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Abstract

We introduce and solve a complex of problems for various statistical mechanics pro-

cesses conditioned on arriving to a faraway point from the origin. We derive a Brown-

ian bridge asymptotics for percolation, self-avoiding walks and some types of random

walk models. We outline a number of possible future directions for the development

in the field.
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Chapter 1

Introduction

The material presented in this thesis can be viewed as yet another step in the de-

velopment of the techniques used to study rare events in a wide variety of statistical

mechanical systems. Here we concentrate on the subcritical bond percolation model,

self-avoiding walks and some forms of a random walk. We want to mention some pos-

sible approaches used to study rare events in percolation, self-avoiding walks, Ising

and related models:

• For the bond percolation (and q ≥ 1 Fortuin-Kasteleyn random-cluster models with

implications in Potts and Ising models), the finite clusters of large size (“volume”)

were studied for dimensions d ≥ 3 via renormalization techniques (the so called ’slab

technology’) and optimization of the cluster “surface area”. As a result some neat

large deviation estimates were produced for near-critical percolation probabilities in

[26] as a refinement of the techniques used in [19] and [5].

• In higher dimensions some very precise assymptotics were produced using lace ex-

pansion techniques for the self-avoiding walks (dimension d ≥ 5) and percolation

(dimension d ≥ 19) models. For more details we refer to [13], [14], [24] and references

therein.

• At very high temperatures the perturbation techniques were used in Ising and re-

lated models. See, for example, [25].

• An elaborate methodology, crucial for this thesis, was produced in the process of

1



2 CHAPTER 1. INTRODUCTION

derivation of Ornstei-Zernike limiting behavior for various statistical mechanical sys-

tems in [8], [2], [4], [16], [6], [7] and other related research manuscripts (for more on

the above techniques, see chapter 5).

We think it is important to mention the result of [15] studying some of the statis-

tical properties of the phase separation line in the 2D low-temperature Ising model,

producing a Brownian bridge asymptotics (after scaling). This result, though in na-

ture similar to the results of this thesis was produced using a significantly different

approach.

In the chapters to follow, we first briefly go over basic definitions and results con-

cerning the notions of Brownian bridge, percolation and self-avoiding walks (chapters

2, 3 and 4). In chapter 5 we introduce the reader to the methods used in obtaining

the results of this thesis as well as the history of some of them. We formulate the

main results of the manuscript and outline the strategy of some of the proofs from

the perspective of the latest developments in the theory of regeneration structures

in statistical mechanical models. There, we state the technical theorem of chapter 8

together with its “directed” random walk interpretation. The technical theorem is to

be used in chapters 6 and 7 as part of the derivation of the main results, producing the

Brownian bridge asymptotics for the subcritical percolation and self-avoiding walks

models. We prove the technical theorem in chapter 8. We conclude the thesis with

chapter 9 outlining the latest developments in the field explored inhere and stating

some possible directions for the future research on the subject.



Chapter 2

Introduction to Brownian Bridge

A Brownian bridge (or tied-down Brownian Motion) is defined as a sample-continuous

Gaussian process B0 on [0, 1] with mean 0 and EB0
sB

0
t = s(1− t) for 0 ≤ s ≤ t ≤ 1.

So, B0
0 = B0

1 = 0 a.s. Also, if B is a Brownian motion, then the process Bt − tB1

(0 ≤ t ≤ 1) is a Brownian bridge. For more details see [3], [9] and [10]. In a more

general setting, we call the process B0,ã
t ≡ B0

t + t~a “a Brownian bridge connecting

points zero and ~a”.

Of all the classical theorems concerning the notion of Brownian bridge the follow-

ing is the closest in spirit to the theorems proved in this thesis. Let again Bt denote

a Brownian Motion, and B0
t denote the Brownian bridge.

Theorem 1. The probability distribution Pε(A) ≡ P [B ∈ A |0 ≤ B1 ≤ ε] (where A

is in C, the σ-algebra on C[0, 1] corresponding to the ‖ · ‖∞ norm) converges weakly

to B0, as ε ↓ 0, e.g. Pε ⇒ B0.

The proof of the theorem can be found in [3]. We refer the reader to appendix B

for the notion of weak convergence, and corresponding theorems. We notice that the

theorem practically implies that the Brownian bridge B0 behaves like a Winer path

B conditioned by the requirement that B1 = 0.

3



Chapter 3

Percolation

Here we summarize the basic notions defining the Bernoulli bond percolation model

as they were elaborately presented in [18] and [12]:

For each edge of the d-dimensional square lattice Zd in turn, we declare the edge

open with probability p and closed with probability 1− p, independently of all other

edges. If we delete the closed edges, we are left with a random subgraph of Zd. A

connected component of the subgraph is called a “cluster”, and the number of edges in

a cluster is the “size” of the cluster. The probability θ(p) that the point (0, 0) belongs

to a cluster of an infinite size is zero if p = 0, and one if p = 1. However, there exists

a critical probability 0 < pc < 1 such that θ(p) = 0 if p < pc and θ(p) > 0 if p > pc.

