simulatG.

And, at areas between 104 and 105 m2 there is essentially no mean slope trend with

increasing area because of the numerous shallow, valley bottom slopes and few ste

ley wall slopes. Meandering, in this transient case, altered slopes such that the mean

area relationship resembles that of Schoharie Creek (see figure 3.32) in that both ha

region of nearly constant mean slope at areas larger than that of the peak mean slo

SimulationH, in figure 5.27, is the continuation of simulationG. As in the latter,

the greaterPH led to less channel migration than in the simulation,F, with lowerPH. As in

F, the valley narrowed considerably and migration slowed during the time afterG as the

system adjusted to the meandering.
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The slope-area plot is even less scattered than that ofF and, thus, reflects the

greater ability of the system to adjust due to the greater coupling between migration

topography through greaterPH. Only a few nodes outside the main channel have slope

lower than about 0.05. Fewer nodes have over-steep slopes, and those few have low

slopes than inF. In F, there are many points with slopes greater than 1.0, but, inH, only

two nodes have slopes greater than 1.0. The mean slopes inH fall below the dynamic equi-

librium line only for contributing areas less than 104 m2, but a kink in the mean slopes is

visible at that area. The higher mean slopes at areas above 104 m2 reflect a greater balance

between the numbers of lowered and steepened slopes, respectively, in simulationH. As

opposed toF, fewer small channels inH follow former main channel courses left by cut-

offs. Partly the lack of cutoffs inH is due to the lower migration rate, but the more fund

mental mechanism is the difference in forms taken by multi-bend loops in the two ca

Multi-bend loops inF more closely resemble those in the unconfined meanders of Cha

4, whereas the multi-bend loops inH are larger and less sinuous at the bend scale.

The results of simulationI , wherePH = 0.5, and uplift has doubled, from 0.001 m

yr at dynamic equilibrium to 0.002 m/yr. (see table 5.1), are shown after 10 ka in

figure 5.28. The valley floor is relatively flat in the sense that points across the valley

similar elevations, but the valley is steeper in the downstream direction, as shown by

wider range of colors along the main valley in the views with color mapped to elevat

This wide valley bottom is similar to, but wider than, that of simulationE (PH = 0.5,U =

0.001 m/yr). The channel ofI  visited a greater portion of the model domain.
212



t. This

e at,
Figure 5.28:SimulationI .

The slope-area plot is similar to that ofE but has greater scatter in the slopes.

Some of that additional scatter is from slopes steepening due to the increase in uplif

plot resembles that of Schoharie Creek more closely than does that ofG in that both

Schoharie Creek andI  have a low-area dip in mean slope before the peak in mean slop

in the case ofI , 104 m2.
213213213



of the

e-

 of

, as
Figure 5.29:SimulationJ.

The results of simulationJ, the continuation of simulationI , are shown after 100

ka in figure 5.29. It appears that meandering affected this landscape more than any 

others. The channel visited most of the right two-thirds of the domain, and the left on

third was not visited at all. This tendency to migrate in one direction is characteristic

channels with greater frequencies of compound bend and multi-bend loop formation
214
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shown in Chapter 4. The channel also visited a somewhat greater portion of the mod

domain than the channel in simulationF. It appears, then, that some of the effects of

increased uplift nearly cancelled each other, that the increase in bank shear stresse

the greater channel slope was partially damped by greater valley wall steepening.

Figure 5.30:SimulationK .
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On the other hand, the increase in compound bend/multi-bend loop formation

quency due to greater channel slope is readily apparent. Parts of the landscape visi

the channel look fundamentally different than unvisited areas. Examination of the dis

charge color map reveals clearly the persistence of cut off meander loops now occup

tributaries, as in simulationF, but the effect is even more pronounced inJ than inF. Note

that none of these tributary channels were meandering at the end of the simulation b

their flow was too low.

In the slope-area plot forJ, the points are more scattered than for simulationF

(smaller uplift), and many slopes have increased to fall on the new dynamic equilibri

power law, where slopes are greater by a factor of two for the same area. As inF, mean

slopes inJ tend to fall below the line of dynamic equilibrium.

The results of simulationK , wherePH = 1.0 and uplift has been increased as in

simulationsI  andJ, are shown in figure 5.30. Points visited by the channel in simulati

K  have greater relief than visited points in any of the other 10 ka simulations. Small 

of the valley are flat, but the channel evidently became entrenched more quickly tha

the other simulations. Even so, the channel visited a larger part of the domain than t

channel of simulationG. The latter fact and the early entrenchment indicate that migra

at the beginning of the simulation was much faster than in simulationG due to the

increased channel slope from greater uplift but that the same greater uplift led to a f

adjustment to the migration by the valley system.
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Figure 5.31:SimulationL .

The slope-area plot reflects the channel entrenchment in that the lowest mea

slopes at the smallest areas are greater than for simulationG. In simulationsC, D, E, G,

and, to a limited extent,I , there is a visible separation between the cluster of low slope 

area points and point near the line of the power law, but this separation is not appar
217217217
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the slope-area plot ofG. Also unlike the other 10 ka simulations, mean slopes at areas

between 104 and 105 m2 have a clearly decreasing trend.

Figure 5.32: Slope vs. contributing area for the simulations listed in table 5.1. The 
lines indicate the fluvial dynamic equilibrium power law, equation (5.14).

Finally, the results of simulationL , the continuation of simulationK  for 100 ka,

are shown in figure 5.31. In simulationL , the effect of meandering on the landscape is

clear and dramatic. This simulation is striking for the large multi-bend loop in the cen

of the domain and, thus, also shows the clear effect of multi-bend loop formation. Th

channel visited a greater part of the domain than the channel ofH but, unlike the channel

in H, did not cut off. The channel of simulationL  also has greater sinuosity on the bend

scale thanH’s.
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Figure 5.32: (Continued.) Slope vs. contributing area for the simulations listed
table 5.1.

As in simulationH, the slope-area plot is less scattered than at the time of sim

tion K , and it has a shape similar to the plot forH. As inJ, the line has moved up to reflec

the increased uplift. The plot has more scatter than that ofH, both above and below the

line, but exhibits similar balance between scatter above and below the dynamic equ

rium line.
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Figure 5.32: (Continued.) Slope vs. contributing area for the simulations listed
table 5.1. The dashed gray line indicates fluvial dynamic equilibrium with the gre
uplift.

5.6 Discussion
The results touch on a number of areas, and I discuss them in turn: (a) the general 

tion of meandering and the landscape in the model; (b) the quite different results 

transient and long term cases; (c) the role of bank erodibility’s bank height depende

the meandering patterns and landscape forms; and (d) the effect of uplift on the in

meandering stream.

5.6.1 Meandering and the Landscape

The CHILD model represents the first opportunity to study the interaction of t

systems with complex dynamics. The model results should give some clue as to how
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interpret landscape forms resulting from incising meandering streams. The slope-ar

relationship allows quantitative comparison of the simulated valleys in this chapter an

natural valley in Chapter 3.

Points scattered toward greater slopes and slightly smaller areas have been 

by the migrating channel. As the channel erodes part of a bank node’s Voronoi cell, 

node’s contributing area decreases slightly by the amount eroded, and the slope to 

channel becomes steeper as the latter approaches the node’s coordinates. These n

the valley wall belong to the original, regular grid and are, therefore, still clustered ac

ing to contributing area at multiples of 104 m2. Similar over-steepened points persist eve

at later times as long as some of these original, previously unvisited points remain.

