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Abstract:
We develop a new method for analysis of meandering channels based on planform sinuosity. This analysis objectively
identifies three channel reach lengths based on sinuosity measured at those lengths: the length of typical, simple bends;
the length of long, often compound bends; and the length of several bends in sequence that often evolve from compound
bends to form multi-bend loops. These lengths, when normalized by channel width, tend to fall into distinct and clus-
tered ranges for different natural channels. Mean sinuosity at these lengths also falls into distinct ranges. That range is
largest for the third and greatest length, indicating that, for some streams, multi-bend loops are important for planform
sinuosity while, for other streams, multi-bend loops are less important. The role of multi-bend loops is seldom addressed
in the literature, and they are not well predicted by previous modeling efforts. Also neglected by previous modeling
efforts is bank-flow interaction and its role in meander evolution. We introduce a simple river meandering model based
on topographic steering that has more in common with cellular approaches to channel braiding and landscape evolution
modeling than to rigorous, physics-based analyses of river meandering. The model is sufficient to produce reasonable
meandering channel evolution and predicts compound bend and multi-bend loop formation similar to that observed in
nature in both mechanism and importance for planform sinuosity. In the model, the tendency to form compound bends is
sensitive to the relative magnitudes of two lengths governing meander evolution: (i) the distance between the bend
cross-over and the zone of maximum bank shear stress, and (ii) the bank shear stress dissipation length related to bank
roughness. In our simple model, the two lengths are independent. This sensitivity implies that the tendency for natural
channels to form compound bends may be greater when the banks are smoother. Copyright © 2002 John Wiley & Sons,
Ltd.
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INTRODUCTION

River meandering is a complicated process involving the interaction of flow through channel bends, bank
erosion, and sediment transport. Some aspects of this process are better understood than others. Studies at
the spatial scale of one to several bends (bend scale) and times that are short relative to the time from bend
inception to cut-off (bend lifetime) are relatively numerous and have led to a detailed understanding of flow
through channel bends and the interaction between that flow and the bed (e.g., Johannesson and Parker,
1989a,b,c; Smith and McLean, 1984; Nelson and Smith, 1989a,b; Blondeaux and Seminara, 1985; Seminara
and Tubino, 1989, 1992; Imran et al., 1999). The previous studies did not address the interaction between the
flow and the bank, the interaction that produces bank shear stress and bank erosion. Thorne and Osman
(1988) did study the effect of bank stability on bed form and, thus, one effect of the bank on the flow, but
Thorne and Furbish (1995) showed that bank roughness affects the flow field and its interaction with the
bank. Nelson and Smith (1989b) noted that consideration of lateral boundary effects would be necessary to
extend their model to simulation of meandering.
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2 S.T. LANCASTER AND R.L. BRAS
Another relatively poorly understood aspect of meandering is channel planform complexity. Meandering
produces channel planforms that are relatively simple and recognizable at the bend scale but relatively com-
plex and baffling at the scale of many, e.g., 100, bends (reach scale). A major contributor to planform com-
plexity is compound bend formation, i.e., the “cumuliform” shapes noted by Howard (1992), the “compound
bends” observed by Brice (1974), and the “lobing” and “double heading” studied by Hooke and Harvey
(1983) among others. We define compound bends as bends that evolve from simple bends to develop a cur-
vature reversal in the course of the bend (Figure 1). Brice (1974) showed with successive aerial photographs
of the White River, IN, that a compound bend evolved from a simple bend following rapid downstream
migration of the upstream bend. Our own analysis of aerial photography of the Ellis River, ME, shows this
mechanism for two compound bends (Figure 1). Compound bends often lead to bend separation and the for-
mation of larger cumuliform shapes, i.e., multi-bend loops (Figure 1), and Hooke and Harvey (1983) stated,
“[Compound bend formation] is the major process whereby new bends develop.”

A new measure of channel planforms, developed herein, shows that the phenomenon of compound bend
and multi-bend loop formation (i) occurs at characteristic channel length-scales, (ii) adds secondary and ter-
tiary sinuosity to the planform, and (iii) varies in its importance among different streams. 

Previous studies have reached different conclusions regarding the mechanism for compound bend forma-
tion. Hooke and Harvey (1983) and Thompson (1986) both asserted that a single pool-riffle unit cannot be

(a)

(b)
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Figure 1. Examples of channel planforms and evolution at two locations, (a) and (b), on the Ellis River in Maine. Channels were extracted
from aerial photographs and superimposed; light gray is 1943, dark gray is 1965, and black is 1992; flow is from left to right. In (a) a
series of simple bends and one compound bend (*) form a multi-bend loop (between # symbols). In (a) and (b) the time sequence shows
compound bend formation. In both cases, cut-off of an upstream bend and a subsequent ‘wave’ of rapid downstream migration lead to
curvature reversal at (*), where curvature was low before the cut-off occurred. Field reconnaissance at site (a) confirmed that the bank
material is homogeneous
Copyright © 2002 John Wiley & Sons, Ltd. Hydrol. Process. 16, 1-26 (2002)



MODEL FOR RIVER MEANDERING 3
sustained in longer bends but disagreed on the mechanism for subdivision of pools by new riffles, the former
attributing it to the non-sustainability of the necessary secondary flows and the latter to the kinematics of
sediment transport. Both studies concluded that the formation of new pool-riffle sequences preceded, and
caused, compound bend formation. Ferguson (1984) found that compound bends could be the result of
decreasing migration rate with curvature greater than some threshold, as observed by Nanson and Hickin
(1983), but the physical mechanism for this decrease is uncertain. Furthermore, Furbish (1988) shows that
the same data confirm that migration rate increases monotonically with curvature when bend length is
accounted for, and Furbish (1991) concludes that there is no preferred, shorter bend length except in rare
cases when the transverse bed slope is unusually small. This result would imply, however, that compound
bend formation is rare, contrary to the observations of many authors including those cited above. 

