Yevgeniy Kovchegov

Department of Mathematics Oregon State University

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Outline

2 Mixing time

- Definition
- Coupling
- Super-fast coupling

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Result.

About

Outline

- 2 Mixing time
 - Definition
 - Coupling
 - Super-fast coupling

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Result.

About

Paper.

This presentation is based on joint work with R.Burton.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

About

History

Diaconis and Shahshahani (early 80's)

The mixing time for shuffling a deck of *n* cards by random transpositions is of order $O(n \log(n))$ with cut-off asymptotics at $\frac{1}{2}n \log(n)$.

Method used: relatively rarified mathematical residential district of representation theory.

(日) (日) (日) (日) (日) (日) (日)

About

The Problem

Open problem (Y.Peres)

Provide a coupling proof of $O(n \log(n))$ mixing rate.

Continuous time: $\langle \mathbf{a} \rangle$, $\mathbf{b} \rangle$ has rate $\frac{2}{n^2}$, i.e. $\langle \mathbf{a} \rangle$, $\mathbf{b} \rangle$ and $\langle \mathbf{b} \rangle$, $\mathbf{a} \rangle$ happen with rate $\frac{1}{n^2}$ each. Transposition $\langle \mathbf{a} \rangle$, $\mathbf{a} \rangle$ has rate $\frac{1}{n^2}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Mixing time

Outline

2 Mixing time

- Definition
- Coupling
- Super-fast coupling

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Result.

Mixing time

Definition

Definition of Mixing Time

Total variation distance:

$$\|\mu - \nu\|_{TV} := \frac{1}{2} \sum_{x} |\mu(x) - \nu(x)|$$

Mixing time: process $\{X_t\}$ with stationary distribution π . If $X_t \sim \nu_t = \nu_0 P_t$,

$$t_{mix} := \inf \left\{ t : \| \nu_t - \pi \|_{TV} \le \frac{1}{4}, \text{ all } \nu_0 \right\}$$

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日

Mixing time

Coupling

Mixing time via coupling

 $X_t \sim \nu_0 P_t$ and $Y_t \sim \mu_0 P_t$.

If $T_{coupling}$ is the coupling time for (X_t, Y_t) , then

$$\|
u_0 P_t - \mu_0 P_t\|_{TV} \le P[T_{coupling} > t]$$

Goal: bound $P[T_{coupling} > t]$ for all μ_0 . Here $\max_x \|\nu_0 P_t - x P_t\|_{TV} \ge \|\nu_0 P_t - \pi\|_{TV}$ as

$$\sum_{\mathbf{x}} \pi(\mathbf{x}) \| \nu_0 \mathbf{P}_t - \mathbf{x} \mathbf{P}_t \|_{TV} \geq \| \nu_0 \mathbf{P}_t - \pi \|_{TV}$$

by convexity of $f(x) = \|\nu_0 P_t - x P_t\|_{TV}$.

Mixing time

Coupling

Notations

- $<\cdot,\cdot>$ transpositions
- < **a**, $\cdot >$ transposition initiated by card **a**
 - the coupled process

 $\ll \cdot, \cdot \gg$ - transpositions

$$s$$
 in $\begin{pmatrix} A_t \\ B_t \end{pmatrix}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Mixing time

Coupling

Coupling #1. (Aldous and Fill) $\ll [\mathbf{a}], i \gg$: moves card $[\mathbf{a}]$ to location *i* in both processes, A_t and B_t . Mixing: order $O(n^2)$ instead of $O(n \log n)$;

$$E[T_{coupling}] \approx \sum_{d=2}^{n} \frac{n^2}{d^2} \approx \left(\frac{\pi^2}{6} - 1\right) n^2$$

Problem: slows down significantly when the number of discrepancies is small enough,

Coupling #2. (equivalent to prev.):

- applying transposition \ll **a**, *i* \gg *if* **a** *is not coupled*,
- applying transposition \ll **a**, **b** \gg *if* **a** *is coupled*

Mixing time

Coupling

Group invariance

 X_m is a Markov Chain on a discrete group *G*. The chain is **group invariant** if

$$dist(\gamma X_{m+1}|X_m = \alpha) = dist(X_{m+1}|X_m = \gamma^{-1}\alpha)$$

for all $\gamma, \alpha \in S_n$.