In several of the slope-area plots in figure 5.32, especially those for the trans

cases, many nodes with low contributing areas have been added in the valley, and t

new nodes are responsible for the trend of increasing mean slope at low areas in the

area plot. Previous studies have assumed that similar trends in plots from DEMs are 

the convexity of the hillslopes (e.g.,Tarboton, et al, 1991, 1992), but the results of the

present study call this assumption into question. From visual inspection of the Scho

Creek DEM (see figure 3.1), it appears that most of the points with the smallest slop

in the flat valley bottom rather than at the tops of hillslopes. In the slope-area plots fo

transient cases in figure 5.32, mean slope increases sharply from the shallow valley b

slopes at low contributing areas to the steepened valley wall points, decreases sharp

els briefly, then continues on the line of dynamic equilibrium. This is a subtle effect, b

does resemble the slope-area plot for Schoharie Creek in this mean behavior (see
221221221
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figure 3.32) and does raise the possibility that meandering is responsible for some o

observed trends in slopevs. area, though some of the specific features of the Schohari

Creek slope-area relationship may arise from effects not present in the simulations, 

as the alluviated valley floor and the capture of its headwaters by tributaries to the H

River. The hypothesis that the observed slope-area trends described above are due

meandering, as illustrated in figure 5.33, is supported byTucker’s [1996] finding that, for a

small watershed in Pennsylvania, the low-area increasing, decreasing, and level tre

slopevs. area as derived from a high-resolution DEM correspond to contributing area

smaller than those of the channel heads observed in the field.

Figure 5.33:Illustration of possible effect of meandering on slope-area relationship.

5.6.2 Time Scales

I did not expect such a dramatic difference between the transient and long-te

responses. At the onset of meandering, or, more precisely, after meandering had be

ning for some time but an order of magnitude more slowly (I will not make this length

lo
g(

sl
op

e)

log(area)

mean slope at 
dynamic equilibrium 
without meandering

valley bottoms 
flattened by 
meandering

valley sides
steepened by
meandering

mean slope for 
transient case with 
meandering

increasing 
diffusion
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caveat from here on), the channels migrated at a great rate and carved out relatively

valleys. But, later on, the valleys became narrow again. It is also interesting that the

nel in many of the 10 ka simulations carved valleys of highly variable width, from rel

tively wide to gorge-like. If one were to observe this topography in the field, one wou

likely suspect that lithologic variations were responsible for the variations in valley wi

But, the model domains are homogeneous.

At the end of simulationB, the spurs and tributaries encounter the main channe

a relatively low slope such that the banks are relatively low and allow the channel to

migrate rapidly. After some time, the sides of the valley become much steeper and c

the channel more effectively. This adjustment is apparent from the reverting of point

tight cluster in the slope-area plots for the 100 ka simulations. This effect also leads

variable valley width because the channels preferentially migrate up the tributary mo

and into the basins draining into the main channel.

In the transient cases, the lower slopes at small contributing areas are compa

to the slope of the main channel. These points are distinctly grouped apart from the 

lying on or near the line. This cluster also appears to have, on average, decreasing 

with increasing area; i.e., the longitudinal profiles of these channels are, on average

cave. Points in this lower cluster are new, valley bottom points. Therefore, they are e

former channel points, i.e., oxbows, or points left in the wake of the channel on the sl

slope. The oxbows become tributary channels with low-slope, weakly concave longi

nal profiles. Points on the slip-off slope have low contributing area because they are

and disconnected from the network, and their slope is controlled more by the lateral
223223223
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migration rate, relative to the uplift rate, than by diffusion or fluvial erosion. With time,

of these points move up to steeper slopes on the slope-area plots and join the main

cluster as their slopes adjust to their small discharge.

At longer times, the lateral migration rate decreases from its initially large valu

The landscape has adjusted such that migration is smaller relative to uplift/incision a

thus, the slip-off slopes now fall closer to the line of dynamic equilibrium. The first ra

stage of lateral migration exploits the tributary confluences because of their low rela

elevation and, therefore, high erodibility. Eventually, as the channel migrates further

the tributary basins it encounters valley walls of increasing height and, in some case

domain boundary, and the migrations slows or, at the boundary, stops. With slower m

tion relative to uplift, steeper slip-off slopes are formed. Thus, the uplifting system ad

toward dynamic equilibrium even with lateral channel migration because the bank er

ibility is dependent on bank height, which can grow through uplift. The larger tributar

in the adjusted system typically have narrower valleys and steeper valley walls adjac

the main stream than the tributaries in simulationA such that the tributary mouth is nar-

rower and, therefore, affects the erodibility of a smaller part of the bank.

The model simulations represent an idealized case in which there is no alluviu

the valley. Natural streams are likely to have some alluvial deposits in the valley, and

deposits have a greater erodibility than the bedrock valley walls

5.6.3 Bank Erodibility’s Bank Height Dependence

The different values ofPH produce quite different landscapes. The simulations

with PH = 1.0 look more realistic or, at least, more like the Buffalo River DEM (see
224
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figure 3.2). One question I might ask about the Buffalo is, how long has the incising m

dering process combination been active with respect to typical lateral migration rate

Does the Buffalo more closely resemble simulationB, where meandering has been activ

only a short time, or simulationsH andL , where meandering has been active much

longer? An interesting result of this modeling is that, given the system’s adjustment 

meandering, the only obvious difference between simulationsB and, e.g.,H is due to the

finer discretization of some areas in simulationH. The slope-area plots are also similar

(see figure 5.32).

The larger tributaries tend to skirt the areas visited by the channel in the long

simulations withPH = 1, i.e., simulationsH andL . The new points tend to slip off toward

the valley walls because that is how the migrating channel has left them. So, especi

where there has been a major cutoff, the middle of the valley has been left at relative

high elevations such that the tributaries tend to flow between these new topographic

and the steep valley walls. These locations also correspond to the position of the ch

before it was cut off.

The long term simulations withPH = 0.5, i.e., simulationsF andJ, produced land-

scapes that are quite different from those landscapes produced by simulations withPH = 1,

i.e., simulationsH andL . In the simulations withPH = 0.5, the system does not adjust a

quickly or, possibly, as well because the migration rate is less dependent on the top

phy and, therefore, less influenced by adjustment through uplift. The channel, theref

migrates more quickly, sweeps out a greater area, and cuts off more often. As a resu
225225225
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eral cutoffs are left with much less flow than before, and the resulting channels have

abnormally low slope where they follow the old cutoffs.

One reason for the different appearances of landscapes simulated with differ

PH’s is the greater primary sinuosity of the streams with lowPH and the similarity of the

the bend and drainage spacing scales. Where primary sinuosity is large, meandering

dominant influence on hillslope form because the slip-off slopes form in hillslope units

small to be dissected: their size is similar to the spacing of small tributaries along the

stream. Where primary sinuosity is small, however, the slip-off slopes form in hillslop

units the size of the multi-loop bends, and these slopes are then large enough to un

significant dissection by small tributaries.

5.6.4 Uplift and Meandering

Increasing bank erodibility’s bank height dependence,PH, slows lateral migration

because the channel must erode more to move the same distance laterally. Increas

uplift rate leads to greater channel and valley slopes, but the effects on the meander

less clear. I might expect that greater uplift would lead to greater main channel slope

therefore, lateral erosivity (see section 4.4.2, “Meander bend shape and evolution”, 

page 150). Conversely, I might also expect that greater uplift would allow the system

adjust more quickly to the channel migration, i.e., faster uplift leads to faster steepen

the valley walls. In the simulations, it appears that the total area swept out by the ch

was slightly larger in the cases with greater uplift but much less than the two-fold inc

that would be expected from the increase in lateral erosivity alone. So, greater uplift
226
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should lead to only slightly greater lateral migration rate of an incising stream becaus

greater lateral erosivity is partially balanced by valley wall steepening.

The effect of the slope increase on the frequency of compound bend/multi-be

loop formation is marked. In the long term simulations with greater uplift, the channe

migrate all the way to the boundary as they form multi-bend loops. Compound bend

multi-bend loop formation is not inhibited by the steepening banks.

5.7 Conclusions
The CHILD model described in this chapter succeeds in coupling models of ch

meandering and landscape evolution. Because the CHILD model is the first to achi

this coupling represents a major advance in the state of the art of landscape evolutio

eling.

