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1. INTRODUCTION 

Numerical models of complex Earth systems serve two important 
purposes. First, they embody quantitative hypotheses about those systems 
and thus help researchers develop insight and generate testable predictions. 
Second, in a more pragmatic context, numerical models are often called 
upon as quantitative decision-support tools. In geomorphology, 
mathematical and numerical models provide a crucial link between small-
scale, measurable processes and their long-term geomorphic implications. In 
recent years, several models have been developed that simulate the structure 
and evolution of three-dimensional fluvial terrain as a consequence of 
different process “laws” (e.g., Willgoose et al., 1991a; Beaumont et al., 
1992; Chase, 1992; Anderson, 1994; Howard, 1994; Tucker and Slingerland, 
1994; Moglen and Bras, 1995). By providing the much-needed connection 
between measurable processes and the dynamics of long-term landscape 
evolution that these processes drive, mathematical landscape models have 
posed challenging new hypotheses and have provided the guiding impetus 
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behind new quantitative field studies and DEM-based analyses of terrain 
(e.g., Snyder et al., 2000). The current generation of models, however, shares 
a number of important limitations. Most models rely on a highly simplified 
representation of drainage basin hydrology, treating climate through a simple 
“perpetual runoff” formulation. The role of sediment sorting and size-
dependent transport dynamics has been ignored in most studies of drainage 
basin development, despite its importance for understanding the interaction 
between terrain erosion and sedimentary basin deposition (e.g., Gasparini et 
al., 1999; Robinson and Slingerland, 1998). Furthermore, with the exception 
of the pioneering work of Braun and Sambridge (1997), the present 
generation of models is inherently two-dimensional, describing the dynamics 
of surface evolution solely in terms of vertical movements without regard to 
lateral displacement by tectonic or erosional processes. 

Our aim in this paper is to present an overview of the Channel-Hillslope 
Integrated Landscape Development (CHILD) model, a new geomorphic 
modeling system that overcomes many of the limitations of the previous 
generation of models and provides a general and extensible computational 
framework for exploring research questions related to landscape evolution. 
We focus here on reviewing the underlying theory and illustrating the 
capabilities of the model through a series of examples. Discussion of the 
technical details of implementation is given by Tucker et al. (1999, 2000) 
and Lancaster (1998). We begin by briefly reviewing previous work in 
landscape evolution modeling. We then discuss the theory and capabilities of 
the modeling system, and present a series of examples that highlight those 
capabilities and yield some useful insights into landscape dynamics. 

2. BACKGROUND 

The first quantitative geomorphic process models began to appear in the 
1960s, stimulated by the combination of an intellectual shift toward 
investigating the mechanics of erosion and sedimentation processes, and the 
appearance of digital computers. The earliest models were one-dimensional 
slope simulations developed to explore basic concepts in hillslope profile 
development (e.g., Culling, 1960; Scheidegger, 1961; Ahnert, 1970; Kirkby, 
1971; Luke, 1972; Gossman, 1976). These studies helped to quantify and 
formalize some of the concepts of hillslope process and form enunciated by 
early workers such as Gilbert (1877) and Penck (1921). Similar one-
dimensional (1D) approaches have more recently been used to examine the 
evolution of stream profiles (e.g., Snow and Slingerland, 1987) and alluvial 
deposystems (e.g., Paola et al., 1992; Robinson and Slingerland, 1998). 
There are clear limitations of the 1D approach for understanding terrain 
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morphology, however, and these limitations prompted early efforts to extend 
erosion models to two dimensions, though still with a focus primarily on 
hillslope morphology (Ahnert, 1976; Armstrong, 1976; Kirkby, 1986). 

Driven in part by technological advances, there has been a flowering of 
landscape evolution models during the past decade. Many of these models 
have focused on watershed evolution and dynamics (Willgoose et al., 1991a; 
Howard, 1994; Moglen and Bras, 1995; Coulthard et al., 1997; Tucker and 
Slingerland, 1997; Densmore et al., 1998). Although spatial scale is often not 
specified, these modeling studies have generally focused on the formation of 
hillslope-valley topography within small- to moderate-sized drainage basins 
(on the order of several square kilometers or smaller). In parallel with these 
developments in watershed geomorphology, a number of researchers have 
attempted to model the evolution of terrain on the scale of a mountain range 
or larger (e.g., Koons, 1989; Beaumont et al., 1992; Lifton and Chase, 1992; 
Anderson, 1994; Tucker and Slingerland, 1994, 1996; Braun and Sambridge, 
1997). In these applications, computational limitations dictate the use of a 
coarse spatial discretization in which individual grid cells are much larger 
than the scale of an individual hillslope, making it impossible to address 
explicitly the role of hillslope dynamics, and raising the issue of “upscaling” 
as a need in large-scale geomorphic models (Howard et al., 1994). A third 
category of models includes cellular statistical-physical models that employ 
simple rule sets to address the origin and nature of scaling properties 
observed in river networks and terrain (e.g., Chase, 1992; Rigon et al., 1994; 
Rodriguez-Iturbe and Rinaldo, 1997). Finally, a number of two-dimensional 
models of hillslope-scale soil erosion and rill development have been 
developed to study and predict patterns of slope erosion and drainage pattern 
initiation (e.g., Smith and Merchant, 1995; Favis-Mortlock, 1998; Mitas and 
Mitasova, 1998). 

Despite significant progress in theory and model development over the 
past decade, the current generation of physically based models suffers from 
several limitations: (1) temporal variability in rainfall and runoff has been 
largely ignored (cf. Tucker and Bras, 2000); (2) with a few exceptions (e.g., 
Ijjasz-Vasquez et al., 1992; Tucker and Bras, 1998), runoff is usually treated 
as spatially uniform (Hortonian) across the landscape, despite the well 
known importance of variable source-area runoff generation in humid 
regions; (3) lateral erosion by channels has been ignored in the context of 
drainage basin evolution; (4) most models use a fixed and uniform spatial 
discretization in which only vertical movements of the terrain surface are 
allowed (for an exception, see Braun and Sambridge, 1997); (5) the role of 
heterogeneous sediment and sorting dynamics is usually ignored for 
simplicity, despite their potential impacts on stream profile shape (e.g., 



4 Chapter 12
 
Snow and Slingerland, 1987; Sinha and Parker, 1996; Robinson and 
Slingerland, 1998) and drainage basin structure (Gasparini et al., 1999); and 
(6) few efforts have been made to examine the coupling between erosional 
and depositional systems (e.g., Johnson and Beaumont, 1995; Tucker and 
Slingerland, 1996; Densmore et al., 1998). 

3. MODEL FORMULATION 

3.1 Overview 

The CHILD model simulates the evolution of a topographic surface and 
its subjacent stratigraphy under a set of driving erosion and sedimentation 
processes and with a prescribed set of initial and boundary conditions (Fig. 
1). Designed to serve as a computational framework for investigating a wide 
range of problems in catchment geomorphology, CHILD is both a model, in 
the sense that it comprises a set of hypotheses about how nature works, and a 
software tool, in the sense that it provides a simulation environment for 
exploring the consequences of different hypotheses, parameters, and 
boundary conditions. Here we will use the term “model” to refer collectively 
to the software and the assumptions and hypotheses embedded within it. 