Previous physically based models, in their simplest forms, do not reproduce compound bends or cumuli-
form shapes. Sun et al. (1996) invoked heterogeneity of bank erodibility to explain cumuliform shapes. They
ran the Johannesson and Parker (1989a) model with an uncorrellated random field of heterogeneous bank
erodibility and produced something like compound bends, but these bend shapes did not evolve from simple
bends by the mechanism observed by Brice (1974) and shown in Figure 1. Tao Sun and others (T. Sun, per-
sonal communication, 2000) have recently modeled meandering near the resonance between forced and
alternate bars to produce long bends that divide into smaller ones, but the simulated phenomenon lacks the
double heading characteristic of most compound bend formation and noted by previous authors. 

We hypothesize that this phenomenon emerges from first-order, inherent dynamics, particularly from the
interactions between the flow and banks. A field study by Thorne and Furbish (1995) showed that removing
the roughness of natural banks has a large and measurable effect on the dynamics of the high-velocity core
of the flow in the channel. The interaction between the core and the bank produces the shear stress that
erodes the bank. Previous modelers have often made the simplifying assumption that bank shear stress is
proportional to the near-bank downstream velocity perturbation but have found the problem of the bank’s
influence, in turn, on the near-bank, shear stress-producing flow intractable (e.g., Johannesson and Parker,
1989a; Smith and McLean, 1984; Nelson and Smith, 1989b). We address this issue with a simple conceptual
model.

The complicated processes of channel and landscape evolution are commonly represented by simple mod-
els that are based on both the process physics and a set of rules. For example, the cellular braided-stream
model of Murray and Paola (1994, 1997), the alluvial basin model of Paola et al. (1992), and the landscape
evolution models developed by many authors, e.g., Willgoose et al. (1991), Howard (1994), and Tucker and
Slingerland (1994), all combine physics and rules to describe complex systems. A main objective of such
modeling is to enhance our understanding of natural phenomena rather than to develop fully descriptive the-
ories. 

In this paper, we develop a simple model of river meandering that also combines physics and rules. It is
based on the concept of topographic steering (Dietrich and Smith, 1983). The model treats the flow’s inter-
action with the bank through an independent, adjustable parameter and is sufficient to produce realistic
meandering (i.e., it provides “sufficient conditions for meandering” as in Howard and Knutson (1984)). We
justify the model with this sufficiency. Our goal is to simulate realistic meandering over times appropriate
for landscape evolution, not to perform a rigorous, physical derivation. The model produces cumuliform
shapes and compound bends without invoking heterogeneity or other second-order effects. 

MODEL

In nearly all models of meander migration, local migration depends on upstream conditions, usually plan-
form curvature. This is true of both the kinematic models of, e.g., Beck (1984), Ferguson (1984), Howard
and Knutson (1984), and Furbish (1991) and the physical models of, e.g., Johannesson and Parker (1985,
1989a,b,c). In the model presented here, local migration also depends on upstream conditions, but here that
condition is the shoaling driven by changing bed topography and, ultimately, changing planform curvature.
Copyright © 2002 John Wiley & Sons, Ltd. Hydrol. Process. 16, 1-26 (2002)



4 S.T. LANCASTER AND R.L. BRAS
Also as in previous models, we assume that migration is equivalent to bank erosion on one side of the chan-
nel, i.e., that deposition “keeps up” with erosion. 

Field studies have shown that the primary downstream current erodes the bank when the flow’s high
velocity core nears the bank (e.g., Hasegawa, 1989; Pizzuto and Meckelnburg, 1989). Secondary flows
“steer” the high velocity core by effecting a lateral transfer of downstream momentum. Dietrich and Smith
(1983) found in a natural channel that the largest lateral transfer of downstream momentum was related to
bed topography and called this phenomenon “topographic steering”. Smith and McLean (1984) showed ana-
lytically that topographic steering terms in the momentum equations were too large to be treated as perturba-
tions, in contrast to Johannesson and Parker (1989a,b,c), who treated all secondary flows as perturbations on
the mean behaviour. Our river meandering model is based on a simplified representation of the topographic
steering mechanism. 

We begin by estimating the lateral flow acceleration due to bed topography. We conceptualize the channel
as a series of cross-sections separated by downstream incremental distances, ds, and each cross-section
divided into two half-sections (Figure 2). As in most river meandering models, the bed topography is repre-
sented by a transverse bed slope at each cross-section. Where the transverse bed slope increases from one
cross-section to the next, the cross-sectional area of the inner (point bar side) half-channel decreases. This
decrease necessitates downstream and lateral flow accelerations. For simplicity, we neglect the downstream
acceleration. We estimate the lateral unit discharge, i.e., the product of flow velocity and depth, at the chan-
nel centerline (n = 0) due to changing bed topography in the downstream direction from continuity and by
assuming a uniform downstream velocity field and a straight channel:

(1)qn U
sd

dAcs–=

Figure 2. (a) The channel is conceptualized as a series of idealized cross-sections, e.g., i and i+1. (b) We employ a curvilinear coordinate
system as shown. Each cross-section has an average depth, H, and is divided into two half-sections of width, b/2, and successive sections,
e.g., i and i+1, are separated by an incremental downstream distance, ds. The cross-sectional area of the inner half-channel, i.e., for n<0,
is Acs. (c) The change in half-channel cross-sectional area between sections, e.g., i and i+1, is dAcs. A lateral momentum transfer, qnV,
results from the downstream rate of change of the inner half-channel cross-sectional area, dAcs/ds
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MODEL FOR RIVER MEANDERING 5
where U is the average downstream flow velocity (downstream discharge and channel width are constant
and given as input parameters; downstream velocity and flow depth are determined by continuity and the
Manning equation); and Acs is the inner half-channel (n < 0) cross-sectional area (Figure 2). In calculating Acs,
we assume that lateral and downstream variations in free surface elevation are negligible relative to lateral
and downstream variations in bed elevation. Field data support this assumption (e.g., Dietrich and Whiting,
1989). The uniform downstream velocity assumption is a gross simplification of the flow field but is used
here only to estimate the lateral discharge. This assumption would cause over-estimation of qn if the flow
accelerated over the point bar. Field evidence, however, indicates that the flow over the point bar actually
decelerates (Dietrich and Smith, 1983). Thus, our uniform downstream velocity assumption should actually
result in under-estimation of qn by Equation (1). The straight channel assumption will lead to greater over-
prediction of the lateral discharge for greater channel curvature. The lateral unit discharge, or the discharge
per unit downstream distance, is positive when Acs is decreasing downstream. At the channel centerline (n =
0) the depth-averaged lateral velocity is