In the first case, we say that we are dealing with a subcritical percolation model,

and in the second case, we say that we are dealing with a supercritical percolation

model. The critical probability for dimension d = 2 was proved to be equal to one

half in [17] using dual lattice techniques.

We say that two vertices of a square lattice are “connected” to each other if they

both belong to the same open cluster.

The exponential decay of clusters in subcritical bond percolation was established

in [23], and later on enhanced in [1]:

Theorem 2. If p < pc then ∃ ψ(p) > 0 such that

Pp[0↔ ∂S(n)] < e−nψ(p) for all n.

4
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Here S(n) is a unit ball of radius n:

S(n) = {~x ∈ Zd : |x1|+ ...+ |xd| = n}.



Chapter 4

Self-Avoiding Walks

In this chapter we introduce the notion of self-avoiding walks. We refer the reader to

[24] for the detailed presentation of the model.

An N -step self-avoiding walk (path) ω on Zd, beginning at 0 is a sequence of sites:

ω(0) = 0, ω(1), ..., ω(N) with |ω(j + 1) − ω(j)| = 1 and ω(i) 6= ω(j) for all i 6= j.

We let cN denote the number of N -step self-avoiding walks beginning at zero. It had

been established that the limit representing the connective constant µ = limN→∞ cN
1
N

exists due to a subadditivity property of log cN (see [24]). We also let cN(x, y) to be

the number of N -step self-avoiding walks ω with ω(0) = x and ω(N) = y. The

two-point function gβ(x, y) (as defined below) is an important tool in the theory of

self-avoiding walks:

gβ(x, y) ≡
∞∑
N=0

cN(x, y)e−βN =
∑
ω:x→y

e−β|ω|,

where the second sum is taken only over all self-avoiding walks ω : x → y on the

lattice. For the simplicity of notation (due to the shift-invariance property of cN(x, y)

) we denote gβ(x) ≡ gβ(0, x). The supercritical β > βc(d) is the one for which the

equivalent sums above are finite. It was shown (see [24]) that for the supercritical β,

the ”bubble diagram”

Bd(β) ≡
∑
x

gβ(x)
2

6



7

is finite. The significance of the bubble diagram is discussed in Section 1.5 of [24].

Since the radius of convergence e−βc(d) = 1
µ
, it is apparent that the two-point

function decays exponentially:

gβ(0, x) ≤ Cβe
−cβ‖x‖ (4.1)

for all β > βc(d) and some corresponding Cβ, cβ > 0.

The notion of a “mass” of a two-point function applies here as well. The mass

m(β) is the rate of exponential decay of gβ(x, y) in the direction of the first coordinate

vector:

m(β) = lim inf
n→∞

− log gβ(0, (n, 0, ..., 0))

n
.

It can be shown that the lim inf above can be replaced by the limit.



Chapter 5

History of the Problem, the

Results and the Methods Used

The technique used in the proofs originates from the methodology developed in the

process of establishing a precise Ornstein-Zernike decay for a variety of spin systems

and lattice field theories and the development of the renewal theory. It turned out

that the technique developed by Ornstein and Zernike in 1914 for the case of the

classical fluid can be implemented in many classical models of statistical mechanics

(self-avoiding walks, percolation, 2D Ising model and many other spin systems) for

all noncritical temperatures. For this, for the given two-point function, one needs to

construct a ”direct correlation function” with a strictly greater rate of decay. This

approach was implemented in in the case of the d-dimensional self-avoiding walks

[8] giving the precise Ornstein-Zernike behavior of the two-point function gβ(0, nã)

connecting the origin to a point on an axis (the case ã = (‖ã‖, 0, ..., 0)) for all non-

critical β. There the so called ”mass gap” condition (or separation of mass)is proved.

In that case, the two-point function with a different rate of decay is the generating

function corresponding to the self-avoiding walks with all non-trivial (more than one)

intersections with the hyper spaces {x1 = c} situated in between the origin and the

destination point. The work of proving the Ornstein-Zernike behavior (the coefficient

of order ‖x‖ d−1
2 near the decay exponent of the two-point function) was completed

in [16] for any supercritical value of the parameter β > βc(d). There the complete

8



9

precise asymptotics (4) of the decay was derived in any direction ~a as the result of

an extensive study of the geometric properties of corresponding equi-decay level sets,

broadening the methodology of [8].