The process modules in CHILD are summarized graphically in Figure 2. 
Processes incorporated in the model include: (1) climate forcing via a 
sequence of discrete storm events with durations, intensities, and inter-
arrival times that may be either random or constant; (2) generation of runoff 
by infiltration-excess or saturation-excess mechanisms; (3) downslope 
routing of water and sediment using a steepest-descent method; (4) 
detachment (erosion) of sediment or bedrock by channelized surface runoff 
in rills or stream channels; (5) water-borne downslope transport of detached 
sediment; (6) transport of sediment by soil creep and related processes on 
hillslopes; (7) meandering of large stream channels; (8) overbank 
sedimentation on floodplains; and (9) tectonic deformation. Note that not all 
of these processes need to be, or even should be, considered in any particular 
application. The point of including a number of different processes is to 
allow one to investigate different types of geomorphic system under 
different space and time scales, using a common modeling framework that 
handles the basic spatial and temporal simulation framework. 

In addition to these process modules, CHILD includes capabilities for 
managing the spatial simulation framework. The use of an adaptive, irregular 
spatial discretization adds several useful capabilities (Braun and Sambridge, 
1997; Tucker et al., 2000), including the ability to vary spatial resolution and 
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to incorporate the horizontal components of erosion processes (e.g., stream 
channel migration) and tectonic motions (e.g., strike-slip displacement). In 
addition, the model can simulate depositional history and stratigraphy by 
tracking and updating “layers” of deposited material underlying each point 
in the landscape, thereby making it possible to model coupled erosion-
deposition systems such as mountain drainage basins and their associated 
alluvial fans (e.g., Ellis et al., 1999). 

3.2 Continuity of Mass and Topographic Change 

Changes in ground surface height, z(x,y), are described by the continuity 
of mass equation for a terrain surface, which is expressed in terms of the 
divergence of the sediment flux qs (dimensions of bulk volume rate per unit 
width): 

),,( tyxU
t
z

+−∇=
∂
∂

sq  

where z is surface height, t is time, and U is a source term that represents 
baselevel change or tectonic uplift. The first term on the right-hand side 
embodies several different sediment transport and erosion terms and can take 
on a number of different forms depending on the assumptions made about 
process mechanics. The formulations of the transport and erosion terms and 
the numerical solution to (1) are described below. 

3.3 Spatial Framework 

In order to avoid the limitations associated with grid-based models, the 
terrain surface may be discretized as a set of points (nodes) in any arbitrary 
configuration. These nodes are connected to form a triangulated irregular 
mesh (Figs. 1, 3) (Braun and Sambridge, 1997; Tucker et al., 2000). The 
mesh is constructed using the Delaunay triangulation, which is the 
(generally) unique set of triangles having the property that a circle passing 
through the three nodes of any triangle will contain no other nodes (e.g., Du, 
1996). The use of an irregular spatial framework offers several significant 
advantages: (1) the model resolution can vary in space in order to represent 
certain landscape features, such as floodplains or regions of complex terrain, 
at a locally high level of detail (e.g., Fig. 1); (2) adaptive remeshing can be 
used to adjust spatial resolution dynamically in response to changes in the 
nature or rates of processes occurring at a particular location (e.g., Braun and 
Sambridge, 1997; Tucker et al., 2001; and examples below); (3) nodes can 

(1) 
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be moved horizontally as well as vertically, making it possible to simulate 
lateral and surface-normal, as opposed to purely vertical, erosion (as, for 
example, in the cases of meandering channels and cliff retreat); (4) nodes 
can be added to simulate lateral accretion of, for example, point bars in 
meandering streams or accretionary wedges at active margins; and (5) the 
terrain can be coupled with 3D kinematic or dynamic models of tectonic 
deformation in order to simulate interactions between crustal deformation 
(e.g., shortening, fold growth) and topographic change. The data structures 
used to implement the triangular mesh are described by Tucker et al. (2001). 

The Delaunay framework lends itself to a numerical solution of the 
continuity equation (Eq 1) using finite-volume methods. Each node (vertex) 
in the triangulation, Ni, is associated with a Voronoi (or Thiessen) polygon 
of surface area Λi (Fig. 3), in which the polygon edges are perpendicular 
bisectors of the edges connecting the node to its neighbors (e.g., Du, 1996; 
Guibas and Stolfi, 1986). Thus, the Delaunay triangulation defines the 
connectivity between adjacent nodes, while the associated Voronoi diagram 
defines the surface area associated with each node as well as the width of the 
interface between each pair of adjacent nodes (Fig. 3B). In CHILD, each 
Voronoi polygon is treated as a finite-volume cell. Continuity of mass for 
each node is written using an ordinary differential equation: 

∑
=Λ

=
iM

j
Sji

i

i Q
dt
dz

1

1
, 

where zi is the average surface height of node i, Mi is the number of neighbor 
nodes connected to node i, and QSji is the total bulk volumetric sediment flux 
from node j to node i (negative if the net flux is from i to j). Note that by this 
method it is only possible to describe the average rate of erosion or 
deposition within a given Voronoi polygon. As described below, the method 
used to integrate the flux terms depends on whether the flux is two-
dimensional (e.g., for diffusive sediment transport or kinematic-wave 
overland flow routing) or one-dimensional (for streamwise water and 
sediment routing). For discussion of the implementation, application, and 
advantages of irregular discretization in landscape models, the reader is 
referred to Braun and Sambridge (1997) and Tucker et al. (2001). 

3.4 Temporal Framework 

One of the challenges in modeling terrain evolution lies in addressing the 
great disparity between the time scales of topographic change (e.g., years to 
geologic epochs) and the time scales of storms and floods (e.g., minutes to 
days). Most previous models of drainage basin evolution have dealt with this 

(2) 
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disparity by simply assuming a constant average climatic input (e.g., a 
steady rainfall rate or a “geomorphically effective” runoff coefficient). This 
approach, while computationally efficient, has three drawbacks: (1) it 
ignores the influence of intrinsic climate variability on rates of erosion and 
sedimentation (e.g., Tucker and Bras, 2000); (2) it fails to account for the 
stochastic dynamics that arise when a spectrum of events of varying 
magnitude and frequency acts in the presence of geomorphic or hydrologic 
thresholds; and (3) the approach typically relies on a poorly calibrated “cli-
mate coefficient” that cannot be directly related to measured climate data. 

In order to surmount these limitations, and to address the role of event 
magnitude and frequency in drainage basin evolution, CHILD uses a 
stochastic method to represent rainfall variability. The method is described 
in detail by Tucker and Bras (2000), and is only briefly outlined here. In 
solving the continuity equation, the model iterates through a series of 
alternating storms and interstorm periods, based on the Poisson rainfall 
model developed by Eagleson (1978). Each storm event is associated with a 
constant rainfall intensity, P, a duration, Tr, and an inter-arrival “waiting 
time”, Tb (Fig. 4). For each storm, these three attributes are chosen at 
random from exponential probability distributions, the parameters for which 
can be readily derived from hourly rainfall data (Eagleson, 1978; Hawk, 
1992). Alternatively, storm intensity, duration, and frequency may be kept 
constant, in which case the approach reduces to the “effective rainfall 
intensity” approximation (Tucker and Slingerland, 1997). In either case, 
storms are approximated as having constant intensity throughout their 
duration, and the same assumption is also applied to the resulting 
hydrographs. Runoff-driven transport and erosion processes (described 
below) are computed only during storm events. Other processes, including 
diffusive creep transport and tectonic deformation, are assumed to occur 
continuously, and are updated at the end of each interstorm period (Fig. 5). 