(2)

where H is the average flow depth and the depth at the centerline (Figure 2b). The magnitude of the force
increment associated with the lateral transfer of downstream momentum from the inner to the outer half-sec-
tion over an incremental downstream distance, ds, is

(3)

where ρ is the water density, and the force increment is parallel to the n-axis. Substituting Equations (1) and
(2) into Equation (3), we re-write the lateral force increment as

(4)

Field observations by Dietrich and Smith (1983) and Dietrich and Whiting (1989) indicate that this topo-
graphic steering effect is most important for the shallower flow over the point bar, i.e., as the transverse bed
slope is increasing in magnitude downstream. Where the pool is becoming shallower but the flow is still
deep, i.e., transverse bed slope is decreasing in magnitude downstream, downstream acceleration of the flow
is most important. Therefore, we only calculate dFn where the magnitude of the transverse bed slope is
increasing. While forces other than that represented by Equation (4) undoubtedly affect the flow, e.g., forces
associated with bed friction and helical flow, our aim is to see whether topographic steering alone is suffi-
cient for meandering. 

The lateral forcing, estimated by Equation (4), steers the high velocity core toward the bank, and the core
makes its closest approach to the bank at some point downstream, i.e., after some downstream lag. Where
the core nears the bank, the lateral gradient of downstream velocity and, thus, the shear stress at the bank
increase. Any large gradient and, thus, bank shear stress are dissipated through boundary layer development
and, thus, decrease in the absence of a forcing toward the bank. We assume that the bank shear stress may be
calculated from the lateral forcing of Equation (4) because this forcing pushes the high velocity core against
the bank. To incorporate Equation (4) in a river meandering model, we must represent both the downstream
lag and the dissipation of the force through bank shear stress. We approximate the downstream lag by find-
ing the downstream distance traveled by a particle moving from one side of the channel to the opposite bank
at the lateral and downstream velocities, or 

(5)

where B is
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6 S.T. LANCASTER AND R.L. BRAS
where hi is the depth at the inner bank. The second term on the right hand side of Equation (6) leads to
smaller B when the transverse bed slope is larger and  when the bed is flat, i.e., hi = H. 

We represent the dissipation at the bank by spreading the force over the bank’s area. This spreading is uni-
form vertically, i.e., we divide by the bank height, and Gaussian up- and downstream. We find the bank
shear stress at a point along the channel, s, by summing the contributions from force increments generated at
upstream points, :

(7)

where λ is the shape parameter of the Gaussian function (or the standard deviation for a Gaussian probability
distribution); we use the average flow depth, H, for the bank height for simplicity; and we use a summation
rather than an integral to emphasize our rules-based, numerical approach rather than continuum mechanics.
According to Equation (7), each lateral force increment, dFn( ), is modified by a Gaussian function cen-
tered about a point that is downstream of its generation point, ,by the lag distance, L( ). The Gaussian is
appropriate because it represents the increasing bank shear stress as the high velocity core moves toward the
bank and the decreasing bank shear stress as the lateral gradient of downstream velocity decreases down-
stream. Thus, λ is like a “dissipation length scale”. This dissipation length scale parameterizes bank rough-
ness: where bank roughness is larger, lateral force increments are dissipated over a smaller distance, and
therefore λ should be smaller. Thorne and Furbish (1995) found that, when the outside bank of a sharply
curved meander bend was changed from rough to smooth, the part of the bend experiencing near-bank high
velocity flow was extended both upstream and downstream. They found some additional effects of bank
roughness change, but for the purposes of our simple model our choice of a dissipation length scale parame-
terizing bank roughness seems reasonable in light of these results. Note that this parameterization of bank
roughness allows the lag distance and the dissipation length scale (L and λ, respectively) to vary indepen-
dently. 

Bank erosion and, thus, channel migration rate, , is proportional to the bank shear stress, τw (positive on
the left bank, negative on the right), and perpendicular to the downstream flow direction:

(8)

where E is the bank erodibility coefficient; and  is the unit vector perpendicular to the downstream direc-
tion (Figure 2b).

Equations (4) and (6) require knowledge of the bed topography. Most river meandering models represent
the bed topography by a transverse bed slope. Some models (e.g., Johannesson and Parker, 1989a; Seminara
and Tubino, 1992) solve the fully coupled flow and sediment transport equations for bed topography. Others,
including Ikeda (1989) and Odgaard (1982, 1986), approximate bed topography by finding the equilibrium
slope needed to balance the force of gravity and the shear stress of the secondary helical, or curvature-
induced, flow on the grains at the bed. We follow the latter approach.

Ikeda’s (1989) formula for the transverse bed slope, evaluated at the channel centerline, is
(9)

(10)

where C is channel centerline curvature;  Ψ and Ψcr are dimensionless shear stress and critical shear stress,
respectively; and Cf is the friction factor. Ikeda’s formula is appropriate for gravel-bed channels. For sand-
bed channels, we have modified Ikeda’s formula to account for the effect of form drag (Engelund and
Hansen, 1967). The modified form of Equation (10) is
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(11)

where  is dimensionless skin friction; κ is von Karman’s constant (=0.4); and d50 is the median bed mate-
rial grain diameter (Lancaster, 1998). The above form is used in the simulations presented herein. 

We used data from Muddy Creek, Wyoming (Dietrich and Smith, 1983, 1984; Dietrich and Whiting,
1989), for the model parameter set (Table I) and testing of the transverse bed slope model. The transverse
bed slope predicted by Equations (9) and (11) is compared to cross-sections measured by Dietrich and Smith
(1983) in Figure 3. Ikeda’s (1989) unmodified formula, i.e., Equation (10), predicted a transverse bed slope
approximately twice as large. We predict the same transverse bed slope for each of the three sections
because the curvature is the same at each. In reality, the transverse bed slope seems to “lag” behind the pre-
diction such that the predicted slopes are too large for the first two sections (see Zhou et al., 1993, for a pre-
diction of this “phase lag”). Johannesson and Parker (1989c) used an effective curvature that integrated
contributions from upstream to account for this lag. Typically, this lag is quite small, and, for our simple
model, such complication is probably unwarranted. 