This chapter’s results may be summarized as follows:

1. Coupling channel migration to the landscape through bank erodibility’s bank he
dependence,PH, allows the system to adjust toward a new dynamic equilibrium.

2. Increased uplift leads to steepening channel slope and, therefore, greater ban
stresses, but the effect on migration rate is muted because increased uplift also lead
steeper channel banks.

3. Steepening channel slope also leads to more compound bend/multi-bend loop
mation, and this effect is not muted by the steeper banks.

4. LargerPH leads to lower primary sinuosity and slower migration such that the s
ulated landscapes with greaterPH’s are less chaotic in appearance because the hillslop
scale landscape features are shaped mainly by “vertical” processes.

5. Large uplift andPH combine to increase multi-bend loop formation and decreas
bend-scale sinuosity, respectively, such that the channel course resembles that of a
“underfit” stream.

6. The simulations withPH = 1 have a more realistic appearance than those withPH =
0.5. This result may indicate thatPH = 1 is a more realistic value for channels incising in
bedrock, though the similar scales of the bend length and the incisional hollow spac
may lead to the unrealistic appearance of the simulations withPH = 0.5.
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The modeling experiments in this chapter are the first to address the combine

interactions of channel migration, bank erodibility’s bank height dependence, and up

The results of increasing uplift call into question the conventional hypothesis that me

dering is more active during periods of quiescent uplift (e.g., fromLobeck [1939, p. 227]:

“Young rivers actively cutting downward do not meander.”). The simulations produced

opposite result: meandering is more active when the uplift rate is greater because g

uplift leads to greater slopes and, therefore, greater lateral accelerations in channel 

Of course, I have not considered other changes possibly resulting from greater uplif

possible that greater uplift could increase the channel slope enough to significantly r

the residence time of the point bar-forming bedload required to produce lateral acce

tions and migration. In that case, the lateral migration rate might be reduced. Also, I

not considered the effect of alluvial deposits and the contrasts in bank erodibility suc

deposits would cause. The model results are consistent withSchumm’s [1993] and

Schumm et al.’s [1987] findings in the field and from experiments, respectively, that

increased valley slope led to increased sinuosity in meandering alluvial channels.

The model results suggest a new hypothesis concerning observed slope-area

tionships from DEMs. It is possible that the prevalence of a flat part in the slope-area

tionship, as discussed above, is due to the prevalence of meandering in natural stre

this hypothesis is true, then I would only need to increase the relative strength of diff

processes in the model to see the effect more clearly in the simulations’ slope-area 

tionships. The model results presented here have relatively weak diffusion and could

respond to the upper set of curves in figure 5.33.
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Chapter 6

Future Directions

At the conclusion of this study, many questions remain unanswered, many areas

plored. The TSRM model takes a fundamentally different approach to the meand

problem and opens up a whole range of new modeling possibilities. Similarly, I have

begun to explore the CHILD model’s capabilities, some of which I introduced in Cha

5 but did not employ. My investigations of meandering in the field served to narrow

range of possible answers to some questions, but more thorough studies are ne

order to satisfactorily answer these questions. Also, there are several loose ends lef

present work, and I discuss how I might resolve them.

6.1 TSRM Model Extensions
I am aware that the assumptions, approximations, and parameterizations inherent

TSRM model are somewhat limiting, and I discuss ways in which the model cou

improved. The TSRM model is different from other models of stream behavior. It is m

rules-based than most LFE models (e.g.,Johannesson and Parker, 1989a) and two-dimen-

sional flow models (e.g.,Nelson and Smith, 1989a) tend to be, but it is more physical

and mathematically based than some rules-based models, such as the cellular 

stream model ofMurray and Paola [1994]. Many variations on the TSRM model are po

sible with my approach. Also, I have not thoroughly examined the model’s param

space, e.g., with some kind of Monte Carlo scheme.
229229229
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It would be interesting to more fully explore the model parameter space and t

the effect in the measures I introduced in Chapter 3. For example, I saw that compo

bends show up as prominent secondary channel planform scale indicators; if I make

size smaller and, thus, increase the frequency of compound bend formation, do the 

ondary channel planform scale indicators become more prominent? Can I eliminate

secondary channel planform scale indicators by increasing the grain size? One prob

with investigating the model’s parameter space is that there are so many parameters

parameter combinations are unrealistic and could be excluded, but defining the crite

such exclusions is not straightforward. Another problem is that I lack simple measur

ments with which to characterize the model’s performance as a function of some ind

dent variable. For example, how do I characterize the prevalence and importance of

compound bend formation? For example, I could design an algorithm to look for sec

ary peaks inσS
2, but it would be difficult to distinguish important, thick peaks from the

noisy, thin peaks I see for the LFE model.

The bank shear stress smoothing is perhaps the most parameterized aspect 

model, and it would be useful to investigate alternatives. I could try other functions, e

exponential and gamma functions. I could allow shape to vary with lag, where the fro

end of the function is tied to the point of lateral momentum transfer, and spread is st

constant parameter, i.e., if lag is zero, the function is exponential, longer it is gamma

longer gamma approaches a normal distribution.

I should explore the physical basis for the smoothing function. My measurem

of bank roughness elements on the Ellis River are a first step in this direction. Does
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physics tell me what the smoothing function should be? Can I use my bank measure

to calculate a bank drag coefficient in a way similar toHopson and Smith [1997]?

The model behavior becomes problematic with some parameter sets. For exa

if the lag is long relative to the roughness scale, forces in one direction may not be c

teracted by the next forcing in the opposite direction. Instead, the first force will be ap

as shear stress downstream of the second forcing and before the shear stress from t

forcing. Clearly, this phenomenon is not physical and represents a case where the m

assumptions and approximations are not valid. Is there a better, still simple way to m

the lag mechanism? What can I get from the flow equations? Alternatively, is there a

ple way to track the position of the flow core such that the above phenomenon cann

occur?

Some of the details of the lateral momentum transfer formulation bear some 

tiny. Can I use special cases of the scaled flow equations (see appendix B) to get a 

still simple expression? Could the same equations also yield a simple solution, i.e.,

another way to derive a simple, fast, nonlinear model, as was my goal with the TSR

model?

I would like to investigate further the conditions necessary for compound bend

multi-bend loop formation. Under what conditions do compound bends become mul

bend loops, and why?

6.2 CHILD Model Extensions
I have dealt with only a small part of the CHILD model’s present and near-future cap

ties. Unfortunately, I was unable to address many of the issues of channel-landscap
231231231
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action, such as the issue of varying valley width, that I discussed in Chapter 3. H

outline some possible future model experiments.

The first next step is to try out more of the model’s existing capabilities, listed

Chapter 5. The most basic next step is to run the meandering model with capacity-li

or detachment- and capacity-limited sediment transport. Then, investigate the more

advanced runoff generation mechanisms, e.g., saturation overland flow. Next, invest

the different erosion limitations with stochastic rainfall and advanced hydrology. The

experiments could be done with the valley scenario presented in Chapter 5, but I sh

also look at meandering and the other processes mentioned above in the context of 

age basin. Even for the detachment-limited case with uniform runoff, it would be inte

ing to examine the effect of meandering on the stream network. Lateral migration co

have something like an optimization effect on the network similar to evolving a netwo

with the optimal channel network (OCN) model [Rodriguez-Iturbe, et al., 1992], where

the network is optimized by randomly changing the paths of network links and keepi

only the changes which reduce the network’s energy dissipation. Over the long term

eral channel migration could produce a similar result by providing the mechanism by

which network links might change their course. The process dynamics and interactio

rather than an optimization rule, would create the criteria for “keeping” the changes.