The corresponding developments in subcritical bond percolation model followed

the above advances in the theory of self-avoiding walks. In [2], [4] and [6] some similar

equi-decay level sets are studied, and corresponding Ornstein-Zernike asymptotics is

produced. This technique will be used in chapter 6 (see also [20]) together with the

technical result of chapter 8 (and also cited below) to produce a Brownian bridge

asymptotics of a scaled percolation cluster conditioned on reaching a faraway point,

and also proving the shrinking of such clusters. There we consider the d-dimensional

model subcritical bond percolation model (p < pc) and a point ã in Zd, conditioned

on the event of zero being connected to nã. We first show that a specifically chosen

path connecting points zero and nã and going through some appropriately defined

points on the cluster (regeneration points), if scaled 1
n‖ã‖ times along ã and 1√

n
times

in the direction orthogonal to ã, converges to Time × (d− 1)-dimensional Brownian

bridge as n→ +∞, where the scaled interval connecting points zero and nã serves as

a [0, 1] time interval. In other words, we prove that a scaled “skeleton” going through

the regeneration points of the cluster converges to Time × (d−1)-dimensional Brow-

nian bridge. In a subsequent step, we show that if scaled, then the hitting area of

the orthogonal hyper-planes shrinks, implying that for n large enough, all the points

of the scaled cluster are within an ε-neighborhood of the points in the “skeleton”.

Chronologically, we would like to mention the result preceding our study (in subcrit-

ical percolation), establishing that for ã = (1, 0, ..., 0), the hitting distribution of the

cluster in the intermediate planes, x1 = tnã, 0 < t < 1 obeys a multidimensional local

limit theorem (see [4]). Dealing with all other ã 6= (k, 0, ..., 0) became possible only

after the corresponding techniques mastering the regeneration structures and geom-

etry of equi-decay profiles was developed in [6] (and in [16] for self-avoiding walks).

These techniques played a central role in obtaining these research results.

Here, we also establish a similar result for the self-avoiding walks (see also [21]).

In chapter 7, we prove the weak convergence of a scaled interpolation ”skeleton”
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going through the regeneration points (see definition 7) of a self-avoiding walk, and

terminating at a faraway point n~a to Time×(d− 1)-dimensional Brownian bridge as

n → ∞. Later, the shrinking of the self-avoiding walk to the above interpolation

skeleton is proved (see section 7.5). We prove the result for ã = (‖~a‖, 0, ..., 0) given

an appropriate measure on such self-avoiding walks (see (7.4)). We outline the proof

of the result for all other ~a in Zd.

The result of chapter 8 (see section 8.2) that we cite below is to play an important

role in proving the Brownian bridge asymptotics for percolation and self-avoiding

walks in chapters 6 and 7. It can be also interpreted on its own as a similar result

establishing a Brownian bridge asymptotics for a scaled “directed” random walk,

conditioned on arriving to a faraway point n~a, where by a directed random walk we

mean a random walk in which the steps {ζi} are i.i.d. and the probability P [ζi · ~a >
0] = 1.

Let X1, X2, ... be i.i.d. random variables on Zd with the span of the lattice dis-

tribution equal to one (see [10], section 2.5), and let there be a λ̄ > 0 such that the

moment-generating function

E[eθ·X1 ] <∞

for all θ ∈ Bλ̄.

Now, for a given vector ã ∈ Zd, let X1 + ... +Xi = [ti, Yi]f ∈ Zd when written in

the new orthonormal basis such that ã = [‖ã‖, 0]f (in the new basis [·, ·]f ∈ R×Rd−1).

Also let P [ã ·Xi] > 0] = 1. We define the process [t, Y ∗
n,k(t)]f to be the interpolation

of 0 and [ 1
n‖ã‖ti,

1√
n
Yi]

i=0,1,...,k
f , in Section 2.2 we will show that

Technical Theorem. The process

{Y ∗
n,k for some k such that [tk, Yk]f = nã} (5.1)

conditioned on the existence of such k converges weakly to the Brownian bridge (of

variance that depends only on the law of X1).



Chapter 6

The Result in Subcritical

Percolation

In this chapter we work only with subcritical percolation probabilities p < pc.

6.1 Preliminaries

Here we briefly go over the definitions that one can find in Section 4 of [6].

We start with the inverse correlation length ξp(~x):

ξp(~x) ≡ − lim
n→∞

1

n
logPp(0↔ [n~x]),

where the limit is always defined due to the FKG property of the Bernoulli bond

percolation (see [12]). Now, ξp(~x) is the support function of the compact convex set

Kp ≡
⋂

~n∈Sd−1

{~r ∈ Rd : ~r · ~n ≤ ξp(~n)},

with non-empty interior int{Kp} containing point zero.

Let r̃ ∈ ∂Kp, and let ~e be a basis vector such that ~e · r̃ is maximal. For ~x, ~y ∈ Zd

define

Sr~x,~y ≡ {~z ∈ Rd|̃r · ~x ≤ r̃ · ~z ≤ r̃ · ~y}.