Note that the model imposes no special restrictions on time scale, aside 
from the fact that it is designed for periods longer than the duration of a 
single storm. For simulations involving terrain evolution over thousands to 
millions of years (e.g., Tucker and Slingerland, 1997), however, it becomes 
computationally intractable to simulate individual storms. For many 
applications this problem can be overcome by simply amplifying the storm 
and interstorm durations. As long as the ratio Tr/Tb remains the same, the 
underlying frequency distributions are preserved. Perturbations in climate 
can also be simulated by changing the parameters of the three frequency 
distributions (Fig. 4). 
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3.4.1 Stochastic Rainfall: Example 

Figure 6 illustrates the behavior of the model under stochastic rainfall 
forcing, in a case where a high erosion threshold (see below) lends the 
system a high sensitivity to extreme events. The initial condition consists of 
a 30 degree slope upon which are superimposed small random perturbations 
in the elevation of each node. Erosion of the slope in response to a random 
series of rainfall and runoff events (Fig. 6A) is highly episodic (Fig. 6B). In 
this example, a gully forms early on in response to a series of large-
magnitude and relatively long-duration storms (Figs. 6C and E). The gully 
develops in an area where the topography of the initial surface leads to local 
flow convergence. The reduction in gradient along the gully effectively 
stabilizes the system, so that later events have little or no impact. Subsequent 
mass movement by slope-driven diffusive creep (see below) leads to gradual 
healing of the scar (Figs. 6D and F). 

3.5 Surface Hydrology and Runoff Generation 

Surface runoff collected at each node on the mesh is routed downslope 
toward one of its adjacent neighbor nodes, following the edge that has the 
steepest downhill slope (Fig. 3). If a closed depression occurs on the mesh, 
water can either be assumed to evaporate at that point, or alternatively a 
lake-filling algorithm can be invoked to find an outlet for the closed 
depression (Tucker et al., 2000). 

The local contribution to runoff at a node is equal to the effective runoff 
rate (defined below) multiplied by the node’s Voronoi area, Λ. The drainage 
area, A, at a node is the sum of the area of all Voronoi cells that contribute 
flow to that node. Total surface discharge can be computed from drainage 
area using one of three methods. The first two assume that runoff generation 
is spatially uniform, while the third represents variable-source area runoff 
generation. 

3.5.1 Hortonian (infiltration-excess) runoff 

Runoff production (rainfall rate minus infiltration rate) is assumed to be 
uniform across the landscape. Assuming steady-state flow, the surface 
discharge at any point is equal to 

cc IPAIPQ >−=         ,)( , 

where Ic is infiltration capacity (L/T). 

(4) 
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3.5.2 Excess storage capacity runoff 

Under this approach, the soil, canopy, and surface are collectively 
assumed to have a finite and spatially uniform capacity to absorb rainfall. 
Any rainfall exceeding this storage depth will contribute to runoff according 
to 

srr
r

srr DPT,
T

DPTR >
−

=          

where R is local runoff rate (L/T), Dsr is the soil-canopy-surface retention 
depth (L), and the resulting discharge at any point is Q = RA. Note that 
equation (4) describes a runoff rate that is constant throughout a storm and 
equal to the total volume of excess rainfall divided by the storm duration. 
Note also that R = 0 if Dsr > TrP. 

3.5.3 Saturation-excess runoff 

With this option, a modified form of O’Loughlin’s (1986) 
topographically based method is used to partition rainfall between overland 
and shallow subsurface flow. The capacity for shallow subsurface flow per 
unit contour length (qsub) is assumed to depend on local slope (S) and soil 
transmissivity (T, dimensions of L2/T), 

TS
w

Qq == sub
sub  

where contour length is represented by the width of adjoining Voronoi cell 
edges, w. The surface flow component is equal to the total discharge minus 
the amount that travels in the subsurface, 

TSwPATSwPAQ >−=         , . 

Here, Q represents surface discharge resulting from a combination of 
saturation-excess overland flow and return flow. Note that this method 
assumes hydrologic steady state for both surface and subsurface flows, and 
thus is most applicable to prolonged storm events and/or highly permeable 
shallow soils. 

(5) 

(5) 

(6) 



10 Chapter 12
 
3.5.4 Example 

The mechanism of runoff production can impact both terrain morphology 
and dynamic responses to changing climate, land-use, or tectonism. For 
example, theoretical studies have shown that the mode of runoff production 
can have a significant impact on terrain morphology, drainage density, and 
the scaling of drainage density with relief and climate (Kirkby, 1987; Ijjasz-
Vasquez et al., 1992; Tucker and Bras, 1998). Figure 7 compares two 
simulated drainage basins formed under Hortonian and saturation-excess 
runoff production, respectively. All other parameters in the two simulations 
are identical. In the saturation case, runoff is rarely generated on hillslopes. 
As a result, hillslopes are steep and highly convex (reflecting the dominance 
of diffusive creep-type sediment transport; see below). The difference is 
reflected in slope-area plots for the two simulated basins. In the case of the 
saturation-dominated basin, the hillslope-channel break is well described by 
the line of saturation for the mean-intensity storm (Fig. 7D). 

3.6 Hillslope Mass Transport 

Sediment transport by “continuous” hillslope processes such as soil creep 
is modeled using the well-known hillslope diffusion equation (e.g., Culling, 
1960; McKean et al., 1993), 

zkzk
t
z

dd
2

creep

)( ∇=∇−−∇=
∂
∂

, 

where kd is a transport coefficient with dimensions of L2/T. Numerical 
solution to equation (7) is obtained using a finite-volume approach (Tucker 
et al., 2000). The net mass flux for a node is taken as the sum of the mass 
fluxes through each face of its Voronoi polygon (Eq (2)). For each pair of 
adjacent nodes, the gradient across their shared Voronoi polygon edge is 
approximated as the gradient between the nodes themselves. The total flux 
between each pair of nodes is thus equal to the topographic gradient between 
them multiplied by the width of their shared Voronoi edge, so that Eq (7) is 
approximated numerically as 

∑
=Λ

−=
∂
∂ iM

j
ijij
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t
z

1creep

, 

(7) 

(8) 
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where Sij = (zi - zj)/λij is the downslope gradient from node i to node j, λij is 
the distance between i and j (i.e., the length of the triangle edge connecting 
them), and wij is the width of the shared Voronoi polygon face (Fig. 3B). 

For steeper gradients, a nonlinear form of Eq (7) is arguably more 
appropriate to describe the effects of accelerated creep and intermittent 
landsliding (e.g., Anderson and Humphrey, 1990; Roering et al., 1999). 
Although this type of nonlinear rate law is not presently coded in CHILD, its 
incorporation would be straightforward. 

Note also that equation (7) is intended to model creep-type processes 
rather than wash erosion. Instead, wash and channel erosion are effectively 
lumped together under the same formulation, as described below. This 
approach has the obvious disadvantage that wash is effectively treated as a 
form of rill erosion in which rills have the same hydraulic geometry (i.e., 
width, depth, and roughness properties) as larger channels, with all the 
attendant limitations this implies. On the other hand, lumping rill and 
channel erosion in a single “runoff erosion” category has the advantage of 
simplicity: no extra parameters are needed to differentiate between hillslopes 
and channels (as is the case, for example, in the model of Willgoose et al., 
1991a), which emerge solely as a result of process competition (Kirby, 1994; 
Tucker and Bras, 1998). Thus, while we acknowledge a need for a more 
rigorous sub-model for wash erosion in the future, the treatment of wash as a 
general form of channel erosion seems justified given the aims of the model 
and the present uncertainty regarding the dynamics of channel initiation. 