As I showed in Chapter 4, the meandering model is sensitive to bed material 

size. In the TSRM model sensitivity analysis of Chapter 4and the CHILD model simu

tions of Chapter 5, grain size is a free parameter. However, to effectively test process

actions in a drainage basin the grain size should be determined by the system dyna

The most important incomplete CHILD model component is the capability to erode, t
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port, and deposit sediment with multiple grain sizes. I will not deal with all of the issu

here;Gasparini, et al. [1997, 1998] combined a multiple grain size transport model [Wil-

cock and McArdell, 1993] and a sediment layering scheme with GOLEM, the rectang

grid landscape evolution model byTucker [1996] (see also:Tucker and Slingerland, 1994,

1996, 1997; andTucker and Bras, 1998). In the CHILD model, treatment of multiple grai

sizes must include source materials, transport, and layered deposits in the context o

moving channel on a dynamic, irregular grid.

In Chapter 3, I raised the question of the effect of different source materials o

rate of lateral channel migration for the Buffalo River, AR. I proposed the hypothesis

changes in source material texture, rather than rock strength, could be the mechani

behind the corresponding valley width and lithology changes. In Chapters 4 and 5 I

showed that modeled rate and style of lateral channel migration is sensitive to bed m

grain size, and the mechanism by which this happens is physically reasonable. The

findings tend to support the above hypothesis, but it could be more thoroughly tested

the CHILD model with meandering and multiple grain sizes.

Gasparini, et al. [1997, 1998] showed that climate change can have a dramati

effect on channel bed material texture throughout a drainage basin, especially in the

term. Specifically, they found that, following an increase in rainfall rate, a “wave” of fi

ing propagated from the source areas through the channel system before the bed m

throughout the basin became generally coarser. I showed in Chapter 5 the dramatic

sient effect of “turning on” meandering in a river valley previously in dynamic equilib-

rium. A similar change might occur given a fining of bed material or an increased rat
233233233
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bar-forming sediment input. I could examine the dynamics of these interactions with

complete CHILD model.

The CHILD model was designed, in part, to examine hillslope-channel interac

and possible feedbacks in that interaction. For example, does the channel have a po

or negative feedback effect on hillslope erosion? If the latter increases, do the action

the former act to moderate and dampen or aggravate and force further hillslope eros

An argument for a dampening effect is the following: hillslope erosion increases sedi

delivery to the channels which respond with aggradation which increases the base le

the hillslopes and decreases their slope and, therefore, their erosion rate. An argum

a forcing effect is: hillslope erosion increases sediment delivery to the channels whic

respond by forming point bars and increasing their lateral erosion rate which erodes

toes of and, therefore, steepens the hillslopes and leads to greater hillslope erosion

In Chapter 5 I raised the question: Does greater lateral channel migration acc

pany periods of quiescent or active uplift? Conventional wisdom says the former (e.g

Lobeck, 1939), but my results say that increasing the uplift rate also increases the la

migration rate. However, I noted that my modeling did not account for the effect of u

on bed material. Streams with a higher incision rate are more likely to flow on bedro

while slower incision may lead to aggradation, the formation of point bars, and, thus

increased lateral migration. On the other hand, accelerated incision would likely incr

channel slope, therefore, bedload sediment flux, and, as the nickpoint moves upstre

hillslope erosion. The resulting increase of bedload sediment could promote the form
234
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of point bars even as the increase in channel slope increases its erosive energy, and

effects could combine to increase lateral migration rates.

The CHILD model should include a mechanism for overbank deposition.Howard

[1992] modeled overbank deposition rate as a function of elevation and distance fro

channel:

(6.1)

wherezmax is the upper elevation limit on overbank deposition;ν is the position indepen-

dent fine sediment deposition rate;µ is the deposition rate of coarser sediment by over-

bank diffusion;r is the shortest distance to the channel; andλd is the length scale of the

deposition rate decay with distance from the channel [Pizzuto, 1987].Howard [1996]

pointed out that the choice ofzmax was arbitrary and proposed a modified form of the

equation with exponential elevation dependence. He argued that such a form was be

modeling the cumulative effect of all flood events. In the CHILD model, I may stocha

cally generate storms whose magnitude is exponentially distributed. Once I figure ou

to determine maximum flood stage,zmax, based on discharge magnitude, the cumulativ

effect of equation (6.1) with stochastically generated storms may be similar to the m

fied expression ofHoward [1996].

The recent work ofMertes [1997], my results from the Ellis River, and other field

studies (R. Jacobson, personal communication, 1995) indicate that such a model m

too simple to produce realistic floodplain deposition. For example, my Ellis River floo

plain coring shows that the thickness of fine deposits generally increases toward the

φ zmax z–( )= ν µ r
λd
------– 

 exp+
235235235
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upstream end of individual point bars on the floodplain (see figure 3.20). TheHoward

[1992] model may produce similar patterns in some cases, but I must wonder wheth

does so for the right reasons. Nevertheless, a model along the lines of equation (6.1

vides at least a first approximation of the overbank deposition process.

Finally, I call attention to some of the loose ends in the CHILD modeling study

the slope-area plots, I should weight the slopes in the bin averages by the Voronoi ar

the corresponding points in order to get a more accurate picture of the trends in mea

slope. I should examine the CHILD model channels with the planform measures intr

duced in Chapter 3 and investigate the sensitivity of the model results to parameter

changes through these measures.

6.3 Studies of Natural Streams
The field studies of Chapter 3 serve to illuminate how many questions are unanswe

that chapter, I scratched the surface of what needs to be done in order to begin ve

the modeling of this work.

I would like to conduct a more thorough study of scroll bar topography in orde

determine its mechanism. Issues include the following:

1. What are the scaling properties of scroll bars in terms of their wavelength, am
tude, curvature, and length relative to channel properties such as width, depth, mea
wavelength, and migration rate?

2. What is the role of vegetation? Are only some scroll bars formed as a result of
tematic variations in vegetation roughness? If so, how do different forms relate to diff
mechanisms?

3. Is elevation on the floodplain correlated with migration rate at the time of latera
accretion? If so, are topographic highs associated with fast or slow migration rates?
Ellis River study suggests that highs are associated with fast rates; is this a spurious

4. Is elevation on the floodplain correlated with channel curvature at the time of a
tion as in the TSRM model?
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I would like to study the effects on lateral channel migration of gravel inputs, s

den changes in bed texture or grain size, and changes from bedrock to alluvial strea

may be able to conduct such a study in the Oregon Coast Range. A large storm eve

1996 initiated a large number of landslides, and, thus, large quantities of sediment w

introduced into the channel network. Much of that sediment has since moved throug

system, but its movement has been slowed at some locations and created gravelly a

reaches. Does this gravel initiate lateral channel migration? On Knowles Creek in th

gon Coast Range I observed a site where the gravel has formed what appear to be 

point bars, and there is evidence of lateral erosion in the form of undercut banks. Th

observations lend support to the topographic steering hypothesis. Further monitorin

study at this site might reveal whether this lateral migration initiates a positive feedb

effect in which bank failures maintain the gravel supply such that the migration contin

or whether the gravel eventually gets flushed from the system such that the long ter

effect is small.

Can I determine in the field whatPH is for a particular site? Is it a function of

material, rate, or both?PH could simply be a function of the fraction of coarse material

the bank material, where fine materials are detachment-limited and coarse materials

be re-eroded. Or it could be the other way around. If the migration rate is slow enoug

the input of sediment from bank erosion is small relative to the sediment flux in the c

nel, then coarse materials which lack cohesion may behave as detachment-limited b

they crumble when undermined and represent an insignificant addition to the chann

bedload. Fine, cohesive materials, on the other hand, remain intact as slump blocks

undermined and must be eroded directly by the channel flow. If the migration rate is
237237237
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enough that the input of sediment from bank erosion is large relative to the sedimen

in the channel, then the removal of coarse materials from the bank may be limited b

transport capacity of the channel flow. Fine materials, if their proportion is small may

ply wash away.

I should be able to quantify bank roughness in terms of dissipation of turbulen

energy through boundary layer development. In the case of the Ellis River, bend 6, I

able to find the average dimensions of the bank roughness elements. Such informat

should enable me to calculate a bank drag coefficient and, thus, turbulent energy dis

tion rate and scale; i.e., calculate the TSRM model bank roughness scale,λ.