11



12 CHAPTER 6. THE RESULT IN SUBCRITICAL PERCOLATION

Note that Sr~x,~y = ∅ if r̃ · ~y < r̃ · ~x.
Let Cr

~x,~y denote the corresponding common open cluster of x and y when we run the

percolation process on Sr~x,~y
⋂

Zd. Let also ∆r be the set of all basis vectors orthogonal

to ~r, and their negatives. For the simplicity of notations (avoiding writing (1− p)|∆r|

coefficient) in the future, we restrict ourself to the case when vector ~r has all non-zero

coefficients (e.g. |∆r| = 0).

Definition 1. For ~x, ~y ∈ Zd lets define hr-connectivity {~x←hr→ ~y} of ~x and ~y to be

the event that

1. ~x and ~y are connected in the restriction of the percolation configuration to the

slab Sr~x,~y.

2. If ~x 6= ~y, then Cr
~x,~y

⋂
Sr~x,~x+~e = {~x, ~x+ ~e} and Cr

~x,~y

⋂
Sr~y−~e,~y = {~y − ~e, ~y}.

Set

hr(~x) ≡ Pp[0←hr→ ~x]

and hr(0) = 1.

Definition 2. For ~x, ~y ∈ Zd lets define fr-connectivity {~x←fr→ ~y} of ~x and ~y to be

the event that

1. ~x 6= ~y

2. ~x←hr→ ~y .

3. For no ~z ∈ Zd \ {~x, ~y} both {~x←hr→ ~z} and {~z ←hr→ ~y} take place.

Set

fr(~x) ≡ Pp[0←fr→ ~x]

and fr(0) = 0.

Definition 3. Suppose 0 ←hr→ ~x, we say that ~z ∈ Zd is a regeneration point of

Cr
0,~x if

1. r̃ · ~e ≤ r̃ · ~z ≤ r̃ · (~x− ~e)
2. Sr~z−~e,~z+~e

⋂
Cr

0,~x contains exactly three points: ~z−~e, ~z and ~z+~e, where ~e is defined

as before.
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The following Ornstein-Zernike equality is due to be used soon:

Theorem. ∃ A(·, ·) on (0, pc)× Sd−1 s. t.

Pp[0↔ ~x] =
A(p, n(~x))

‖~x‖ d−1
2

e−ξp(~x)(1 + o(1)) (6.1)

uniformly in ~x ∈ Zd, where n(~x) ≡ ~x
‖~x‖ .

We refer to [6] for the proof of the theorem.

6.2 Measure Qr
r0

(x)

It had been proved in section 4 of [6] that for a given r̃0 ∈ ∂Kp there exists λ̄ > 0

such that

Fr0(r̃) =
∑
x∈Zd

fr̃0(x)e
r̃·~x = 1 whenever r̃ ∈ Bλ̄(r̃0)

⋂
∂Kp

and therefore

Qr
r0

(~x) ≡ fr0(~x)e
r̃·~x is a measure on Zd.

Also, it was shown that

µ = µr0(r̃) ≡ Er
r0
X =

∑
~x∈Zd

~xQr
r0

(~x) = ∇rlogFr0(r̃) 6= 0

and

Fr0(r̃) <∞ for all r̃ in Bλ̄(r̃0).

The later implies

Fr0(r̃) =
∑
~x∈Zd

fr0(~x)e
r̃·~x =

∑
~x∈Zd

Qr0
r0

(~x)eθ·~x <∞

for θ = r̃− r̃0 ∈ Bλ̄(0),

i.e. the moment generating function Er0
r0

(eθ·X1) of the lawQr0
r0

is finite for all θ ∈ Bλ̄(0).
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Now, there is a renewal relation (see section 1 and section 4 of [6]),

hr0(~x) =
∑
~z∈Zd

fr0(~z)hr0(~x− ~z) with hr0(0) = 1

and therefore

hr0([Nµ]) = e−r·[Nµ]
∑
k

k⊗
1

Qr
r0

(X1 + ...+Xk = [Nµ]) for N > 0,

where X1, X2, ... is a sequence of i.i.d. random variables distributed according to

Qr
r0

, as hr0-connection is a chain of fr0-connections with junctions at the regeneration

points of Cr0
0,x.

6.3 Important Observation

We would like the reader to notice a certain relationship between the notions of the

regeneration points and that of fr0-connectivity as they were defined in section 6.1.

That is for a given vector ~x ∈ Zd, the event of

• {0←hr0→ ~x with exactly one regeneration point ~x1 }

is equivalent to the two independent events:

• { 0←fr0→ ~x1 },
• { ~x1 ←fr0→ ~x }.
Thus the probability of the event is equal to

fr0(~x1)fr0(~x− ~x1).