3.7 Water Erosion and Sediment Transport 

At each node, the local rate of water erosion is equal to the lesser of (1) 
the detachment capacity, or (2) the excess sediment transport capacity. Both 
of these are represented as power functions of slope and discharge, and they 
are assumed to be mutually independent. Deposition occurs where sediment 
flux exceeds transport capacity (for example, due to a downstream reduction 
in gradient). The maximum detachment capacity depends on local slope and 
discharge according to 

b

b

b
p

cb
n

m

tbc S
W
QkkD 
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= θ , 

where Dc is the maximum detachment (erosion) capacity (L/T), W is channel 
width, θcb is a threshold for particle detachment (e.g., critical shear stress), 
and kb, kt, mb, nb, and pb are parameters. Note that with suitably chosen 

(9) 
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parameters, equation (9) can represent either excess shear stress (i.e., τ = bed 
shear stress, τcb = critical shear stress for detachment) or excess stream 
power (Whipple and Tucker, 1999). The shear stress formulation is similar 
to that used in the drainage basin evolution models of Howard (1994) and 
Tucker and Slingerland (1997), as well as a number of soil erosion models 
(e.g., Foster and Meyer, 1972; Mitas and Mitasova, 1998). If the Manning 
equation is used to model roughness, mb=0.6, nb=0.7, and kt=ρgn3/5, where ρ 
is water density, g is gravitational acceleration, and n is Manning’s 
roughness coefficient. If the Chezy equation is used, mb=2/3, nb=2/3, and 
kt=ρgC-1/2, where C is the Chezy roughness coefficient (for derivations, see 
Tucker and Slingerland, 1997; Whipple and Tucker, 1999). 

Channel width is computed empirically, using the well-known scaling 
relationships between channel width and discharge (Leopold and Maddock, 
1958; Leopold et al., 1964): 

 bs
bwbbb QkWQQWW ωω == ,)/(  

where Wb is bankfull channel width, Qb is a characteristic discharge (such as 
bankfull or mean annual), kw is bankfull width per unit scaled discharge, and 
ωb and ωs are the downstream and at-a-station scaling exponents, 
respectively. Although these laws were developed for alluvial streams, they 
appear to be applicable to other fluvial systems (e.g., Ibbitt, 1997) such as 
steep mountain channels (Snyder et al., 2000). 

The transport capacity for detached sediment material of a single grain 
size is based on a generalization of common bedload and total-load sediment 
transport formulas, which are typically expressed as a function of excess 
shear stress or stream power (e.g., Yang, 1996). For steady, uniform flow in 
a wide channel,  

f
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where Cs is transport capacity (L3/T) and kf, kt, mf, nf, and pf are parameters. 
As with equation (9), equation (11) can be expressed in terms of excess 
shear stress or stream power using suitably chosen values for kt, mf, and nf. 
For transport of multiple sediment size-fractions, an alternative approach 
based on the method of Wilcock (1997, 1998) is used (this is described 
below). 

Three end-member cases can arise from equations (9) and (11): 
detachment-limited behavior, transport-limited behavior, and mixed-channel 
behavior: 

(10) 

(11) 
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1. Detachment-limited: If the sediment transport capacity is everywhere 

much larger than the rate of sediment supply, the rate of water erosion is 
simply equal to the maximum detachment rate, 

c
b D
t
z

−=
∂
∂

, 

where zb represents elevation of the channel bed above a datum within the 
underlying rock column. This type of formulation has been used in a number 
of studies to represent bedrock channel erosion (or more generally, detach-
ment-limited erosion of cohesive, cemented, or non-granular materials) (e.g., 
Howard and Kerby, 1983; Seidl and Dietrich, 1992; Anderson, 1994; 
Howard et al., 1994; Moglen and Bras, 1995; Sinclair and Ball, 1996; Stock 
and Montgomery, 1999; Whipple and Tucker, 1999; Snyder et al., 2000). An 
important assumption is that the sediment flux has no direct control on the 
rate of incision, as long as there is sufficient capacity to transport the eroded 
material (cf. Sklar and Dietrich, 1998). Note that this case has the practical 
advantage of being efficient to solve numerically. Though widely used, 
however, the accuracy of this approximation for long-term stream profile 
development remains to be evaluated. 

2. Transport-limited: If sufficient sediment is always available for 
transport and/or the bed material is easily detached (i.e., high kb), streams are 
assumed to be everywhere at their carrying capacity. Under this condition, 
continuity of mass gives the local rate of erosion or deposition as 

x∂
∂

−
−=

∂
∂ WC

t
z sb /

)1(
1
ν

, 

where ν is bed sediment porosity (usually absorbed into the transport coeffi-
cient kf) and x is a vector oriented in the direction of flow. Transport-limited 
behavior has been assumed in a number of models (e.g., Snow and Slinger-
land, 1987; Willgoose et al., 1991a; Tucker and Bras, 1998; Gasparini et al., 
1999), though its applicability to bedrock streams has been questioned (e.g., 
Howard et al., 1994). 

3. Mixed-channel systems: The detachment and transport formulas imply 
a third category of behavior that arises under conditions of (1) active erosion 
into resistant material (e.g., bedrock) and (2) high sediment supply. Under 
these conditions, active detachment of bed material must occur (by 
definition), but the sediment supply rates are sufficiently high that the local 
rate of incision is limited by the excess transport capacity (e.g., Tucker and 
Slingerland, 1996). Stream channels falling into this category might be 

(12) 

(13) 
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expected to have (on average) a partial cover of alluvium over bedrock; we 
thus refer to streams falling into this category as mixed-channel systems 
(Howard, 1998). Under certain conditions, the transition point between one 
type of behavior (e.g. detachment-limited) and another (e.g. mixed) can be 
computed analytically. Mixed channel behavior is discussed in greater depth 
by Whipple and Tucker (in review). 

3.7.1 Example 

In the special case of a constant rate of surface lowering, equations (12) 
and (13) both imply a power-law relationship between channel gradient and 
contributing area (Willgoose et al., 1991b; Howard, 1994; Whipple and 
Tucker, 1999), which is consistent with river basin data (e.g., Hack, 1957; 
Flint, 1974). Figure 8 shows an example of such scaling for two simulated 
landscapes. The straight lines indicate the trend that would occur under 
purely transport-limited conditions (solid line; e.g., Willgoose et al., 1991b) 
and under purely detachment-limited conditions (dashed line; e.g., Howard, 
1994). Theoretical considerations suggest that longitudinal profile concavity, 
which is indicated by the slope of the lines on Figure 8, should generally be 
lower in transport-limited alluvial channels (Howard, 1994). The intersection 
of the two lines indicates the point at which the gradient required to transport 
eroded sediment becomes equal to the gradient required to detach particles. 
Upstream of this point, channel gradient is dictated by detachment capacity; 
downstream, the channel falls into the “mixed” category in which active 
incision occurs but the gradient is controlled by sediment supply. Under 
constant runoff, the transition point is abrupt (Fig. 8A), but in the more 
realistic case of variable flows, the transition is gradational and spread over 
two or more orders of magnitude in drainage area (Fig. 8B). This result 
implies that such detachment-to-transport transitions, even if they do exist, 
would be very difficult to identify on the basis of morphology alone (this of 
course excludes channel-type transitions that are forced by tectonic or other 
controls). 