My work on the Ellis River brought the role of large woody debris (LWD) to m

attention. Does LWD simply enhance channel roughness? Is it more important on the

or the bed? Does it behave differently in meandering and non-meandering channels

found evidence on the Ellis River that the LWD may stay in place and be covered ov

the accreting point bar. If so, then there would be a limit to how much could accumula

the channel. In a non-meandering channel, LWD accumulates and stays in the chan

until it is transported out, whereas LWD in the meandering channel may just get cov

up after a time. How old were the logs I saw in the Ellis River channel? Were they all 

relatively recent bank failure, or were some of them left over from the last time the c

nel migrated through that area and uncovered by recent channel migration? If the la

then the accumulation of LWD might eventually reach some critical state in which it 

either moved or dams up the reach. Or, the LWD may just eventually rot undergroun

it may not, in general, get covered over after all but, rather, be transported relatively
238
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quickly. In the case of streams in the Oregon Coast Range, does the LWD character

old growth roughen the channel such that the residence time of gravel and, thus, the

ity of lateral erosion is greater? Does the absence of old growth fundamentally chang

terns of process dominance and dynamics?

One advantage of theHoward and Hemberger [1991] analysis is the ability to

place many streams, both model and natural, together on a plot. It would be useful i

could use my own measurements to compare different channel planforms on the sa

plot, as inHoward and Hemberger [1991]; e.g., does the first plateau in mean sinuosity

correlate meaningfully with relative meander belt width at the lower length scale of th

plateau? By plotting the streams together, I could see the ranges of characteristics o

ral and model streams and the relative effects of model parameter changes. It is not c

this time how I could use the present measurements to create such a plot. Its develo

might require the derivation of additional new measures.

Murray and Paola [1996] developed a dynamical systems approach to measur

the behavior of braided streams. Their method utilized measurements of total chann

width and is, therefore, not directly applicable to the TSRM model, which assumes a

stant width. However, I might be able to use another variable, such as flow direction

curvature, to develop a similar “state-space” plot characterizing meandering streams

For the measures that already exist, I need to better understand what they re

about channel planform. One way to gain such understanding would be to apply the

sures to idealized planforms in order to infer what the measures of natural planform

mean.
239239239
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There are several loose ends remaining with respect to the signature of the m

dering process in the slope-area relationship. I should map pixels on the DEM, and 

nodes on the CHILD model mesh, to points on the slope-area plot in order to ascerta

impact of the various valley features on the plot. How does DEM pit filling affect the

slope-area relationship in the valley? If the artifacts of pit filling are significant, it migh

useful to obtain a high-resolution DEM of a meandering channel valley in order to fin

slope-area relationship more accurately. I should also look at the slope-area relation

for different meandering streams, such as the Buffalo River, to see how the plots are

affected by valley width and form.

Another issue brought up in my examination of Buffalo River valley width is th

following: How can I tell whether specific reaches are capacity- or detachment-limite

Does the presence of bedload always imply capacity limitation? I may ultimately find

these cases are merely end members.
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Chapter 7

Discussion and Conclusion

This chapter summarizes the previous chapters and discusses some implications

broader work that were addressed in those chapters. Finally, I draw some specific c

sions.

Chapter 2 introduced the topic of landscape evolution modeling. The main th

of the review was to motivate the inclusion of processes usually ignored in these mo

and, in particular, lateral channel migration. Chapter 2 also introduced the topic of ri

meandering and the importance of topographic steering in that process.

Chapter 3 addressed meandering in natural streams and, specifically, compo

bend formation, scroll bar topography, bank failure and roughness, and meandering

scape interaction. A major finding was that compound bends on the Ellis River, Main

develop from simple bends during periods of rapid channel migration initiated by

upstream cutoffs and that compound bends sometimes separate to form multi-bend

I developed several measures of meandering channel planform which can and did d

the presence and importance of multi-bend loop formation in channel planforms of m

dering Alaskan streams.

On the Ellis River, lateral accretion of the point bar was fast where the ridges

formed and slow in the swales. It follows that the rapid migration following a cutoff le
241241241
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not only to the formation of a compound bend but also to the rapid accretion of these

est ridges. I concluded that rough vegetation on the point bar probably contributed t

ridge formation by trapping sediment. In this respect, vegetation plays similar roles o

Ellis River and on the Current River, Missouri. Spectral analysis showed that the scro

topography on the Ellis and Mississippi River floodplains was not clearly periodic bu

only quasi-periodic.

On the Ellis River, I found that banks were undermined by scour and failed in

clumps defined by tree root wads. The typical size of these root wads also places a 

limit on the width of a meander loop’s neck before it cuts off.

I examined the role of meandering in the landscape by looking at the slope-a

relationship for Schoharie Creek, New York, and the relationships among valley widt

lithology, and channel slope on the Buffalo River, Arkansas. For the Schoharie Cree

ley, low slopes on flat valley bottoms and high slopes on valley sides are independe

contributing area and may lead to a commonly observed but previously not understo

feature of natural slope-area relationships. For the Buffalo River, valley width is prob

dependent on the size of bedload particles and their amount as much as or more th

strength of the rock forming the valley walls. It may be that, in this case, bedrock inc

is transport- rather than detachment-limited.

Chapter 4 introduced the topographic steering river meandering (TSRM) mod

This model takes a different approach to the problem of river meandering. In this

approach, some of the physics may appear relatively crude compared to the mathem

cally precise derivations of LFE models but really only represent a different way of
242
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approximating the behavior of the active physical processes. Within the constraints

imposed by the model assumptions, such approximations may not be any less accu

than those made in LFE models. In fact, the TSRM model approach captures impor

physics and mechanisms, particularly compound bend formation, that other models 

The approach was immersion in the literature of field and experimental studies of m

dering, breaking the process physics down into simple, easily understood pieces, an

ting those pieces back together in a new model. I determined the importance of vari

processes and mechanisms based on empirical evidence. The studies at Muddy Cr

W.E. Dietrich and his co-authors in particular provided much of the information neede

determine what the pieces were and which to include. Along the separate but comp

tary line of investigation taken by J.D. Smith and co-authors, I eventually found that 

ing the flow equations according to a slightly different set of assumptions yielded ter

resembling my expression for lateral momentum transfer (see Appendix B).

Perhaps the most important lesson from the TSRM model is the answer to th

question: What must a meandering model include to reasonably, approximately des

the meandering process? Evidence from the literature indicates the importance of th

topography and that a reasonable assumption is that the topography is due solely to

curvature-induced, helical part of the secondary flow. This assumption is further supp

by the finding that, in the special case of large but gradually changing curvature, the s

flow equations reduce to two terms, both in the lateral momentum equation: the late

shear stress at the bed and the curvature-induced lateral flow acceleration (see App

B, equation (B.5.4)). So, both empirical and theoretical evidence indicates that the

assumptions concerning bed topography are reasonable.
243243243
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The topographic steering calculation does not describe how and where the sh

stress is applied to the bank. The topographic steering effect is strongest where cur

is changing most rapidly, at the bend entrance, but meander bends, at least small o

migrate downstream. In simplifying the problem, I had not described how a force at 

bend entrance leads to shear stress on the bank downstream. The simplest way to 

the effect of the force downstream worked well—better, in fact, than the more complic

methods devised later and discarded. Numerical stability and common sense said th

force would not all be spent at one point, that I needed to describe the turbulent dissi

of that force along the bank as shear stress. A simple Gaussian smoothing was a su

parameterization of that turbulent dissipation.

Topographic steering is of sufficient magnitude to cause the bank shear stres

this expression, in combination with the other parts of the model, produces realistic r

and simulates the previously unexplained phenomenon of compound bend formation

magnitude of the predicted topographic steering force is similar to that of the total be

shear stress, and this result is in line with observations. In the special case of small 

quickly changing curvature in the scaled flow equations, the topographic steering ter

are dominant (see Appendix B, equations (B.5.1), (B.5.2), and (B.5.3)). So, again, b

empirical and theoretical results support the formulation, though I acknowledge that

derivation of topographic steering is far from perfect and might bear some modificati

guided by the scaled flow equations.