Our solution for the transverse bed slope is most accurate at the channel centerline and least accurate at the
banks, and this error is larger for larger transverse bed slopes. Ikeda (1989) solved for the bed topography
over the entire channel width and showed that the transverse bed slope is lower over the point bar and in the
deepest part of the pool, especially when grain size is allowed to vary laterally. For large transverse bed
slopes we constrain the bed topography by “chopping off” any part of the bed that would rise above the free
water surface and, to keep the cross-sectional area constant, any part of the pool that would sink below twice
the average depth (Figure 4a). These constraints are arbitrary but effectively limit the error for large trans-
verse bed slopes, i.e., . 

When Equations (4), (9), and (10) are applied to an ideal, sine-generated channel centerline, the lateral
force increment’s maximum magnitude is similar to that of the bottom shear stress integrated over a channel
increment (Lancaster, 1998). This result is consistent with the findings of Dietrich and Smith (1983) and
Dietrich and Whiting (1989) that these two forces are of similar magnitude and indicates that our representa-
tion of the lateral forcing is accurate to within an order of magnitude. 

We use a finite difference method to solve for the lateral migration (Equation 8) at discrete points along a

K Ψ′
Ψ
------ Ψ′

Ψcr
--------- 0.2278

κ
---------------- 11.0Ψ′H

Ψd50
---------------------- 

 ln 0.3606–=

Ψ′

ST 2H b⁄>

Table I. Default parameter values used in model simulationsa

a. Discharge, width, roughness, grain size, and valley slope are held con-
stant during the simulation; depth, channel slope, and radius of curvature
are given for reference. All parameters except the dissipation scale, λ, and
the nominal discretization, ∆s, are derived from the Muddy Creek, WY,
data published by Dietrich and Smith (1983, 1984) and Dietrich and Whit-
ing (1989).

Parameter Value

Discharge, m3/s 1.6
Channel width, b, m 5.5
Average depth, H, m 0.5
Manning roughness 0.036
Median grain size, d50, mm 0.7
Channel slope 0.0014
Valley slope 0.0021
Radius of curvature, 1/C, m 8.0
Dissipation scale, λ, m 8.0
Nominal discretization, ∆s, m 2.8
Copyright © 2002 John Wiley & Sons, Ltd. Hydrol. Process. 16, 1-26 (2002)



8 S.T. LANCASTER AND R.L. BRAS
stream reach. Initially, the distance between channel points is the nominal discretization (Table I). As the
channel points move apart, new points are added between any two points when they are farther apart than
twice the nominal discretization. This scheme should result in an average discretization of 1.5 times the
nominal value. The initial stream in the examples presented in this paper is small-amplitude brown noise in a
nearly straight line down the valley axis (see, e.g., Howard and Knutson, 1984). Discharge, roughness, grain
size, width, and valley slope are input parameters and are constant in both space and time (Table I). Channel
slope is constant in space but changes in time with the sinuosity. 

An example of model meander evolution for short time and channel length is shown in Figure 5. The
model meander bends appear realistic in their form and behaviour: small bends migrate downstream, larger
bends migrate laterally, and one bend becomes compound in the penultimate time slice. As we will show in
a later section, such compound bends may separate into distinct bends and lead to multi-bend loop forma-
tion.

ANALYTICAL METHOD

We present here a new sinuosity-based method for analyzing planforms of meandering channels. Channel
sinuosity is usually presented as a single number, but the value of that number will vary with measurement

0

-1

-3 -2 -1 0 1 2 3

section 14

section 18

section 19b

n, meters

z,
 m
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Figure 3. Comparison of observed and predicted bed topographies for Muddy Creek channel cross-sections measured by Dietrich and
Smith (1983). Section number is increasing downstream, and all three are in the same bend. Radius of curvature at the three sections and
used in the prediction is from Table I

Figure 4. Illustration of constraints on bed topography for large transverse bed slope
Copyright © 2002 John Wiley & Sons, Ltd. Hydrol. Process. 16, 1-26 (2002)



MODEL FOR RIVER MEANDERING 9
location and channel length. Howard and Hemberger (1991) introduced statistics for measuring contribu-
tions to sinuosity at different length-scales, the half-meander, full-meander, and residual sinuosities, while
Andrle (1994, 1996) developed a method for identifying multiple scales of planform curvature. Our new
method measures the average sinuosity and its variability over the whole possible range of lengths for a
given reach. Objective criteria then identify particular channel lengths at which contributions to sinuosity are
important and what those contributions are. 

For every pair of points along a discretized channel both the downstream distance, , and the straight-line
distance, r, between the points are measured. The ratio of these distances is the sinuosity. These sinuosity
measures are binned according to channel length, , and the mean and variance of the measures in each bin
are calculated. We may, then, express the bin means and variances as functions of channel length, :

(12)

(13)

where  is the length of the channel segment; r(s, s+ ) is the straight-line distance between the segment’s
end points at s and s+ ; and the angle brackets indicate the expected value for all possible values of s. To
facilitate comparisons across different stream sizes, we normalize the -axis by mean channel width. The
mean sinuosity, µS, should generally increase with increasing , from unity for adjacent points to the total
reach sinuosity. This increase may not be monotonic because of the statistical nature of the quantity, but it
will be nearly monotonic. 

For a random walk, allowed to cross itself and with no characteristic length scale governing its course, sin-
uosity mean and variance increase as power laws of  until  approaches the total walk length. For a
meandering channel with a characteristic length or lengths, the sinuosity mean and variance will reveal those
lengths and their importance to planform sinuosity, as we will show in the next section. 