More generally, the probability PX that 0 ←hr0→ ~x with exactly k-1 regeneration

points ~x1, ~x1 + ~x2, ...,
∑k−1

i=1 ~xi (where
∑k

i=1 ~xi = ~x) can be factored as following
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PX ≡ P [0←hr0→ ~x ; regeneration points: ~x1, ~x1 + ~x2, ...,

k−1∑
i=1

~xi]

= P [0←fr0→ ~x1]P [~x1 ←fr0→ ~x1 + ~x2]...P [
k−1∑
i=1

~xi ←fr0→
k∑
i=1

~xi = ~x]

= fr0(~x1)fr0(~x2)...fr0(~xk). (6.2)

6.4 The Result

In this section we fix ã ∈ Zd, and let r = r0 = ãR+
⋂
∂Kp. Then we recall that

Er
r0

[eθ·X1 ] <∞

for all θ ∈ Bλ̄(0). We also denote h(x) ≡ hr0(x) and f(x) ≡ fr0(x).

First, we introduce a new basis {~f1, ~f2, ..., ~fd}, where ~f1 = ã
‖ã‖ . We use [·, ·]f ∈

R× Rd−1 to denote the coordinates of a vector with respect to the new basis. Obvi-

ously ã = [‖ã‖, 0]f . We want to prove that the process corresponding to the last d−1

coordinates in the new basis of the scaled ( 1
n‖ã‖ times along ã and 1√

n
times in the

orthogonal d-1 dimensions) interpolation of regeneration points of Cr0
0,nã conditioned

on 0←h→ nã converges weakly to the Brownian bridge Bo(t) (with variance that

depends only on measure Qr
r0

) where t represents the scaled first coordinate in the

new basis.

Let X1, X2, ... be i.i.d. random variables distributed according to Qr
r0

law. We

interpolate 0, X1, (X1 +X2), ..., (X1 + ... +Xk) and scale by 1
n‖ã‖ ×

1√
n

along < ã >

× < ã >⊥ to get the process [t, Y ∗
n,k(t)]f . The technical theorem (see chapter 5 or

section 8.2) implies the following

Theorem 3. The process

{Y ∗
n,k for some k such that X1 + ...+Xk = nã}
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conditioned on the existence of such k converges weakly to the Brownian bridge (with

variance that depends only on measure Qr
r0

).

Now, let for ~y1, ..., ~yk ∈ Zd with positive increasing first coordinates γ(~y1, ..., ~yk)

be the last (d−1) coordinates in the new basis of the scaled ( 1
n‖ã‖×

1√
n
) interpolation

of points 0, ~y1, ..., ~yk (where the first coordinate is time). Notice that γ(~y1, ..., ~yk) ∈
Co[0, 1]d−1 as a function of scaled first coordinate whenever ~yk = n~a. By the impor-

tant observation (7.5) that we have made before, for any function F (·) on C[0, 1]d−1,

∑
k

∑
~x1+...+~xk=n~a F (γ(~x1, ~x1 + ~x2, ...,

∑k
i=1 ~xi))

×P [0←hr0→ n~a ; regeneration points: ~x1, ~x1 + ~x2, ...,
k−1∑
i=1

~xi]

=
∑
k

∑
~x1+...+~xk=n~a

F (γ(~x1, ~x1 + ~x2, ...,
k∑
i=1

~xi))f(~x1)...f(~xk)

= e−r·n~a
∑
k

∑
~x1+...+~xk=n~a

F (γ(~x1, ~x1 + ~x2, ...,
k∑
i=1

~xi))Q
r
r0

(~x1)...Q
r
r0

(~xk).

Therefore, for any A ⊂ C[0, 1]d−1

Pp[γ(regeneration points, n~a) ∈ A | 0←h→ n~a]

=

∑
k

∑
~x1+...+~xk=n~a IA(γ(~x1, ~x1 + ~x2, ...,

∑k
i=1 ~xi))f(~x1)...f(~xk)∑

k

∑
~x1+...+~xk=n~a f(~x1)...f(~xk)

=

∑
k

∑
~x1+...+~xk=n~a IA(γ(~x1, ~x1 + ~x2, ...,

∑k
i=1 ~xi))Q

r
r0

(~x1)...Q
r
r0

(~xk)∑
k

∑
~x1+...+~xk=n~aQ

r
r0

(~x1)...Qr
r0

(~xk)

= P [Y ∗
n,k ∈ A for the k such that X1+...+Xk = nã | ∃k such that X1+...+Xk = nã].

Hence, we have proved the following

Corollary. The process corresponding to the last d− 1 coordinates (in the new basis
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{~f1, ~f2, ..., ~fd}) of the scaled ( 1
n‖ã‖ ×

1√
n
) interpolation of regeneration points of Cr0

0,nã

(where the first coordinate is time) conditioned on 0←h→ nã converges weakly to the

Brownian bridge (with variance that depends only on measure Qr
r0

).

6.5 Shrinking of the Cluster and Main Theorem

Here for ã ∈ Zd we let r0 = ãR+
⋂
∂Kp again. Before we proceed with the proof

that the scaled percolation cluster Cr0
0,nã shrinks to the scaled interpolation skeleton

of regeneration points, we need to prove the following

Proposition. If r̃ = ∇ξp(r̃0) then Qr
r0

is a probability measure.