The model yielded results pertinent to the findings of Chapter 3. The model p

duced compound bends much as they were formed on the Ellis River and multi-bend
244
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that produced both primary and secondary channel planform scale indicators, as fou

the Alaskan streams in Chapter 3. Also, the frequency of compound bend formation

sensitive to model parameters that affected the location in the bend of maximum ba

shear stress. Parameter changes, such as decreasing median bedload grain diame

increasing channel slope, that caused that location to shift toward the beginning of t

bend produced more compound bend and multi-bend loop formation. More multi-be

loop formation leads to wider valleys and greater variation in valley floor age. The la

scape is, of course, the source of discharge and bedload and determines channel s

Thus, characteristics of the landscape influence compound bend and multi-bend loo

mation and, in turn, determine the effect of meandering on that landscape. Also, ban

roughness and compound bend formation are related. The bank roughness paramet

major control on bend size, and its size relative to the downstream lag influences be

shape and compound bend formation. For example, decreasing the bank roughness

sponds to increasing the smoothing scale and the bend size with respect to the down

lag; smaller downstream lag with respect to the bend size increases the frequency o

pound bend formation; therefore, decreasing bank roughness would lead to a greate

quency of compound bend formation.

The model also formed floodplain topography resembling scroll bar topograp

through the spatio-temporal variation of channel curvature, proportional to point bar

height in the model. This model scroll bar topography was, like the Ellis and Mississ

scroll bar topography, quasi-periodic. The model also formed bands of alternating fas

slow channel migration related to the occurrence of upstream cutoffs. This mechanis

more likely related to the mechanism forming scroll bar topography in nature.
245245245
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Chapter 5 introduced the channel-hillslope integrated landscape developmen

(CHILD) model. Building the CHILD model required devising a new way to represent

migration of a channel in the landscape and a new set of rules to govern and describ

migration. The CHILD model uses a dynamic, irregular mesh to represent the lands

and incorporates the TSRM model as a component landscape process. The develop

this model involved some additional conceptual modeling, such as the parameterizat

bank erodibility’s bank height dependence, but for the most part presented implemen

problems related to the data structure and the movement of channel nodes in the m

landscape mesh. Specifically, I developed new algorithms and rules to deal with find

bank nodes, removal of nodes from eroding banks, and addition of nodes to accretin

point bars.

The landscape and channel forms produced by the model were quite sensitiv

the magnitude of bank erodibility’s bank height dependence. As expected, the latter a

the channel’s migration rate. Larger bank height dependence leads to greater intera

between the channel and the landscape and, thus, faster and more thorough adjust

the system toward a new dynamic equilibrium through valley wall steepening. Prior to

adjustment, the initially low banks led to transient states in which the valley floor was

tened by rapid lateral channel migration. Migrating channels for which bank erodibili

bank height dependence is larger have lower bend-scale sinuosity but still form multi

loops. The slope-area relationships of the transient cases were affected by meande

such that the plots are similar to the slope-area plot for the Schoharie Creek valley i

Chapter 3 and, thus, support the hypothesis that, in nature, meandering is responsib

the “step” in the mean slope’s trend.
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Increasing the uplift rate led to both greater bank shear stress by increasing c

nel slope and lower bank erodibility by increasing bank height such that migration ra

increased by a small amount. Thus, the channel migration rate is only weakly sensit

uplift rate. The frequency of compound bend and multi-bend loop formation increase

with greater uplift and, therefore, channel slope. The steepening of the valley sides 

even reinforce the tendency to form multi-bend loops.

The CHILD model will allow investigation of many aspects of river basin evolu

tion. In the present work, I have focussed on the interaction between a meandering c

and its valley, but future studies will address the interaction between landsliding and

nel evolution.

In conclusion, the modeling studies benefited greatly from previous field stud

and, in turn, motivated new field studies by making testable predictions. I expect futu

work to involve a similar close coupling of modeling and field studies.

I cannot rule out the possibility that scroll bar topography is associated with ch

ing channel curvature, but the data from the Ellis River suggest that scroll bars are a

ated with large variations in channel migration rate.

Compound bend formation is an integral and important part of the meanderin

process. It leads to multi-bend loo formation and, thus a secondary sinuosity. The m

reproduce this effect to a degree that is sinsitive to model parameters such as bed m

grain size, channel slope, and bank roughness. Unlike migration rate, this effect is n

pressed byb steeper banks when uplift rate increases.
247247247
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Channel banks are an important part of the coupling between channel migrat

and the landscape. By their roughness, they influence the size of meander bends an

frequency of compound bend formation. By their height, they influence bank erodibi

and, thus, the channel migration rate such that the steepening banks associated wit

rapid uplift dampen the effect of increasing bank shear stresses associated with the

sponding increase in channel slope. Variations in bank erodibility’s bank height depe

dence affect the appearance of the landscape when the bend length and channel sp

are of similar magnitude. Channel bank steepening is the mechanism by which the d

age system adjusts to the onset of meandering and approaches a new dynamic equi
248
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Appendix A

Derivation of the Transverse Bed Slope

A.1 Neglecting Bedforms
This derivation is similar to that ofIkeda [1989]; the reader is referred to that work fo

explanation of some of the assumptions and reasoning implicit in the following deriva

The lateral force balance for a bed grain particle is

(A.1.1)

where M is the particle mass; m is the fluid mass;φ is the transverse bed slope angle;µ is

the dynamic Coulomb friction coefficient;Lf is the lift force;Vp is the particle velocity;

Vpr is the radial component of the particle velocity; andDr is the radial component of the

drag force:

(A.1.2)

whereD is the total drag force on the particle;Ub is the fluid velocity at the bed; andUbr

is the radial component of the fluid velocity at the bed. In this derivation I simplify the

assumptions made byIkeda[1989] and extrapolate my simplified result to apply under t

more complicated set of assumptions. Specifically, in the following derivation I assum

that, at the equilibrium bed slope, the radial component of the particle velocity is zer

( ). Under this assumption, I get

(A.1.3)

Dr M m–( )g φsin
µ M m–( )g φcos L f–[ ]Vpr

Vp
------------------------------------------------------------------–+ 0=

Dr

D Ubr Vpr–( )
Ub Vp–

---------------------------------=

Vpr 0=

φsin
r
R
--- 

 2h
r
--- Ψ 2.6

Cf

----------- 2.2– 
 –=
249249249
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whereΨ is the dimensionless shear stress, or “Shields stress”,

(A.1.4)

Ikeda’s formula accounting for the critical shear stress for the initiation of particle mo

is

(A.1.5)

which is the solution when the total shear stress, form drag plus skin friction, determ

the transverse bed slope. I have skipped many steps in the derivation of equation (A

because a more complete derivation exists in the literature [Ikeda, 1989] and it is similar

the derivation which follows below.

A.2 Including Bedforms
To find the transverse bed slope caused by skin friction, I need to take the derivation

further because the radial component of the near-bed velocity at the sand grains

than what I have derived for the total shear. LetUbr be the radial component of the flow

velocity at the top of the form drag roughness layer andU’  be the average velocity within

that roughness layer; i.e., the average velocity in the layer affected by skin fricti

assume that the wavelength of the bedforms is related to the depth of flow:

(A.2.1)

and let the height of the dunes,hd, be related to the bedform wavelength,λbf, by

(A.2.2)

The skin friction drag force (see equation (A.1.1)) is

Ψ τ
ρ s 1–( )gd
--------------------------=

rd
dh r

R
--- 

 2h
r
--- Ψ

Ψcr
--------- 0.2278

Cf

---------------- 0.3606– 
 =

λbf 2πh=

hd
1
10
------πh=
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(A.2.3)

and its radial component is

(A.2.4)

Assuming a log-profile for flow velocity and the Nikuradse equivalent sand gr

roughness equal to the particle diameter, I solve for the average velocity between th

and the dune height,hd, as the velocity at heighthd/e:

(A.2.5)

whereτ’ is the skin friction [Ole Madsen, class notes, 1996].