The next step in the analysis involves objective identification of characteristic lengths. As the measure-
ment length increases and approaches the length of single bends, the mean sinuosity increases, and the rate

s′

s′
s′

µS s′( ) s′
r s s s′+,( )
------------------------〈 〉=

σS
2 s′( ) s′

r s s s′+,( )
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〈 〉=

s′ s′
s′
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s′
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Figure 5. Meander evolution with default parameters (Table I) except for λ=4m for a total of 1 time unit. Channels are shown every 0.1
time unit, and several time slices are overlain. The first time is shown as a dashed line. Subsequent times are shaded triplets where darker
is later
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10 S.T. LANCASTER AND R.L. BRAS
of its increase also increases because typical channel segments tend to curve back on themselves as measure-
ment length increases. As measurement lengths surpass the typical bend length, mean sinuosity may con-
tinue to increase, but the rate decreases because at least some channel segments stop curving back on
themselves. The length of simple bends, , will be identified by that decrease in slope. At greater lengths
many measurements will have moderate sinuosity and encompass more than one bend, but some measure-
ments will encompass longer, particularly sinuous bends and loops that will weight the mean toward larger
values and make the sinuosity variance large. At such lengths there will be peaks in σS

2( ) and, possibly,
corresponding inflections in µS( ). The first such peak in σS

2( ) will identify the length, . This length
will likely be that of particularly long simple or compound bends. If the first peak in σS

2( ) is not the larg-
est, then the largest peak in σS

2( ) will identify a length we will call . Otherwise  will be identified by
the next-largest peak in σS

2( ). This last length, , will likely correspond to multi-bend loops that make
important contributions to total sinuosity. The lengths defined above represent a simple and objective set of
criteria for determining characteristic length-scales. Plots of mean sinuosity at each length versus the lengths
themselves will facilitate comparison among planforms and detection of similar, or dissimilar, features. In
order to determine what the above lengths represent, we will find examples of planform features, such as
individual bends, that have the same length as the identified length-scales. 

ANALYSIS OF NATURAL CHANNELS

The natural channels analyzed are listed in Table II and shown in Figure 6. We selected reaches of Alaskan
streams that are: (i) single-threaded, i.e., not braided; (ii) intensely meandering; and (iii) unconfined by ter-
races or valley walls. The channel centerlines were digitized by hand from topographic maps. To eliminate
errors and bias, we corrected the digitizations by visually comparing the digitized and mapped planforms
and moving or deleting points as necessary. We measured channel width at many locations ( ) along
each reach from the topographic maps with the digitizer and calculated the mean and standard deviation of
those measurements (Table II).

The results of the sinuosity analysis are shown in Figures 7, 8, and 9 and Table III. The sinuosity means
and variances are plotted versus the normalized length of the measurement in Figure 7, and the points,
µS( ), µS( ), and µS( ), are also shown. Noteworthy features of these plots are the breaks in, or level-
ing off of, increasing mean sinuosity with increasing reach length, often more than one for a stream reach.
The lengths where these breaks occur correspond to peaks in sinuosity variance. Thus, by using the σS

2 peaks
as indicators of characteristic lengths, we are finding lengths demarcating breaks in increasing µS. In other

s′sb

s′
s′ s′ s′v1

s′
s′ s′v2 s′v2

s′ s′v2

N 50>

s′sb s′v1 s′v2

Table II. Meandering stream reaches

Stream reach Quadrangle map(s) (all 
AK)

Mean channel 

width , 
meters

Reach length, 
channel 
widths

Preacher Creek (PC) Ft. Yukon (A-2) 1300

Takotna River (TAR) Iditarod (C-2) 650

North Fork Kuskokwim River, McKinley (KRMC) Mt. McKinley (D-6) 460

Melozitna River (MR) Melozitna (B-3) 990

Teklanika River (TER) Fairbanks (B-5, B-6) 1100

Dishna River (DR) Ophir (C-3) 510

Birch Creek (BC) Ft. Yukon (A-2) 1160

North Fork Kuskokwim River, Medfra (KRME) Medfra (B-2, B-3) 380

σ±

31.2 7.0±
33.9 12.0±
38.3 7.4±
46.2 16.0±
48.0 16.6±
50.4 13.7±
57.7 14.1±
95.5 24.1±
Copyright © 2002 John Wiley & Sons, Ltd. Hydrol. Process. 16, 1-26 (2002)Innoko River (IR) Ophir (C-3) 370113.0 18.0±



MODEL FOR RIVER MEANDERING 11
words, these lengths represent important contributions to planform sinuosity. 
The mean sinuosity at the three identified channel lengths, , , and , for all the channels are plot-

ted as µS( ), µS( ), and µS( ) in Figure 8 and tabulated in Table III. This plot shows that all three sets
of points fall in distinct clusters. The smallest lengths, , and corresponding mean sinuosities are most
tightly clustered:  channel widths; and . Next, the points corresponding to
intermediate lengths, , are less tightly clustered:  channel widths; and .
Finally, the longest lengths, , are least tightly clustered:  channel widths; and

. 
Representative parts of the channels corresponding to the lengths, , , and , are shown for two of

the reaches, KRMC and MR, in Figure 9, which shows that, for these two streams,  does, as predicted,
correspond to the typical length of simple bends;  corresponds the length of long, often compound,
bends; and  corresponds to the length of multi-bend loops, as with KRMC, or particularly sinuous bend
sequences that may include multi-bend loops, as in MR. 

s′sb s′v1 s′v2
s′sb s′v1 s′v2

s′sb
11 s′sb 23≤ ≤ 1.4 µS s′sb( ) 1.7≤ ≤

s′v1 23 s′v1 45≤ ≤ 1.9 µS s′v1( ) 2.5≤ ≤
s′v2 44 s′v2 120≤ ≤

2.3 µS s′v2( ) 3.5≤ ≤
s′sb s′v1 s′v2

s′sb
s′v1

s′v2

PC KRMC DRTER BC KRMEMRTAR IR

0 5000 10000 meters

Figure 6. Meandering Alaskan streams used in the analysis. Flow is from top to bottom

Table III. Summary of natural stream analysis: lengths, in channel widths, and 
mean sinuosities at those lengths