Proof. First we notice that r̃0 · r̃ = r̃0 · ∇ξp(r̃0) = Dr̃0(ξp(r̃0)) = ξp(r̃0), and thus

Hr0(r̃) ≡
∑
~x∈Zd

hr0(x)e
r̃·~x ≥

∑
~x∈<ã>∩Zd

hr0(x)e
r̃·~x =

∑
~x∈<ã>∩Zd

hr0(x)e
ξp(~x) = +∞

for d ≤ 3 by Ornstein-Zernike equation (6.1). For all other d we sum over all ~x inside

a small enough cone around ã to get Hr0(r̃) = +∞.

Now, for all ~n ∈ Sd−1, ~n · ∇ξp(r̃0) = D~nξp(r̃0) ≤ ξp(~n) by convexity of ξp, and

therefore r̃ = ∇ξp(r̃0) ∈ ∂Kp. Notice that due to the strict convexity of ξp and the

way Kp was defined, r̃ = ∇ξp(r̃0) is the only point on ∂Kp such that r̃0 · r̃ = ξp(r̃0).

Now, Ornstein-Zernike equation (6.1) also implies that the sums Hr0(r̃) and Fr0(r̃)

are finite whenever r̃ ∈ αKp =
⋂
~n∈Sd−1{~r ∈ Rd : ~r · ~n ≤ αξp(~n)} with α ∈ (0, 1), and

due to the recurrence relation of fr0 and hr0 connectivity functions, Hr0(r̃) = 1
1−Fr0 (r̃)

(see [6]). Therefore Fr0(r̃) ≡
∑

~x∈Zd fr0(x)e
r̃·~x = 1, where the probability measure Qr

r0

has an exponentially decaying tail due to the same reasoning as in chapter 4 of [6]

(”mass-gap” property).

With the help of the proposition above we shell show that the consequent regen-

eration points are situated relatively close to each other:
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Lemma.

Pp[max
i
|xi − xi−1| > n1/3, xi- reg. points | 0←h→ nã] <

1

n

for n large enough.

Proof. Let r̃ ≡ ∇ξp(r̃0) = ∇ξp(ã). Since ξp(x) is strictly convex (see section 4 in [6]),

ξp(ã)− ξp(ã− ~x
n
)

(‖~x‖
n

)
<

~x

‖~x‖
· ∇ξp(ã)

for ~x ∈ Zd (~x 6= 0), and therefore

ξp(nã)− ξp(nã− ~x) = ‖~x‖
ξp(ã)− ξp(ã− ~x

n
)

(‖~x‖
n

)
< ~x · ∇ξp(ã) = r̃ · ~x.

Thus, since Qr
r0

(x) decays exponentially and therefore

eξp(nã)−ξp(nã−x) < Qr
r0

(x)

and also decays exponentially. Hence by Ornstein-Zernike result (6.1),

Pp[n
1/3 < |x|, x-first reg. point |0←h→ nã] =

∑
n1/3<|x|

f(x)
h(nã− x)
h(nã)

<
1

n2

for n large enough. So, since the number of the regeneration points is no greater than

n,

Pp[max
i
|xi − xi−1| > n1/3, xi- reg. points | 0←h→ nã] <

1

n

for n large enough.



6.5. SHRINKING OF THE CLUSTER AND MAIN THEOREM 19

Now, it is really easy to check that there is a constant λf > 0 such that

f(~x) > e−λf‖~x‖

for all ~x such that f(~x) 6= 0 (here we only need to connect points ~e and ~x − ~e with

two non-intersecting open paths surrounded by the closed edges), and there exists a

constant λu > 0 such that

Pp[ percolation cluster C(0) 6⊂ [R;Bd−1
R (0)]f ] < e−λuR

for R large enough due to the exponential decay of the radius distribution for sub-

critical probabilities (see [12]). Hence, for a given ε > 0

Pp[ cluster Cr0
0,~x 6⊂ [R, Bd−1

ε
√
n
(0)]f | 0←f→ x] < eλf‖~x‖−λuε

√
n,

and therefore, summing over the regeneration points, we get

Pp[ scaled cluster Cr0
0,nã 6⊂ ε-neighbd. of [0, 1]× γ( reg. points ) | 0←g→ nã]

<
1

n
+ neλfn

1/3−λuε
√
n

for n large enough.

We can now state the main result of this paper:

Main Theorem (Percolation). The process corresponding to the last d− 1 coordi-

nates (in the new basis {~f1, ~f2, ..., ~fd}) of the scaled ( 1
n‖ã‖ ×

1√
n
) interpolation of regen-

eration points of Cr0
0,nã (where the first coordinate is time) conditioned on 0←h→ nã

converges weakly to the Brownian bridge (with variance that depends only on measure

Qr
r0

).
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Also for a given ε > 0

Pp[ scaled cluster Cr0
0,nã 6⊂ ε-neighbd. of [0, 1]× γ( reg. points ) | 0←h→ nã]→ 0

as n→∞.