If I assume that the near-bottom boundary-layer radial velocity is related to th

average boundary-layer velocity in a way similar to the relation neglecting the effect

skin friction (seeIkeda, 1989), then I can solve for the skin friction factor,

(A.2.6)

and the radial component of the near-bed (elevation above the bed goes to zero) sk

tion roughness layer velocity:

(A.2.7)

The relationship between the near-bed velocity,Ub’ , and the particle velocity is [Ikeda,

1989]:

D′ 1
8
---ρCdπd2 Ub′ Vp–( )2=

Dr ′
D′ Ubr ′ Vpr–( )

Ub′ Vp–
-------------------------------------=

U′ 1
κ
--- τ′

ρ
----

11.0hd

d
---------------- 

 ln=

Cf ′ κ2

11.0
hd

d
----- 

 
2

ln

------------------------------=

Ubr ′ 0.349

τ
ρ
---rh 1.00– 3.00 11.0

hd

d
----- 

 ln+

κ2R2
------------------------------------------------------------------------------=
251251251
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(A.2.8)

Substituting forD’, Ubr’, Vpr, Ub’, andVp, I get

(A.2.9)

Finally, I define the dimensionless skin friction as

. (A.2.10)

Let θ be the transverse bed slope angle due to skin friction. I solve the force b

ance (equation (A.1.1) with “primes”) for

(A.2.11)

Or, from table A.1, equation (A.2.6), and equation (A.2.2),

(A.2.12)

Table A.1: Transverse bedslope dimensionless parameters

parameter symbol value

drag coefficient Cd 0.4

dynamic Coulomb friction
coefficient

µ 0.43

ratio of lift and drag coeffi-
cients

α 0.85

von Karman’s constant κ 0.4

particle sphericity β 1.0

ratio of sediment and water
densities

s 2.65

Ub′ Vp
2 3

3
---------- µ s 1–( )gd

Cd 1 αµ+( )
----------------------------+=

Dr ′ 3π
ρd3µ s 1–( )g τ

ρ
---rh 1– 3 11.0

hd

d
----- 

 ln+

1 αµ+( )κ2R2 µ s 1–( )gd
Cd 1 αµ+( )
----------------------------

-------------------------------------------------------------------------------------------------=

Ψ′ τ′
ρ s 1–( )gd
--------------------------=

θsin
µCd

κ2β 1 αµ+
------------------------------- r

R
--- 

 2h
r
--- Ψ′ 0.91

h
d
--- 

 ln– 0.83–=

θsin
r
R
--- 

 2h
r
--- Ψ′

hd

h
----- 2.6

Cf ′
------------ 2.2– 

 –=
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which is nearly identical to equation (A.1.3) except for dependence on the skin frictio

Shields parameter and friction factor and the ratio of skin friction roughness layer dep

total depth, which is just

(A.2.13)

Assuming that the necessary modification of equation (A.2.12) to account for the thr

old of particle motion is similar to the modification of equation (A.1.3) to get

equation (A.1.5) and using table A.1 and equation (A.2.13), I have

(A.2.14)

I define the transverse slope,ST, as equation (A.2.14) evaluated at the channel centerlin

wherer=R andh=H. The radius of curvature,R, is just the inverse of the curvature,C. So,

I have

(A.2.15)

(A.2.16)

which is identical to equation (4.3). In the above derivation I assume that all referenc

grain diameter,d, refer to the median grain size,d50. The appropriate quantile of grain siz

in equation (A.2.5) is actuallyd65, but, because this term is inside the logarithm, the use

d50 does not introduce much error.

hd

h
----- Ψ′

Ψ
------=

rd
dh r

R
--- 

 2h
r
---Ψ′

Ψ
------ Ψ′

Ψcr
---------

0.2278
κ

---------------- 11
h
d
---Ψ′

Ψ
------ 

 ln 0.3606–=

ST KHC=

K
Ψ′
Ψ
------ Ψ′

Ψcr
--------- 0.5695 11

H
d
----Ψ′

Ψ
------ 

 ln 0.3606–=
253253253
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Appendix B

Scaling the Depth-Averaged Flow Equations

B.1 Scaling Parameters for Nondimensionalization
I begin by identifying the spatial scales I am interested in. Other authors (e.g.,Johannes-

son and Parker, 1989) have typically used the meander wavelength to scale downst

distances though they are modeling accelerations over much shorter distances.

Dietrich and Whiting [1989] showed that strong convective accelerations may

occur over downstream distances much shorter than the meander wavelength and e

shorter than the channel width. Therefore, it is appropriate to scale down- and cross

stream distances with the same value, in this case the channel width. I scale vertica

tances by the average channel depth. Thus I define the non-dimensional coordinate

(B.1.1)

(B.1.2)

(B.1.3)

wheres, n, andz are the downstream, cross-stream, and vertical directions, respectiveb

is the channel width; andH is the average channel depth. Likewise, I scale curvature, flow

depth, and bed elevation:

(B.1.4)

(B.1.5)

ŝ
s
b
---=

n̂
n
b
---=

ẑ
z
H
----=

Ĉ Cb=

ĥ
h
H
----=
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(B.1.6)

I have scaled the curvature with the channel width, similar to the inverse of do

stream and cross-stream coordinates. However, terms proportional to curvature will 

ally be smaller than terms proportional to  and  because, while  and

 are usually greater than the channel width,b, curvature,C, is always less thanb. In

places where curvature is small, terms proportional to curvature will be much smaller

terms proportional to  and  as long as the downstream rate of change of c

ture, , is large.

Dietrich and Smith [1983] found that lateral flow velocities may be comparable

downstream velocity over short distances. Therefore, I scale both downstream and l

velocities by the average downstream velocity,U0:

(B.1.7)

(B.1.8)

Though I am not directly concerned with vertical velocity, I will need it to scale

shear stresses:

(B.1.9)

whereW is a typical vertical velocity, whereW<<U0.

η̂ η
H
----=

1 s∂⁄ 1 n∂⁄ 1 s∂⁄

1 n∂⁄

1 s∂⁄ 1 n∂⁄

C∂ s∂⁄

Û
U
U0
-------=

V̂
V
U0
-------=

ŵ
w
W
-----=
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Changes in water surface elevation are generally not comparable to those in 

depth and bed elevation. The average water surface slope is related to the friction fa

and flow velocity:

(B.1.10)

(B.1.11)

And I define the non-dimensional water surface elevation:

(B.1.12)

B.2 Downstream Momentum Conservation Equation
I use the depth averaged equations used bySmith and McLean [1984]. In the downstream,

or s, direction, I write:

(B.2.1)

Applying the scaling relations of the previous section and canceling like terms

have:

(B.2.2)

gH
b

-------
ŝ∂

∂E
C f U0

2∼

E Cf U0
2 b
gH
-------∼∂

Ê E
gH

C f U0
2b

------------------=

ρ
1 nC–
----------------

s∂
∂

U2h ρ
n∂

∂
UVh 2

ρ
1 nC–
----------------–+ UVhC

ρgh
1 nC–
----------------

s∂
∂

E
1

1 nC–
----------------

s∂
∂ τssh+=

…
n∂

∂ τnsh
2

1 nC–
----------------τnshC–

1
1 nC–
----------------τss η s∂

∂η τns η n∂
∂η τzs η

–+ + +

1

1 n̂Ĉ–
---------------H

b
----

ŝ∂
∂

Û2ĥ
H
b
----+

n̂∂
∂

ÛV̂ĥ
2

1 n̂Ĉ–
----------------–

H
b
----ÛV̂ĥĈ

1

1 n̂Ĉ–
----------------C f ĥ

s∂
∂

Ê=

… 1

1 n̂Ĉ–
----------------H2

b2
-------

s∂
∂ τ̂ssĥ

H2

b2
-------+

n̂∂
∂ τ̂nsĥ

2

1 n̂Ĉ–
----------------H2

b2
------- τ̂nsĥĈ–+

… 1

1 n̂Ĉ–
----------------H2

b2
------- τ̂ss η ŝ∂

∂ η̂ H2

b2
------- τ̂ns η n̂∂

∂ η̂ τ̂zs η
–+ +
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I now assign values ofε to small numbers ofO(1/10):

(B.2.3)

Substitutingε in equation (B.2.3), dropping terms ofO(ε), and switching back to dimen-

sional terms, I have:

(B.2.4)

I do note, however, that the third and sixth terms on the right hand side of equation (B

will be large near the banks.