3.8 Extension to Multiple Grain Sizes 

Size-selective erosion, transport, and deposition are important as agents 
that control the texture of alluvial deposits. Textural properties of ancient 
strata are important not only for the information they reveal about the 
geologic past (e.g., Paola et al., 1992; Robinson and Slingerland, 1998), but 
also for their control on the movement and storage of water and hydrocarbon 
resources (e.g., Koltermann and Gorelick, 1992). Perhaps surprisingly, 
recent work has also shown that the dynamics of size-selective erosion and 
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transport can have a significant impact on drainage basin architecture and 
evolution (Gasparini, 1998; Gasparini et al., 1999). Size-selective sediment 
transport and armoring can also exert important controls on the erosional 
history of artificial landforms such as mine tailing heaps, and are therefore 
important for engineering applications (Willgoose and Riley, 1998). 

To model size-selective erosion and deposition, CHILD uses a two-
fraction (sand and gravel) approach based on the bedload entrainment and 
transport functions developed by Wilcock (1997, 1998). The rock or 
sediment column underlying each node in the model contains a mixture of 
sand and gravel sediment fractions. An active layer of depth Lact defines the 
depth over which sediment near the surface is well mixed and accessible for 
active erosion and deposition (Gasparini, 1998; Gasparini et al., 1999). The 
transport capacities of the two size fractions are given by 
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where qsg and qss are the transport rates of gravel and sand, respectively 
(kg/ms), Cw is a dimensionless constant equal to 11.2, fg and fs are the 
fractions of gravel and sand in the bed, ρ is water density, s is the ratio of 
sediment and water density, g is gravitational acceleration, τ is bed shear 
stress, and τcg and τcs are the critical shear stresses needed to entrain gravel 
and sand, respectively. 

Wilcock (1997; 1998) analyzed the relative mobility of sand and gravel 
fractions in gravel-sand mixtures, and found that the initiation of motion 
threshold for both fractions approaches a constant (and minimum) value for 
mixtures containing more than about 40% sand. The threshold of motion 
criterion criteria used in CHILD’s gravel-sand transport module is based on 
a piecewise linear fit to the data of Wilcock (1997) (Gasparini et al., 1999). 

The active layer represents the depth over which active particle exchange 
takes place. For modeling instantaneous transport, the active layer is 
typically defined on the basis of grain diameter. For modeling average 
transport rates over the duration of one or many floods, this definition is 
inappropriate, because local scour and the movement of bars and bedforms 

(14) 

(15) 
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allow the flow to access significantly more near-bed sediment than simply 
the uppermost one or two grain diameters. Paola and Seal (1995) suggested 
that bankfull channel depth might be an appropriate choice for active layer 
thickness for calculating long-term average transport rates. However, in the 
absence of data on what controls the “effective mixing depth” over a given 
time period, we adopt here the simple approach of using an active layer of 
constant thickness. Sensitivity experiments by Gasparini (1998), which show 
little variation in equilibrium texture patterns with varying active layer 
depth, provide some justification for this approach, though we acknowledge 
a need for deeper understanding of this issue. 

Detachment of cohesive or intact sediment is assumed to be size-
independent and governed by Eq (9). When the multiple grain-size option is 
used, detached material is assumed to break down into a user-specified 
proportion of gravel and sand, which is then subject to differential 
entrainment and transport according to Eqs (14) and (15). 

3.9 Deposition and Stratigraphy 

There has been an increasing recognition of the importance of coupling 
between erosional and depositional systems (e.g., Humphrey and Heller, 
1995; Johnson and Beaumont, 1995; Tucker and Slingerland, 1996; 
Densmore et al., 1998). An important goal behind developing CHILD has 
been to create a system that can be used to investigate these interactions and 
their role in shaping the terrestrial sedimentary record. For this reason, 
CHILD includes a “layering” module that records depositional stratigraphy. 

Each node in the model is underlain by a column of material divided into 
a series of layers of variable thickness and properties. Physical attributes 
associated with each layer include the relative sand and gravel fractions (if 
applicable), the median grain size of each sediment fraction, and the material 
detachability coefficient, kb. These properties are assumed to be 
homogeneous within a given layer. The time of most recent deposition is 
also stored for each layer, so that chronostratigraphy can be simulated. 
Finally, each layer also records the amount of time it has spent exposed at 
the surface, which is useful for identifying periods of quiescence and may be 
applicable to modeling exposure-age patterns in conjunction with 
cosmogenic isotope studies. 

The active layer depth is fixed in time and space. When material is 
eroded from the surface, the active layer is replenished with material from 
the layer below. The active layer texture and time of surface exposure are 
then updated as a weighted average between the current properties of the 
active layer and those of the layer below. Bedrock is never mixed into 
sediment layers. When there are no sediment layers below the surface, the 
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active layer is depleted until no sediment remains and the channel is on 
bedrock. During deposition, material from the active layer is moved into the 
layer below before material is deposited into the active layer, so that the 
active layer depth remains constant. The layers below the active layer have a 
maximum depth; when this depth will be exceeded due to deposition, a new 
layer is created. 

3.9.1 Example 

Fault-bounded mountain ranges and alluvial fans in regions of tectonic 
extension are classic examples of close coupling between erosional and 
depositional systems (e.g., Leeder and Jackson, 1993; Ellis et al., 1999). 
Alluvial fan stratigraphy is shaped by a combination of forces, including 
extrinsic factors such as tectonic uplift/subsidence and climate change, and 
intrinsic factors related to the dynamics and geometry of sediment erosion, 
transport, and deposition. Numerical modeling of these systems can be used 
to evaluate the feasibility of conceptual models, to explore their sensitivity to 
external controls, and to suggest new hypotheses regarding the stratigraphic 
and geomorphic signatures of tectonic and climatic change. 

Figure 9 shows a simple example of a simulated mountain range bounded 
by an alluvial fan complex. In this example, we have chosen a simple 
experimental design in which a block consisting of a cohesionless sand-
gravel mixture rises vertically at a constant rate relative to an adjacent 
(fixed) basin surface and its associated baselevel. As one might expect, the 
simulation shows a set of alluvial fans that prograde across the basin surface 
(Fig. 9). A “wave” of sand-rich sediment progrades ahead of the advancing 
fan toes (Figs. 9A, B). Interestingly, size-selective transport occurs not only 
within the fan complex but also within the source terrain. Initially, finer 
material is removed from the surface of the rising block, leaving behind a 
coarsened layer of surface sediment that rims the headward-encroaching 
drainages. Thus, the grain-size patterns within the fan complex are 
influenced in part by sorting within the source terrain. Whether this effect 
occurs in nature must depend on the regolith thickness; while bare rock 
slopes offer little opportunity for grain-size fractionation, such fractionation 
has been observed to occur on soil-mantled, wash-dominated slopes (e.g., 
Abrahams and Parsons, 1991). 

Note that in this example no attempt is made to simulate either 
downstream flow branching or sheetflow; rather, flow is effectively spread 
across the fan surface through time as channels shift in response to 
depositional patterns. A transverse section across the fan complex (Fig. 10) 
reveals that the main fan bodies are, perhaps counter-intuitively, slightly 
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finer than the inter-fan areas. This behavior would have implications for 
fluid reservoir modeling, as it implies that in some cases inter-fan areas may 
have locally higher hydraulic conductivity. 