Stream reach µS( ) µS( ) µS( )
PC 19 1.6 26 1.9 91 2.3
TAR 19 1.5 33 2.1 78 2.7
KRMC 18 1.7 31 2.3 120 2.8
MR 23 1.5 40 2.2 120 3.0
TER 13 1.6 23 2.1 80 2.5
DR 22 1.7 45 2.5 73 2.6
BC 19 1.5 33 2.1 91 3.3
KRME 11 1.4 28 2.4 44 2.5
IR 18 1.5 36 2.4 120 3.5

s′sb s′sb s′v1 s′v1 s′v2 s′v2
Copyright © 2002 John Wiley & Sons, Ltd. Hydrol. Process. 16, 1-26 (2002)
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Note that the relative importance of the contributions to sinuosity at the three lengths varies among
streams (Figure 7). In fact, µS( ) differs only slightly from µS( ) for three of the natural streams, TER,
DR, and KRME, and for two of those, TER and DR, the choice of  is relatively arbitrary. This fact indi-
cates significant natural variation in the importance of multi-bend loops to planform complexity. 

MODEL RESULTS AND ANALYSIS

Channels simulated with the model of Johannesson and Parker (1989c) (JP model) (see appendix) are shown
in Figure 10. Analysis of these simulated planforms is shown in Figures 11 and 12 and tabulated in Table IV.
The mean sinuosity lacks the multiple prominent breaks that were found for the natural channels but does
have some breaks in its rate of increase with measurement length. These slope breaks correspond to peaks in

s′v2 s′v1
s′v2

1

2

3

4 PC

0

2

4

TAR KRMC

1

2

3

4 MR

0

2

4

TER DR

1

2

3

4 BC

10
0

10
1

10
2

10
3

0

2

4

KRME

10
0

10
1

10
2

10
3

IR

10
0

10
1

10
2

10
3

s' in channel widths

S

2
S

S

2
S

S

2
S

Figure 7. Sinuosity mean and variance versus normalized reach length for the meandering streams listed in Table II and shown in Figure
6. Mean sinuosity versus length-scales, i.e., µS( ), µS( ), and µS( ), are also shown as open circles, diamonds, and squares,
respectively

s′sb s′v1 s′v2
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MODEL FOR RIVER MEANDERING 13
the sinuosity variance, as with the natural channels. For the most part, points for the three lengths and corre-
sponding mean sinuosities are clustered, as in the natural channels. One of the  points has significantly
higher length and sinuosity than the others. This point is for the first time slice, before cut-off for many of
the first “generation” of bends, and, so, the channel is especially sinuous at this time, and most of the bends
are long. At subsequent times the points are clustered at sinuosities similar to the corresponding points for
the natural channels but shorter lengths. Points corresponding to  are clustered at lengths similar to natu-
ral channels but higher sinuosity. Points corresponding to  have sinuosities similar to natural channels but
shorter lengths. Note that difference between model and natural  values is much greater than the differ-
ence between model and natural  values. Comparison of Figures 9 and 10 reveals that features corre-
sponding to  are different in these natural and simulated channels:  for the natural channels
corresponds to multi-bend loops or sequences of bends;  for the JP model channels corresponds to long,
sinuous, single bends. 

Simulated channel evolution with the new model and default parameters (Table I) is shown in Figure 13.
The model produces complicated meandering patterns that resemble natural forms. Specifically, the model
produces simple and compound bends and multi-bend loops that resemble natural ones (Figure 14). Figure

s′sb

s′v1
s′v2

s′v2
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s′v2
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s' in channel widths
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(s'  )S v1
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Figure 8. Mean sinuosity versus length-scales of first µS slope decrease, first σS
2 peak, and largest or next-largest σS

2 peak for natural
channels

Table IV. Summary of analysis of channel planforms simulated with the
JP model: lengths, in channel widths, and mean sinuosities at those lengths

Time µS( ) µS( ) µS( )
20 17 2.3 21 2.7 47 2.9
40 12 1.8 21 2.5 28 2.7
60 10 1.6 30 2.8 57 3.4
80 10 1.5 28 2.6 43 3.0

100 10 1.5 32 2.7 43 3.1

s′sb s′sb s′v1 s′v1 s′v2 s′v2
Copyright © 2002 John Wiley & Sons, Ltd. Hydrol. Process. 16, 1-26 (2002)



14 S.T. LANCASTER AND R.L. BRAS
15 shows the sinuosity mean and variance for these model channels. Total sinuosities are at the upper range
of those of the natural channels. As for the natural channels, µS often has multiple breaks corresponding to
σS

2 peaks, but these breaks in µS are less well defined for the simulated channels than for some of the natural
channels. As with the natural channels, points in the plot of mean sinuosities at the different lengths, ,

, and , are clustered (Figure 16 and Table V). The model  values are somewhat smaller than those
of the natural channels, but mean sinuosities at those lengths are similar. Similarly, the model  values are
smaller than for natural channels, but the sinuosities are similar. Interestingly, the µS( ) points fall on a dis-
tinct trend that goes through the natural µS( ) points, but the latter are arranged more nearly vertically. As
stated above, it is likely that this scatter in mean sinuosity reflects natural variation in multi-bend loops’
importance to planform sinuosity. The model points represent a single case, and µS( ) variation represents
changes over time, not in characteristics as with the natural channels. The larger  values indicate that
model multi-bend loops tend to get longer than natural multi-bend loops, e.g., in Figure 14(c).

Varying λ has a significant, visible effect on the simulated channel planforms (Figure 17). Decreasing λ
by one-half from its default value produces a less sinuous channel planform and apparently suppresses
multi-bend loops’ importance to planform sinuosity (Figure 17a). There is some difference in the clustering
of µS( ) and µS( ) points between these two cases, but the major difference is in the µS( ) points: the
points for smaller λ are generally shifted back along the trend to lower lengths and sinuosities relative to the
points for default λ (Figure 18). From this shift we infer that decreasing λ also decreases the importance of
multi-bend loop formation to planform sinuosity, and this inference is consistent with visual assessment of
the planform. Note that decreasing λ increases bank shear stress (Equation 7) and, thus, typical migration
rates relative to the default case. We can be certain, therefore, that the smaller-λ simulation had ample time
to develop multi-bend loops if it were so inclined. 

s′sb
s′v1 s′v2 s′sb

s′v1
s′v2

s′v2

s′v2
s′v2

s′sb s′v1 s′v2

0 5000 10,000 meters

Melozitna River

North Fork Kuskokwim River, Mc.