In other words,

label-to-label $\ll [\mathbf{a}], [\mathbf{b}] \gg$ can be ignored.

Reason: don't change cycle structure.

The situation is invariant under label-to-label transpositions.

If label-to-label $\ll [\mathbf{a}], [\mathbf{b}] \gg$ is applied before label-to-location $\ll [\mathbf{b}], i \gg$. We do not relabel, and do not reselect *i*.

Mixing time

Super-fast coupling

Vocabulary.

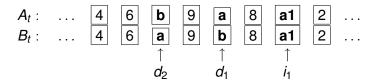
association map - hidden association between positions/locations in the top process and positions/locations in the bottom process that will be used to establish the rates for the coupled process

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Mixing time

Super-fast coupling

Two discrepancies (d = 2) at d_1 and d_2 :



Label-to-location coupling:

$$E[T_{coupling}] = \frac{n^2}{4}$$
 - too large.

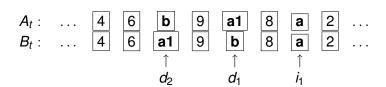
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Mixing time

Super-fast coupling

Jump
$$\ll$$
 a, $i_1 \gg$ of **a** to random location i_1 at exponential time t_1 :
From

to

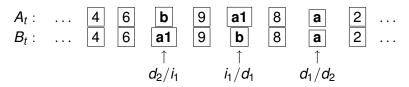


Mixing time

Super-fast coupling

Different way of saying the same:

Start with



◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

where at time t_1 the locations relabel according to

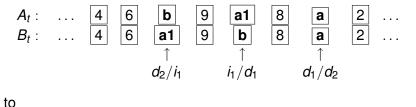
$$\begin{array}{c} d_1/d_2 \longrightarrow i_1 \\ i_1/d_1 \longrightarrow d_1 \\ d_2/i_1 \longrightarrow d_2 \end{array} .$$

Mixina time

Super-fast coupling

Different way of saying the same:

Jump $\ll [\mathbf{a}], i_1 \gg \text{at time } t_1 \sim \text{exponential } (\frac{1}{n}).$ From



to



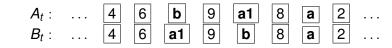
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mixing time

Super-fast coupling

The Association Map.

The following association map will determine jumps of **a1**.



Card **a1** will jump to position i_2 on the assoc. map at time t_2 , even if $t_2 < t_1$.

(日) (日) (日) (日) (日) (日) (日)

Mixing time

Super-fast coupling

Now $i_2 \neq i_1^*$ and

$$t_2 \sim exponential\left((1-1/n)\cdot \frac{1}{n}\right)$$

 \ll **a1**, $i_1^* \gg = \ll$ **a1**, **a** \gg is label-to-label, we can skip.

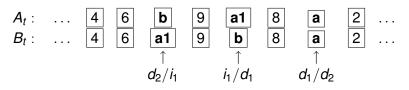
If $i_1 = d_1$ or d_2 , discrepancies cancel at t_1 ; if $i_2^* = d_1^*$ or d_2^* , discrepancies cancel on the assoc. map at t_2 . If $t_1 < t_2$, assoc. map \rightarrow real picture at t_1 , we create one more assoc. map.