B.3 Cross-Stream Momentum Conservation Equation
I write the depth-averaged conservation of momentum in the cross-stream, orn, direction:

(B.3.1)

Substituting the scaling relations of the first section and canceling like terms, I have:

(B.3.2)

ε H
b
---- C f{ , }=

ρ
1 nC–
----------------

s∂
∂

U2h ρ
n∂

∂
UVh 2

ρ
1 nC–
----------------–+ UVhC τzs η

–=

ρ
1 nC–
----------------

s∂
∂

UVh ρ
n∂

∂
V2h

ρ
1 nC–
----------------–+ U2 V2–( )hC ρ– gh

n∂
∂E

=

… τnn η n∂
∂η τzn η

–+

… 1
1 nC–
----------------

s∂
∂ τnsh n∂

∂ τnnh
1

1 nC–
---------------- τss τnn–( )hC

1
1 nC–
----------------τns η s∂

∂η
+ + + +

1

1 n̂Ĉ–
---------------H

b
----

ŝ∂
∂

ÛV̂ĥ
H
b
----

n̂∂
∂

V̂2ĥ
1

1 n̂Ĉ–
----------------H

b
---- Û2 V̂2–( )ĥĈ–+ C f ĥ

n̂∂
∂

Ê–=

… 1

1 n̂Ĉ–
----------------H2

b2
-------

ŝ∂
∂ τ̂nsĥ

H2

b2
-------

n̂∂
∂ τ̂nnĥ

1

1 n̂Ĉ–
----------------H2

b2
------- τ̂ss τ̂nn–( )ĥĈ+ + +

… 1

1 n̂Ĉ–
----------------H2

b2
------- τ̂ns η ŝ∂

∂ η̂ H2

b2
------- τ̂nn η n̂∂

∂ η̂ τ̂zn η
–+ +
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As in the previous section, I throw out terms ofO(ε2), though I note again that the third

and sixth terms on the right hand side of equation (B.3.1) will be large near the bank

Reverting to dimensional coordinates, I have:

(B.3.3)

B.4 Continuity of Mass Equation
I write the depth-averaged equation for continuity of mass:

(B.4.1)

Without carrying through the steps, I note that all terms are ofO(ε) such that I retain all

terms.

B.5 Special Cases
It is worthwhile at this point to examine some special cases alluded to in the previou

tions.

In the straight section, or cross-over, between meander bends and other tran

from small to large curvature, curvature is small, but the downstream rate of change

curvature and, therefore, the lateral flow velocity are large. In such cases, it is appro

to drop all terms and parts of terms proportional to curvature. Thus, I have, for down

stream momentum conservation,

(B.5.1)

for cross-stream momentum conservation,

ρ
1 nC–
----------------

s∂
∂

UVh ρ
n∂

∂
V2h

ρ
1 nC–
----------------–+ U2 V2–( )hC τzn η

–=

1
1 nC–
----------------

s∂
∂

Uh
n∂

∂
Vh

VhC
1 nC–
----------------–+ 0=

ρ
s∂

∂
U2h ρ

n∂
∂

UVh+ τzs η
–=
259259259



on-

tion:

per-

epth

lly, near

n-
(B.5.2)

and for continuity,

(B.5.3)

In this case, the convective acceleration terms are dominant.

On the other hand, within bends where curvature is large but approximately c

stant, convective accelerations and terms proportional to lateral flow velocity will be

small, and I am left with only the centrifugal force term in the lateral momentum equa

(B.5.4)

Therefore, the bed topography depends only on curvature and primary hydraulic pro

ties of the flow.

Recall the caveat I made about the terms proportional to lateral changes in d

and bed elevation, that these terms are large near the banks in general and, especia

the outside bank (i.e., next to the pool). Adding back these terms, I have, for the dow

stream momentum equation,

(B.5.5)

for the lateral momentum equation,

(B.5.6)

and the continuity equation is unchanged.

ρ
s∂

∂
UVh ρ

n∂
∂

V2h+ τzn η
–=

s∂
∂

Uh
n∂

∂
Vh+ 0=

ρ
1 nC–
----------------U2hC τzn η

=

ρ
1 nC–
----------------

s∂
∂

U2h ρ
n∂

∂
UVh

2ρ
1 nC–
----------------–+ UVhC τzs–

η n∂
∂ τnsh τns η n∂

∂η
+ +=

ρ
1 nC–
----------------

s∂
∂

UVh ρ
n∂

∂
V2h

ρ
1 nC–
----------------–+ U2 V2–( )hC τzn η

–
n∂

∂ τnnh τnn η n∂
∂η

+ +=
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Using the chain rule, I break down these “bank” terms:

(B.5.7)

at the bank, the second term on the right hand side of equation (B.5.7) is dominant. T

have

(B.5.8)

Similarly, from the lateral momentum equation, I have

(B.5.9)

I may now re-write the downstream and lateral momentum equations to include the 

terms:

(B.5.10)

(B.5.11)
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Appendix C

Magnitude of Lateral Momentum Transfer

To assess the magnitude of the lateral momentum transfer, I compare it to the bed s

stress for the special case of a channel following a sine-generated curve,

(C.0.1)

whereφ is the downstream direction angle;ω is the maximum angle; andM is the meander

wavelength.

The average bottom stress integrated over the channel width and an increme

downstream distance is

(C.0.2)

Then, from equations (C.0.2) and (4.13), the ratio of the cross-stream and bottom “fo

is

(C.0.3)

where the transverse slope parameter,K, is derived from equation (A.1.5) (here I neglec

the effect of form drag; seeIkeda, 1989, and equation (A.1.5)). I then find the leading ter

of the series expansion of this force ratio at the point of maximum lateral momentum

transfer,s=M/4, to get, neglecting higher order terms,

(C.0.4)

φ s( ) ω 2πs
M

---------sin=

Fd z ρC f U2b sd=

Fd n

Fd z

---------

π4 1
H
---- 2

b
---– 

 H2b3K2ω2 2πs
M

---------
2

sin

M4Cf

-------------------------------------------------------------------------=

Fd n

Fd z

--------- Hb3Ψω2

ΨcrC f
2M4

------------------------∼
263263263



I now assign the value,ε, to small numbers of similar magnitude:H/b, b/M,Ψcr/Ψ; andε2

to Cf. Then the ratio in equation (C.0.4) isO(ω2).
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Appendix D

River Meandering Model Based on Linearized Flow
Equations

The linearized flow equation (LFE) model assumes bank shear stress and channel m

tion are proportional to the near-bank flow velocity perturbation. The form of the velo

perturbation inJohannesson and Parker [1989c] is:

(D.0.1)

, (D.0.2)

, , (D.0.3)

My version of the LFE uses equation (D.0.1), where I have made one simplification.

make the LFE model more directly comparable to the TSRM model, which uses loca

vature to determine the bed topography, I substituted local curvature,C, for the effective

curvature integral inJohannesson and Parker [1989c]. A.D. Howard [personal communi-

cation, 1996] reports that the use of this integral has an insignificant effect on mode

behavior.
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