3.10 Lateral Stream Channel Migration (Meandering) 

Owing to the large difference in scale between individual stream 
channels and their drainage basins, channels are generally treated as one-
dimensional entities in landscape evolution theory. For many applications, 
this choice is entirely appropriate; for others, however, it is problematic 
because it neglects the role of floodplains as sediment buffers (e.g., Trimble, 
1999). This limitation is particularly severe in analyses of watershed 
responses to perturbations (e.g., Tucker and Slingerland, 1997). At the same 
time, the morpho-stratigraphic development of floodplains is an important 
problem in its own right (e.g., Mackey and Bridge, 1995; Moody et al., 
1999). These issues have motivated the development of a simple “rules 
based” model of channel meandering, based on the principle of topographic 
steering, which is capable of modeling channel planform evolution on time 
scales relevant to valley, floodplain, and stream terrace development 
(Lancaster, 1998; Lancaster and Bras, in press). 

Lateral channel migration is implemented in CHILD by first identifying 
main channel (meandering) nodes on the basis of a drainage area threshold. 
Lateral migration of these nodes occurs perpendicular to the downstream 
direction, and the rate is proportional to the bank shear stress: 

n̂Eζ̂ weff τ=  

where ζ̂  is the migration vector of the outer bank, τw is the bank shear stress 
determined by the meandering model of Lancaster and Bras (in press; see 
also Lancaster, 1998); n̂  is the unit vector perpendicular to the downstream 
direction; and Eeff is the effective bank erodibility, defined by: 
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where E0 is the nominal bank erodibility; H is water depth; hB is bank height 
above the water surface; and PH is the degree to which the effective bank 
erodibility is dependent on bank height, where 10 ≤≤ HP  (Lancaster, 1998). 
This bank height dependence directly couples topography and migration 
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rate. Each channel node in the model actually has both right and left bank 
erodibilities, and these values are determined from a weighted average of Eeff 
values calculated for neighboring nodes falling on either side of the line 
perpendicular to the downstream direction (Fig. 11). We write the effective 
erodibility at node i of the bank on the ê -side as 
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where ê  is the unit vector in the direction of either the left ( n̂ ) or right 
( n̂− ) bank; Eeff,i1 and Eeff,i2 are the effective erodibilities of the bank nodes 
with respect to node i; and d1 and d2 are the distances of the bank nodes from 
the line parallel to the unit vector, ê  (Fig. 11). 

We use the meandering model of Lancaster (1998) to find τw in (16) as a 
function of channel curvature upstream. Movement of a channel node 
indicates that the channel centerline has moved, i.e., that one bank has been 
eroded while deposition has occurred at the other. As the channel migrates, 
existing nodes are deleted from the moving channel’s path, and new nodes 
are added in the moving channel’s wake. Node movement and addition 
require re-determination of node stratigraphy. 

A flow chart in Figure 12 illustrates the implementation of meandering 
within the CHILD model. The discretization of meandering channel reaches 
is dependent on channel width and is, in general, different from the 
discretization of the surrounding landscape. This procedure is described in 
more detail in Lancaster (1998). 

3.10.1 Examples 

An example simulation incorporating the stream meander model is 
shown in Figure 13. Here the model is configured to represent an idealized 
segment of floodplain, with a large stream (point source of discharge) 
entering at the top of the mesh and exiting at the bottom. The hydrology and 
initial topography are patterned after Wildcat Creek, a 190 km2 drainage 
basin in north-central Kansas. In this example, the mainstream elevation is 
forced with a series of cut-fill cycles (representing millennial-scale climate 
impacts), while the stream planform is free to migrate laterally. Each point 
along the main channel is moveable. Dynamic remeshing is used to ensure 
that the mainstream is adequately resolved. Whenever a moving channel 
point comes very close to a fixed “bank” point, the latter is removed from 
the mesh. To ensure an adequate level of spatial resolution within the 
floodplain, a new point is added in the “wake” of a moving channel point 

(18) 
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whenever the moving point has migrated a given distance away from a 
previously stored earlier location (which is then updated). The net result is 
that the floodplain is modeled at a locally high resolution relative to the 
surrounding uplands (Fig. 13). 

A similar approach can be used to investigate the development of incised 
meanders in bedrock such as those of the Colorado Plateau (e.g., Gardner, 
1975) and the Ozark Mountains. Lancaster (1998) modeled the development 
of terrain under active uplift, incision, and stream meandering, and found 
that coupling between bank height and the rate of cut-bank erosion exerts an 
important influence on the resultant topography and channel planforms. 

3.11 Floodplains: Overbank Sedimentation 

Valley-fill sediments often contain an important record of paleoclimate, 
paleo-geomorphology, and prehistory (e.g., Johnson and Logan, 1990). Most 
studies of the formation and dynamics of river basins have treated streams as 
essentially one-dimensional conduits of mass and energy. Yet valley-fill 
sediments are inherently three-dimensional features, and to model their 
stratigraphy properly requires an alternative approach. The one-dimensional 
approach cannot, for example, resolve important aspects of alluvial 
stratigraphy such as the distribution of channel and overbank deposits (e.g., 
Mackey and Bridge, 1995). Motivated by this limitation, CHILD includes 
the capability to model overbank sedimentation using a modified form of 
Howard’s (1992) floodplain diffusion model. Under this approach, the rate 
of overbank sedimentation during a flood varies as a function of distance 
from a primary channel and local floodplain topography. Average rates of 
floodplain sedimentation are known to decay with distance from the source 
channel due to diffusion of turbulent energy. The local rate of sedimentation 
is also presumed to depend on the height of the floodplain relative to water 
surface height. During a given storm event, the rate of overbank 
sedimentation at a given point is 

( ) ( )λ−µ−η= /dzDOB exp  

where DOB is the vertical deposition rate (dimensions of L/T), z is local 
elevation, d is the distance between the point in question and the nearest 
point on the main channel, η is the water surface height at the nearest point 
on the main channel, µ is a deposition rate constant (T-1), and λ is a distance-
decay constant. “Main channel” is defined on the basis of a drainage area 
threshold; typically, the model would be configured with a large channel fed 
in as a boundary condition for this type of application, so that there would be 
no ambiguity about what constitutes a primary channel (e.g., Fig. 13). Water 
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surface height is computed as the sum of bed elevation, z, and water depth, 
H, using a simple empirical hydraulic geometry approach for H: 

  bs
bwbbb QkH,)Q/Q(HH δδ ==          

where Hb is bankfull channel depth, Qb is a characteristic discharge (such as 
bankfull or mean annual), kh is bankfull depth per unit scaled discharge, and 
δb and δs are the downstream and at-a-station scaling exponents, respectively 
(Leopold et al., 1964). Equation (19) is only applied for events in which H > 
Hb. 

3.11.1 Example 

Combining channel meandering and overbank deposition makes it 
possible to simulate the development of three-dimensional alluvial 
stratigraphic architecture, which has been the goal of a number of different 
models (e.g., Howard, 1992; Mackey and Bridge, 1995; Teles et al., 1998). 
The fill terraces depicted in Figure 13 are formed during times of rising 
baselevel along the main channel. Lateral channel migration etches out the 
fills during intervals of cutting. Inset terraces are formed during subsequent 
fill episodes (Fig. 13). Among other things, this type of stratigraphic 
simulation can provide a basis for developing and testing improved 
geostatistical methods for modeling 3D subsurface architecture (e.g., de 
Marsily et al., 1998). 