Mixing time

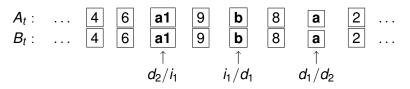
Super-fast coupling

Case $t_2 < t_1$, and $i_2^* = d_2^*$. On association map:

Start with



At time *t*₂:



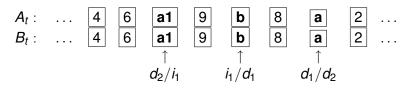
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mixing time

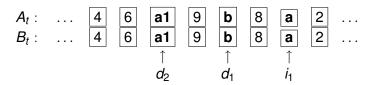
Super-fast coupling

Case $t_2 < t_1$, and $i_2^* = d_2^*$. On association map:

At time *t*₂:



At time t_1 :



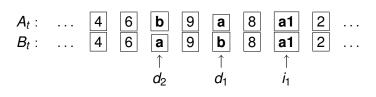
◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

Mixing time

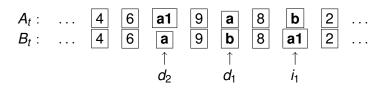
Super-fast coupling

Case $t_2 < t_1$, and $i_2^* = d_2^*$. Same evolution, original association:

Start with



At time *t*₂:

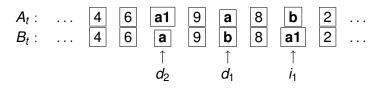


Mixing time

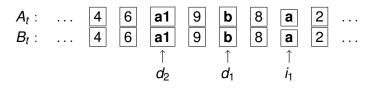
Super-fast coupling

Case $t_2 < t_1$, and $i_2^* = d_2^*$. Same evolution, original association:

At time *t*₂:



At time t_1 :



Mixing time

Super-fast coupling

Faster coupling.

The new coupling time for two discrepancies:

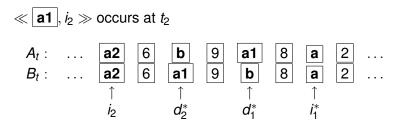
$$E[T_{coupling}] pprox rac{n^2}{8}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mixing time

Super-fast coupling

Chain of association maps.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

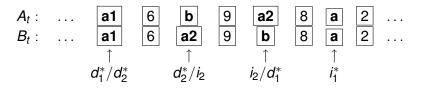
 d_1^* is i_1/d_1 before t_1 , and d_1 after t_1 ; d_2^* is d_2/i_1 before t_1 , and d_2 after t_1 ; i_1^* is d_1/d_2 before t_1 , and i_1 after t_1 .

Mixing time

Super-fast coupling

Chain of association maps.

New association map:



(日) (日) (日) (日) (日) (日) (日)

where at t_2 ,

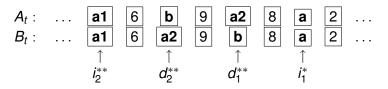
$$\begin{bmatrix} d_1^*/d_2^* \longrightarrow i_2 \\ i_2/d_1^* \longrightarrow d_1^* \\ d_2^*/i_2 \longrightarrow d_2^* \end{bmatrix}.$$

Mixing time

Super-fast coupling

Chain of association maps.

a2 will do label-to-location jump w.r.t. the following assoc. map



(日) (日) (日) (日) (日) (日) (日)

 d_1^{**} is i_2/d_1^* before t_2 , and d_1^* after t_2 ; d_2^{**} is d_2^*/i_2 before t_2 , and d_2^* after t_2 ; i_2^{**} is d_1^*/d_2^* before t_2 , and i_2 after t_2 . $\ll \boxed{\mathbf{a2}}, i_3 \gg$ occurs at $t_3 \sim$ **exponential** $\left((1 - 2/n) \cdot \frac{1}{n}\right)$

Mixing time

Super-fast coupling

Chain of association maps.

And so on, creating a **chain** of $k = \lfloor \varepsilon n \rfloor$ association maps.

In case of d = 2 discrepancies, the average time of discrepancy cancelation on one of association maps is

$$E[T_2] = \frac{n^2}{4(k+1)} \approx \frac{n}{4\varepsilon}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Mixing time

Result.

General d:

$$E[T_d] = \frac{n^2}{2(k+1)d} \approx \frac{n}{2\varepsilon d}.$$

Coupling time (all discrepancies):

$$E[T_{coupling}] \leq \left[\frac{1}{2\varepsilon} + \frac{\kappa}{(1-\kappa)(\kappa-\varepsilon)}\right] \cdot n \log n$$

for any $0 < \varepsilon < \kappa < 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・