Chapter 7

The Result in Self-Avoiding Walks

In this chapter we work only with supercritical SARW (β > βc(d)).

7.1 Preliminaries.

Here we briefly go over the definitions that one can find in [24]. We start with the

decay rate τβ(~x):

τβ(~x) ≡ − lim
n→∞

1

n
log gβ([n~x]),

where the limit is always defined since

gβ(~x+ ~y)

Bd(β)
≥ gβ(~x)

Bd(β)

gβ(~y)

Bd(β)
.

Now, τβ(~x) is the support function of the compact convex set

Kβ ≡
⋂

~n∈Sd−1

{~r ∈ Rd : ~r · ~n ≤ τβ(~n)},

with non-empty interior int{Kβ} containing point zero.

Let ω(j) = (ω1(j), ..., ωd(j)) be a self-avoiding path defined for j ∈ [a, b]
⋂

N, a ≤ b ∈
Z+.

21
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Definition 4. We call ω a bridge if

ω1(a) < ω1(j) ≤ ω1(b)

for all a < j ≤ b. If x = ω(a) is the initial point and y = ω(b) is the final point, we

write ω : x−b → y.

For ~x ∈ Zd, we define the cylindrical two-point function

h(~x) ≡
∑

ω:0−b→~x

e−β|ω|,

where h(~x) = δ0(~x) for all ~x ∈ {0} × Zd−1 .

Definition 5. We say that k ∈ N (ω1(a) < k < ω1(b)) is a break point of ω if there

exists r ∈ [a, b] such that ω1(j) ≤ k whenever j ≤ r and ω1(j) > k whenever j > r.

Definition 6. A bridge ω : x−b → y (where, as before, x = ω(a) and y = ω(b)) is

called irreducible if it has no break points. In that case we write ω : x−ib → y.

Now, for ~x ∈ Zd, we define the irreducible two-point function

f(~x) ≡
∑

ω:0−ib→~x

e−β|ω|,

with f(~x) = δ0(~x) for all ~x ∈ {0} × Zd−1 .

7.2 SARW and Regeneration Structures.

It turned out that if counting the bridges between the origin and a point ~k = (kx, ky) ∈
N× Zd−1, that f and h satisfy the recurrence equation (see [24]):

h(~k) =
kx∑
i=1

∑
l∈Zd−1

f(i, l)h(kx − i, ky − l), (7.1)
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which together with h(0, k̃) = δ0(k̃) (for k̃ ∈ Zd−1) are called the Ornstein-Zernike

equations.

Now, for any r̃ ∈ Zd−1, we define

Hn(r̃) ≡
∑

k̃∈Zd−1

er̃·k̃h(n, k̃) and Fn(r̃) ≡
∑

k̃∈Zd−1

er̃·k̃f(n, k̃), (7.2)

as well as the corresponding mass

mH(r̃) ≡ lim
n→+∞

1

n
logHn(r̃) and mF (r̃) ≡ lim

n→+∞

1

n
logFn(r̃).

The Ornstein-Zernike asymptotics has been proved for the cylindrical two-point

function h(·) (see [8] and [16]), using the ”mass gap” condition, e.g. existence of

a point r̃o ∈ Zd−1, inside a neighborhood of points with finite mass mH , such that

mH(r̃o) > mF (r̃o). It was also shown (see [16], Section 2) that the mass gap condition

with the renewal theorem ([24], Appendix B) imply that exp{−nmH(r̃o)}Fn(r̃o) is a

probability distribution (where r̃o is as above):

∑
n∈N

exp{−nmH(r̃o)}Fn(r̃o) = 1. (7.3)

As it was mentioned in the introduction, the mass gap condition was crucial in

obtaining the Ornstein-Zernike decay (see [16]):

Theorem 4. For all d ≥ 2 and β > βc(d),

gβ(x) = ψβ(
x

‖x‖
)
e−τβ(x)

‖x‖ d−1
2

(1 + o(1))

uniformly in ‖x‖, where ψβ(·) is analytic on the unit circle.
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7.3 Measure Qr0(x).

We notice that substituting the sum Fn(r̃o), as defined in (7.2), into (7.3) we obtain

(after some simple manipulations) an enhanced version of (7.3):

∑
~x∈N×Zd−1

f(~x)e~x·(−mH(r̃o),r̃o) = 1,

where ~ro ≡ (−mH(r̃o), r̃o) ∈ ∂Kβ as it was shown in [16], Section 3.

Now, let for ~x ∈ N× Zd−1,

Qr0(~x) ≡ f(~x)e~x·~r0 .

Due to the equation above, Qr0(·) is a probability measure on N×Zd−1. It is similar

to the regeneration measure, defined for the subcritical bond percolation model in

Section 4 of [6], and later used in [20] for derivation of Brownian bridge assymptotics

for that model.