0 5000 meters

(a)

(b)

Figure 9. Illustration of the forms represented by the three channel length-scales shown in Figure 8 and Table III for two of the Alaskan
stream reaches, (a) North Fork Kuskokwim River, McKinley, and (b) Melozitna River. Filled regions with different shades correspond to
the three channel length-scales (Figure 8): white is , light gray is , and dark gray is s′sb s′v1 s′v2
Copyright © 2002 John Wiley & Sons, Ltd. Hydrol. Process. 16, 1-26 (2002)



MODEL FOR RIVER MEANDERING 15
The effect of increasing λ by a factor of ~2 from its default value is to make the simulated meander pattern
appear unrealistic and, at later times, quite sinuous (Figure 17b). Many bends are sickle-shaped, with the
convex side facing upstream. None of the natural streams in Figure 6 have bends with similar shapes, and we
have not observed such shapes in nature. Mean sinuosities at the lengths, , , and , are also unusual
(Figure 18). The µS( ) points are clustered at small lengths and sinuosities because of the prevalence of

s′sb s′v1 s′v2
s′sb

0 1000 meters500

0 500 meters

time:

20

40

60

80

100

Figure 10. Simulation with the JP model and default parameters. At top, channels at 20 (solid) and 100 (dotted) time units are
superimposed. Below, a part is enlarged and shown at 20, 40, 60, 80, and 100 time units, from top to bottom. For all but the last time, the
next time is superimposed as a dotted line. In the last time slice, filled regions with different shades correspond to the three channel
length-scales (Figure 12 and Table IV): white is , light gray is , and dark gray is s′sb s′v1 s′v2
Copyright © 2002 John Wiley & Sons, Ltd. Hydrol. Process. 16, 1-26 (2002)
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small, sickle-shaped bends. The µS( ) points have widely varying sinuosities and do not generally fall
along the trend of the other points. This variation is partly due to increasing sinuosity with time and the lack
of a distinct second σS

2 peak at the first time (Table V) because the larger λ-value decreases bank shear
stresses (Equation 7) and, thus, migration rates relative to the other simulations. 

DISCUSSION

Our simple meandering model reproduces an observable, quantifiable phenomenon, compound bend/multi-
bend loop formation. Our new sinuosity-based channel planform analysis measures the prevalence of this
phenomenon in both natural and model channels. Moreover, our model predicts that a larger bank shear
stress dissipation length scale, which corresponds to smoother banks, promotes compound bend formation.
The mechanism by which this occurs is provided by the field experiment of Thorne and Furbish (1995), who
found that smoother banks made for a larger dissipation length scale and reasoned that smoother banks
should lead to more asymmetric, downstream bend migration. From observing model and natural channel
evolution we have found that compound bends are usually formed in bends with a mid-bend section of low
curvature when an upstream bend migrates rapidly downstream and, thus, “disturbs” the downstream bend.
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Figure 11. Analysis for simulations with the JP model and default parameters (Table I and Figure 10). Sinuosity mean and variance versus
normalized reach length for the simulated channels at times 20, 40, 60, 80, and 100 model time units, as labeled
Copyright © 2002 John Wiley & Sons, Ltd. Hydrol. Process. 16, 1-26 (2002)



MODEL FOR RIVER MEANDERING 17
This disturbance is realized in the form of a curvature reversal where it was previously small, and, thus, a
compound bend is formed. This curvature reversal may then develop into a rapidly downstream migrating
bend of its own. Thus, the compound bend separates and becomes a multi-bend loop. Natural and model
examples of compound bend formation are shown in Figures 1 and 5, respectively. Given the findings of
Thorne and Furbish (1995) and the similarity between the model and observed natural mechanisms for com-
pound bend formation, our model provides a reasonable, qualitative picture of compound bend formation’s
sensitivities. A quantitative evaluation of λ’s variation with bank roughness is, however, beyond the scope of
this work.

Both the present model and the JP model use upstream characteristics to determine migration at down-
stream points, but only the present model produces compound bends as described above. In the JP model,
migration at a point is most strongly influenced by local curvature, and the effect of upstream points
decreases downstream with a constant, uniform length scale. In the present model, migration at a point is
most strongly influenced by along-stream curvature variation at some distance upstream, and the effect of
that variation decreases downstream with a constant, uniform length scale. However, the distance, L, from
the curvature variation to the downstream locus of its maximum effect is neither constant nor uniform but,
rather, varies inversely with the magnitude of the curvature variation. A sequence of bends may be relatively
stable and favor longer, slowly migrating bends until their configuration changes radically, e.g., due to a cut-
off, at which point the configuration of downstream bends can destabilize in favor of smaller bends with
greater magnitudes of along-stream curvature variations and, therefore, smaller downstream lags, L. Our
results show that this scenario is favored when the bank shear stress dissipation length scale is larger.
Recently, Tao Sun (personal communication, 2000) has modeled meander migration under conditions close
to the resonance between forced and alternate bars. Under these conditions, instabilities develop that lead to
compound bend formation, though not the double-heading produced by the present model and observed in
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Figure 12. µS( ), µS( ), and µS( ) for natural channels (open symbols) and channels simulated with the JP model and default
parameters (black symbols)
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Figure 13. Simulation with default parameters (Table I). At top, channels at 40 (solid) and 200 (dotted) time units are superimposed.
Below, a part is enlarged and shown at 40, 80, 120, 160, and 200 time units, from top to bottom. For all but the last time, the next time is
superimposed as a dotted line. In the first time slice, filled regions with different shades correspond to the three channel length-scales
(Figure 16): white is , light gray is , and dark gray is s′sb s′v1 s′v2
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nature. We speculate that the interactions between a fixed alternate bar wavelength and a varying forced bar
wavelength could lead to instabilities similar to those described above for the present model. The basic JP
model presented here cannot produce these instabilities because it lacks such wavelength interactions. 