4. DISCUSSION: APPLICATIONS AND 
LIMITATIONS 

All models involve a tradeoff between simplicity and realism. What 
makes the CHILD model unique is its ability to examine interactions among 
a wide range of processes, in scenarios that range from simple to complex. 
The examples herein use simple, idealized scenarios to illustrate these 
processes. The model’s design reflects the fundamental recognition that the 
characteristics of one part of a river basin are determined in large part by the 
characteristics of the basin upstream and, to a lesser degree, downstream. 

The inclusion of many process modules and alternative parameterizations 
in one model (Fig. 2) is intended to enhance the researcher’s ability to 
address very simple and well-posed questions by carefully selecting a subset 
of process equations and configuring these with appropriate initial and 
boundary conditions. By comparing model behavior under varying levels of 

(20) 
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complexity and/or different process models, the validity and robustness of 
different simplifying assumptions can be tested. One can examine, for 
example, the consequences of relaxing the common assumption of 
homogeneous sediment size (Gasparini et al., 1999), or assess the 
appropriateness of using a “characteristic storm” parameter as a surrogate for 
time-varying rainfall and flood discharge (Tucker and Bras, 2000). 

CHILD has been developed as a framework for modeling changes in 
drainage basin terrain over a range of space and time scales. Although there 
are no explicit limits to spatial scale, the assumption of hydrologic steady 
state during storm events is most valid for relatively small watersheds (less 
than perhaps 100km2), in which the time of concentration is shorter than the 
duration of a typical storm. Similarly, the assumption of spatially uniform 
precipitation rate, infiltration capacity and soil transmissivity is only 
appropriate for small watersheds (although one might also wish to make 
similar assumptions in simple “what if” studies of large-scale landscape 
evolution). At the lower end of spatial scales, the approximation of steady, 
uniform unidirectional flow loses validity for the length scales on which 
momentum and backwater effects become important (on the order of 
decimeters to meters). The assumption of steady rainfall and runoff during 
storms also implies that the model is most applicable to time periods much 
longer than the duration of a single storm. The upper limit to time scale is 
dictated only by performance considerations, and in fact for certain 
applications it is feasible to magnify storm and interstorm durations to 
enhance computational speed. 

Distributed models necessarily involve a tradeoff between speed and 
resolution. The CHILD model’s TIN-based framework offers an advantage 
in this regard, because it makes it possible to vary spatial resolution as a 
function of dominant process or landscape position (Figs. 1 and 13). On the 
other hand, the use of variable spatial resolution complicates the inclusion of 
“scale-dependent physics” (i.e., equations whose rate constants depend on 
spatial scale). This may be a blessing in disguise, for although it makes the 
problem of calibration in engineering applications more difficult it also 
provides a disincentive to scale-dependent “tuning” of parameters. Use of a 
variable-resolution numerical mesh, if handled properly, may also help 
resolve certain scaling issues that arise as a result of averaging terrain 
properties over an arbitrary and fixed discretization scale. For example, with 
an irregular discretization method it becomes possible (at least in principle) 
to construct a discretized terrain surface that uses the minimum necessary 
number of computational points to accurately represent hillslope gradient at 
all points in a region of complex terrain. The TIN framework also opens the 
door to bridging the two fundamental and disparate scales in watershed 
hydrology, that of the channel and that of the basin as a whole. 



12. The Channel-Hillslope Integrated Landscape Development 
Model (CHILD) 

23

 
Although it is intended to serve a wide range of applications, the CHILD 

model’s roots lie in large-scale drainage basin morphology and evolution. 
The form of many of the equations used in CHILD reflects this emphasis. 
Thus, the sediment transport equations are based on formulas commonly 
used to predict bedload transport rates, and the model at this stage includes 
no explicit treatment of suspended or wash load (which are presumably of 
lesser importance in controlling stream gradients). Similarly, the model at 
present includes no expressions for landsliding or for eolian transport. The 
emphasis on physical rather than chemical process renders CHILD 
inapplicable in solution-dominated environments (e.g., karst terrain).  It 
should be emphasized, however, that CHILD is designed with extensibility 
in mind, and the modular design of the software reflects this (Tucker et al., 
2001). Recent efforts to adapt CHILD for applications in forestry (Lancaster 
et al., 1999) and flood hydrology (Rybarczyk et al., 2000) demonstrate the 
utility of constructing modular and extensible numerical modeling systems. 

There is no simple answer to the question of how to test and validate a 
model such as CHILD because it is in essence not one model but many, each 
with different assumptions, aims, and requirements. Ultimately, the basis for 
validation or rejection of a model should depend on the nature of the 
problem addressed. Nonetheless, it is worth noting that several methods for 
evaluating the predictions of landscape evolution theory have been advanced 
recently. Statistical approaches have been widely used to examine drainage 
network properties (e.g., Rodriguez-Iturbe and Rinaldo, 1997), although 
some network statistics suffer from a lack of discriminant ability (e.g., 
Kirchner, 1993). Experimental approaches have also been used (Hancock 
and Willgoose, in review). Arguably the most promising tests of landscape 
evolution theory come from settings in which paleo-topography (e.g., Stock 
and Montgomery, 1998) and driving factors such as uplift rate (e.g., Merritts 
and Vincent, 1989; Snyder et al., 2000) are independently known. Much can 
be learned by testing the morphologic predictions of landscape evolution 
models against observed terrain in regions where some type of equilibrium is 
believed to exist (e.g., Willgoose, 1994). The CHILD model, as with other 
models based on similar fluvial erosion formulations, can successfully 
reproduce theoretically predicted slope-area scaling under conditions of 
spatially uniform erosion rate (a form of equilibrium). This simply reflects 
the fact that the exponent terms in the fluvial transport and erosion terms can 
be chosen such that the model-predicted scaling under either equilibrium 
(uplift-erosion balance) or transient decline agrees with observed values 
(e.g., Willgoose et al., 1991a; Howard, 1994; Willgoose, 1994; Whipple and 
Tucker, 1999; Tucker and Whipple, in review). However, one disadvantage 
of testing models on the basis of equilibrium states, aside from the difficulty 
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in establishing the existence of such states in the first place, is the potential 
for equifinality (i.e., different processes may lead to the same outcome, as in 
the case of slope-area scaling discussed by Tucker and Whipple, in review). 

Landscapes characterized by a transient response to a known perturbation 
contain useful information about process dynamics that is often lost in 
equilibrium states (Tucker and Whipple, in review; Whipple and Tucker, in 
review). Hence, one of the key research needs is to identify transient 
landscapes in which knowledge of the nature and timing of the causative 
external perturbation, whether of tectonic, climatic, geomorphic, or human 
origin, can be obtained. For short-term phenomena such as gully 
development, there is a need for detailed monitoring to establish time 
sequences of landform development. 

5. SUMMARY AND CONCLUSIONS 

CHILD is a new computer model of drainage basin evolution that 
integrates a wide variety of processes, many of which have not been 
included in previous models of drainage basin evolution. The model is 
designed to serve as a general-purpose framework for investigating a range 
of issues in drainage basin geomorphology, with an emphasis on morpho-
logical development. Some components of the model, such as the treatment 
of channel and hillslope erosion, use an approach similar to that of existing 
models. The model also includes a number of new features and capabilities 
that are designed to foster the development of theoretical geomorphology by 
making it possible to investigate in greater detail the feedbacks between 
hillslope/channel hydrology and landscape evolution, and to examine 
coupling between erosional and depositional systems. The incorporation of 
(1) meandering and (2) floodplain deposition, which have not before been 
included in models of drainage basin evolution, makes it possible to 
investigate the development of alluvial stratigraphy in the drainage basin 
context. Other capabilities, which are unique in their combination, include 
(3) stochastic storm variability, with an explicit link to climate data; (4) both 
detachment- and transport-limited fluvial erosion, with transport of either 
single- or dual-size sediment; (5) explicit tracking of subsurface stratigraphy, 
including time of deposition, textural properties, and deposit exposure ages; 
(6) variable, triangulated discretization and adaptive remeshing, which allow 
detailed resolution of particular features and representation of horizontal 
surface motion; and (7) infiltration-, storage- and saturation-excess runoff 
mechanisms, the last of which provides a direct link between topography and 
hydrology. Other capabilities, including a dynamic vegetation component 
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(Tucker et al., 1999) and kinematic thrust-fault propagation, are under 
development and will be described elsewhere. 

