
Critical Tokunaga Branching Processes 0

Critical Tokunaga Branching

Processes

Yevgeniy Kovchegov
Oregon State University

Joint work with
Ilya Zaliapin

University of Nevada, Reno



Critical Tokunaga Branching Processes 1

Introduction.

Let T be a random rooted tree that is also reduced,
i.e., has no vertices of degree two.

Horton pruning: removes the leaves and their parental
edges from T , followed by series reduction (removing
each degree-two non-root vertex by merging its adja-
cent edges into one).

Horton pruning induces the Horton-Strahler orders.

The Horton-Strahler order of T is defined as the mini-
mal number of Horton prunings necessary to eliminate
the tree T .

We let Nk[T ] denote the number of branches of order
k in T .
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Critical Tokunaga process.

For parameters � > 0 and c > 1, a continuous-time multi-type
branching process S(t) is a critical Tokunaga process if

• It starts (t = 0) with a single progenitor, whose Horton-
Strahler order is K � 1 with probability 2�K.

• A branch of order j  K produces o↵spring (side branches) of
every order i < j with rate � (c� 1) c�i.

• A branch of order j terminates with rate � c1�j.

• At its termination time, a branch of order j � 2 splits into two
independent branches of order j � 1.

• A branch of order j = 1 terminates without leaving o↵spring.

We write S(t)
d⇠ STok(t; c, �).

Theorem. For c = 2, S(t)
d⇠ STok(t; 2, �) is a continuous-time

critical binary Galton-Watson process with intensity �.
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Critical Tokunaga process.

Critical Tokunaga processes satisfy a number of self-
similarity and invariance properties as observed in the
following publications:

• Y. K. and Ilya Zaliapin, “Random Self-Similar Trees:
A mathematical theory of Horton laws” Probability
Surveys Vol. 17 (2020), 1–213

• Y. K. and Ilya Zaliapin, “Random self-similar trees
and a hierarchical branching process” Stochastic Pro-
cesses and their Applications Vol. 129, Issue 7 (2019),
2528–2560

• Y. K. and Ilya Zaliapin, “Tokunaga self-similarity
arises naturally from time invariance” Chaos Vol. 28,
041102 (2018)

Let µK denote the tree measure induced by the critical
Tokunaga process conditioned on having order K.
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A Markov tree process.

Next, we construct a discrete time Markov tree process
�
⌥K

 
K2N

such that each ⌥K is distributed as a tree induced by the critical

Tokunaga process conditioned on having order K, i.e. ⌥K
d⇠ µK.

Let XK = N1[⌥K] (number of leaves) and YK = length(⌥K).

• ⌥1 is I-shaped tree of order one, with X1 = 1 and Y1
d⇠ Exp(�).

• Conditioned on ⌥K, tree ⌥K+1 is obtained as follows:

(1) Obtain ⌥0
K by multiplying the edge lengths in ⌥K by c, while

preserving the combinatorial shape.
(2) Attach new leaf edges to ⌥0

K at the points sampled with a
homogeneous Poisson point process with intensity �(c � 1)c�1

along the carrier space ⌥0
K.

(3) Attach a pair of new leaf edges to each of the leaves in ⌥0
K.

The lengths of all the newly attached leaf edges are i.i.d. expo-
nential random variables with parameter �.
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Proving the Strong Horton Law via Martingales.

We prove the Strong Horton Law with Horton exponent R = 2c.

Lemma.The sequence

MK = R1�K
�
XK + �(c� 1)YK

�
with K 2 N

is a martingale with respect to the Markov tree process
�
⌥K

 
K2N

.

Theorem. Suppose STok(t; c, �) is the distribution of a critical
Tokunaga process and

�
⌥K

 
K2N

is the corresponding Markov

tree process. Then,
Nk[⌥K]

N1[⌥K]
a.s.! R1�k as K ! 1.

Recall that µK denotes the tree measure induced by the critical
Tokunaga process conditioned on having order K.

Strong Horton law for branch numbers. For any ✏ > 0,

µK

⇣���Nk[T ]

N1[T ]
�R1�k

��� > ✏
⌘

! 0 as K ! 1.
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