(a) (b) (c)

(d) (e) (f)

Figure 14. Examples of model channel forms from the simulation of Figure 13: (a) simple bend; (b) compound bend; and (c) multi-bend
loop; and natural channel forms from the Kuskokwim and Melozitna Rivers, Alaska: (d) simple bend; (e) compound bend; and (f) multi-
bend loop. Flow is from left to right.
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Figure 15. Analysis for simulations with default parameters (Table I and Figure 13). Sinuosity mean and variance versus normalized
reach length for the simulated channels at times 40, 80, 120, 160, and 200 model time units, as labeled. 
Copyright © 2002 John Wiley & Sons, Ltd. Hydrol. Process. 16, 1-26 (2002)



20 S.T. LANCASTER AND R.L. BRAS
Variations of parameters other than λ could affect the propensity for compound bend formation by chang-
ing the downstream lag, L (Equation 5). Specifically, valley slope, SV, and bed material median grain diame-
ter, d50, affect L, and lag could be sensitive to nominal discretization, ∆s. The sensitivity of compound bend
formation to these parameters is summarized in Table VI. Compound bend formation is relatively insensitive
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Figure 16. µS( ), µS( ), and µS( ) for natural channels (open symbols) and channels simulated with default parameters (black
symbols)

s′sb s′v1 s′v2

Table V. Summary of model stream analyses: lengths, in channel widths, and mean 
sinuosities at those lengths

Run Time µS( ) µS( ) µS( )

default parameters 40 9.0 1.6 15 1.9 120 3.2
80 7.0 1.5 19 2.2 33 2.5

120 7.0 1.4 21 2.1 65 2.8
160 9.0 1.6 17 2.1 220 3.6
200 7.0 1.5 15 2.0 280 3.8

λ=4.0m 40 6.9 1.6 19 2.4 29 2.5
80 4.9 1.4 13 2.0 23 2.4

120 7.0 1.6 19 2.3 31 2.4
160 4.9 1.4 27 2.5 52 2.7
200 4.9 1.4 15 2.1 48 2.7

λ=15m 40 5.2 1.4 20 2.0 120 2.1a

a. Not really a second peak in sinuosity variance.

80 5.1 1.3 20 2.0 57 2.7
120 5.2 1.4 13 1.8 92 3.8
160 5.2 1.4 13 1.8 80 3.4
200 3.1 1.2 32 2.4 100 3.3

s′sb s′sb s′v1 s′v1 s′v2 s′v2
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to changes in SV because of the weak dependence of L on friction slope, Sf, and large variations in sinuosity
and, thus, Sf over time. Likewise, transverse bed slope’s sensitivity to grain size is also weak (Equation 11),
and, therefore, compound bend formation’s sensitivity to grain size is weak. Though the nominal discretiza-
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(a)

Figure 17. Simulations showing sensitivity to the parameter, λ. Model channel evolution with (a) λ = 4.0m; and (b) λ = 15m. For (a) and
(b), at top, channels at 40 (solid) and 200 (dotted) time units are superimposed. Below, a part is enlarged and shown at 40, 80, 120, 160,
and 200 time units, from top to bottom. For all but the last time, the next time is superimposed as a dotted line. 
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tion could potentially affect the downstream lag, L, we found that finer discretization led to smaller bends
but no change in compound bend formation. The discretization’s affect on the ‘texture’ of the simulated
form is not unusual to this model. In our own experience with landscape evolution models the horizontal dis-
cretization of topography affects simulated landscape texture such that finer discretizations can lead to
higher drainage densities (Lancaster, 1998). 
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Figure 17. (Continued)
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CONCLUSIONS

The key results are: 

1.Our planform analysis reveals that in many natural meandering streams multi-bend loops, which result 
from formation and division of compound bends, are important contributors to planform sinuosity. 
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Figure 18. µS( ), µS( ), and µS( ) for channels simulated with λ = 4.0m (open symbols), λ = 8.0m (default, gray symbols), and λ =
15m (black symbols)
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Table VI. Summary of compound bend formation’s sensitivity to parameters through
downstream lag, L

Parameter Relationship to L Effect of increase on compound bend formation
SV Slight increase

d50 Sub-linear Slight decrease
∆s Possibly, None

L Sf
0.35–∼

L s∆∼
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2.Previous, physics-based models, e.g., the JP model, do not accurately reproduce this contribution. 
3.Our new model, with its simplified process representation, is sufficient to produce realistic meander evolu-

tion, during which compound bend and multi-bend loop formation emerge as primary mechanisms of 
planform evolution. 

4.The model predicts that compound bend and multi-bend loop formation are sensitive to the interaction 
between two important lengths, the downstream lag between the bend entrance and the zone of maximum 
bank shear stress, L, and the distance over which that shear stress is dissipated, λ. Specifically, larger val-
ues of λ, which correspond to smoother banks, lead to greater importance of multi-bend loop formation to 
planform sinuosity. 

The implications for natural streams are that (i) multi-bend loops may result from primary process mecha-
nisms rather than secondary phenomena, such as bank heterogeneity or alternate bars, and (ii) the prevalence
of multi-bend loop formation may be sensitive to bank roughness. Our analysis measures the prevalence of
multi-bend loop formation, and bank roughness can be measured in the field or, perhaps, inferred from char-
acteristics, such as bank vegetation, detectable with remote sensing. These implications, therefore, represent
a testable hypothesis motivating future work. 
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APPENDIX: THE JP MODEL

The JP Model

The JP model assumes bank shear stress and channel migration are proportional to the near-bank flow
velocity perturbation: 

(A1)

(A2)

, , (A3)

where we have made one simplification from Johannesson and Parker (1989c): we have substituted local
curvature, C, for the effective curvature integral in the argument of the second integral in Equation (A1).
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This substitution makes the JP model more directly comparable to ours, and A.D. Howard (personal commu-
nication, 1996) reports that the use of effective curvature rather than local curvature has an insignificant
effect on model behaviour. 
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