To implement these capabilities, CHILD includes several process 
“modules.” In some cases, these represent alternative models for the same 
process (e.g., Hortonian versus saturation-excess runoff generation). 
Although the number of parameters in the model is potentially quite large, 
the many different capabilities and process equations are in fact developed 
with simplicity and flexibility in mind. CHILD’s extensible design facilitates 
the process of comparing alternative process models and conducting 
sensitivity experiments that address the basic (and important) questions of 
“what matters and when.” 

Although developed with an emphasis on research applications, CHILD’s 
more detailed treatment of hydrology also makes it well suited to potential 
applications in land management and erosion prediction. Most soil erosion 
models, such as USLE and WEPP, assume a one-dimensional and 
unchanging topography. These limitations, though appropriate for estimating 
soil loss under rill and interrill erosion, are poorly suited to modeling gully 
and channel incision, phenomena in which dynamic modification of 
landforms and flow aggregation play a central role. 
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FIGURE CAPTIONS 

Figure 1.  Example terrain simulations produced by CHILD. Thin solid lines are contours 
and heavy lines indicate drainage pathways. (A) simulation of gullying on an actual watershed 
(unnamed watershed on Fort Carson in the foothills of the Colorado Front Range near 
Colorado Springs). Inset shows a segment of the triangular mesh. (B) hypothetical fault-
bounded mountain range. (C) valley and floodplain simulation, illustrating meandering stream 
with variable-resolution mesh. (D) rising mountain block with alluvial fans. Scales in (B), 
(D), and (D) are nominally 10 km, 1 km, and 2.5 km, respectively. 

Figure 2. Components of the CHILD model. 

Figure 3. Elements of the irregular computational mesh, showing nodes (solid circles), 
triangle edges (black lines), and Voronoi polygons (gray lines). Each Voronoi polygon acts as 
a finite volume cell. (A) streamflow is routed downslope from node to node along triangle 
edges, following the route of steepest descent. (B) two-dimensional diffusive exchange of 
sediment between node N and its neighbors. The diffusive mass flux per unit width between 
any two nodes is computed using the gradient between them. Multiplying unit flux by the 
width of their shared Voronoi polygon edge gives the total mass exchange rate. 
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Figure 4. Schematic illustration of Poisson rectangular pulse rainfall model (after Eagleson, 
1978). 

Figure 5. Flow chart illustrating the sequence of computations in CHILD. 

Figure 6. Example of simulated gully erosion and healing in response to stochastic 
variations in rainfall intensity and duration. Here, a gully system forms and begins to heal on 
a planar slope (30 degrees, 100 by 100 meters) that is subjected to a series of random storm 
events. The landscape is highly sensitive to extreme events, owing to a large threshold for 
runoff erosion (τc) and a high soil erodibility coefficient (kb). (A) time series of rainfall events 
(durations not shown). (B) mean elevation of the surface through time, highlighting the 
episodic nature of denudation. Arrows indicate the times corresponding to plots C and D. (C) 
perspective plot of slope immediately after the last gully-forming episode. (D) perspective 
plot at the end of the simulation. (E) and (F) show contour plots at these two time slices. 
Equation set used in this run is –dz/dt = kb(τ-τc) (kb=1.6 x 10-5 m2 s kg-1), with τ = 
kt(Q/W)2/3S2/3 (Pa) (kt=6.2 x 104 Pa s2/3 m-4/3), τc = 20 Pa, and W = 0.001 Q0.5 with Q in m3/s. 
Rainfall parameters are 640.P =  mm/hr, 32=rT  hr, and 148=bT  hr; hillslope diffusivity 
(kd) is 0.01 m2/yr. 

Figure 7. The influence of runoff-production mechanism on terrain morphology. (A) 
simulated drainage basin under infiltration-excess (Hortonian) runoff production (Eq (3)). (B) 
simulated basin under saturation-excess runoff production, using the O’Loughlin (1986) 
model (Eq (6)). (C), (D) plots of surface slope versus contributing area for the two cases. The 
line in (D) represents the line of saturation for the mean-intensity storm. In these examples 
runoff erosion is modeled as SQdt/dz .50−∝ . Parameters are 92.P =  mm/hr, 5=rT  yr, 

95=bT  yr, kd = 0.01 m2/yr, U = 0.1 mm/yr, and in (B) T=105 m2/yr. 

Figure 8. Slope-area plots from two simulations illustrating a downstream transition from 
detachment-limited to transport-limited behavior under (A) constant runoff and (B) variable 
(stochastic) runoff. Both simulations are in equilibrium with a constant and spatially uniform 
rate of baselevel fall. The transport and erosion coefficients are adjusted so that the theoretical 
transition point occurs at the same drainage area in both cases. Although fluvial erosion 
theory predicts that such a transition should occur in many rivers, the result shown in (B) 
implies that transitions may be so smooth as to be undetectable in data. 

Figure 9. Example of a simulated mountain-fan system, showing progradation of a set of 
alluvial fans in response to block uplift along a vertical fault. The substrate is treated as a 
cohesionless sediment pile containing a mixture of sand and gravel sediment fractions. 
Shading indicates the relative proportion of sand in the uppermost (active) sediment layer, 
with lighter shades indicating higher sand fraction. (A) 20,000 years after onset of uplift; (B) 
40,000 years; (C) 100,000 years. Inset in (C) shows the location of cross-section in Figure 10. 
Uplift rate is 1 mm/yr, diffusivity is 0.01 m2/yr, and rainfall parameters are 11.P =  mm/hr, 

3=rT  yr, and 97=bT  yr. 

Figure 10. Stratigraphic cross-section through the fan complex in Figure 9. Section is taken 
parallel to the strike of the range through the center of the fan complex (indicated by a-a’ in 
Figure 9C). Black shading indicates less than 60% sand content. 
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Figure 11. Illustration of right bank ( n̂ê −= ) erodibility determination for node i. Eeff,i1 and 
Eeff,i2 are effective erodibilities with respect to node i at adjacent nodes that are distances d1 
and d2, respectively, from the line parallel to the unit vector, n̂− . In the coordinate system 
shown, the s-direction is parallel to the flow edge, and the n-direction is perpendicular to the 
flow edge. Delaunay triangulation is in thin solid lines, Voronoi diagram is in dashed lines, 
and flow edges are in heavy black. 

Figure 12. Flow chart showing the implementation of meandering. 

Figure 13. Simulation of channel meandering and floodplain development. (A) perspective 
view of simulated topography, highlighting stream pattern and development of terraces 
(elevations are interpolated to regular grid for plotting purposes). (B) view of triangulated 
mesh, showing densification in the area of the floodplain (see text for details). 