The mass gap condition implies the exponential decay of Qr0(~x).

7.4 The Result For ~a = (1, 0, ..., 0).

We fix ~a ∈ Zd. We let for a supercritical constant β and all n ∈ N, Pn(·) to be a law

on a set of self-avoiding random paths ω, conditioned on ω being a bridge between 0

and n~a (ω : 0−b → nã). More precisely, we define Pn as

Pn(ω : 0−b → nã) ≡ exp (−β|ω|)∑
ω̃:0−b→nã exp (−β|ω̃|)

=
exp (−β|ω|)

h(nã)
. (7.4)

For now, we let ~a = [1, 0] ≡ (1, 0, ..., 0) and ~ro = (Z+, 0, ..., 0)
⋂
∂Kβ. Here, we define

the regeneration points in a way, similar to that, used to define the regeneration points

for the case of Bernoulli bond percolation model:
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Definition 7. Given a self-avoiding path ω, and a break point b. We say that ω(Tb)

is the corresponding regeneration point if Tb = max{t : ω1(t) = b}.

In a very important step, we notice that given the Ornstein-Zernike equations (7.1)

above and the definition of probability distribution Pn(·), we can explicitly write (in

terms of measure Qro) the probability of the walk passing through the particular

regeneration points s1 ≡ x1, (s2 ≡ x1 + x2),..., (sk−1 ≡ x1 + ...+ xk−1), where are all

xi ∈ Z+ × Zd−1:

Pn[s1, ..., sk−1 are reg. pts. ] =
1

h(nã)

 ∑
ω:0−ib→s1

e−β|ω|

 ...

 ∑
ω:sk−1−ib→sk

e−β|ω|


=

1

h(nã)
f(x1)...f(xk)

=
Qro(x1)...Qro(xk)∑

κ

∑
ς1+...+ςκ=nãQro(ς1)...Qro(ςκ)

, (7.5)

where s0 ≡ 0 and sk ≡ x1 + ...+ xk−1 + xk = nã.

We recall that the moment generating function (the Laplace transform) under the

measure Qro(·) is finite in a neighborhood of zero:

Er0(e
θ·X1) <∞

for all θ ∈ Bλ̄(0). We use the brackets [·, ·] ∈ R × Rd−1 to denote the coordinates

of Rd vectors for the simplicity of notation. Obviously ã = [1, 0]. We want to prove

that the process corresponding to the last d − 1 coordinates in the new basis of the

scaled ( 1
n

times along ã and 1√
n

times in the orthogonal d− 1 dimensions) interpola-

tion of regeneration points of the self-avoiding path ω conditioned on ω : 0−b → nã

converges weakly to the Brownian bridge Bo(t) (with variance that depends only on

measure Qr0) where t represents the scaled down first coordinate.

Let X1, X2, ... be i.i.d. random variables distributed according to Qr0 law. We in-

terpolate 0, X1, (X1+X2), ..., (X1+...+Xk) and scale by 1
n
× 1√

n
along < ã > × < ã >⊥
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to get the process [t, Yn,k(t)]. The technical theorem (see chapter 5 or section 8.2)

implies the following

Theorem 5. The process

{Yn,k for some k such that X1 + ...+Xk = nã}

conditioned on the existence of such k converges weakly to the Brownian bridge (with

variance that depends only on measure Qr0).

Now, we again let for ~y1, ..., ~yk ∈ Zd with positive increasing first coordinates,

γ(~y1, ..., ~yk) to be the last (d− 1) coordinates in the new basis of the scaled ( 1
n
× 1√

n
)

interpolation of points 0, ~y1, ..., ~yk (where the first coordinate is time). Notice that

γ(~y1, ..., ~yk) ∈ Co[0, 1]d−1 as a function of scaled first coordinate whenever ~yk = n~a.

By the important observation (7.5) that we have made before, for any function F (·)
on C[0, 1]d−1,

∑
k

∑
~x1+...+~xk=n~a F (γ(~x1, ~x1 + ~x2, ...,

∑k
i=1 ~xi))

×Pn[0←hr0→ n~a ; regeneration points: ~x1, ~x1 + ~x2, ...,
k−1∑
i=1

~xi]

=
∑
k

∑
~x1+...+~xk=n~a

F (γ(~x1, ~x1 + ~x2, ...,
k∑
i=1

~xi))f(~x1)...f(~xk)

= e−r0·n~a
∑
k

∑
~x1+...+~xk=n~a

F (γ(~x1, ~x1 + ~x2, ...,
k∑
i=1

~xi))Qr0(~x1)...Qr0(~xk).

Therefore, for any A ⊂ C[0, 1]d−1

Pp[γ(regeneration points of ω) ∈ A | ω : 0−b → n~a]
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=

∑
k

∑
~x1+...+~xk=nã IA(γ(~x1, ~x1 + ~x2, ...,

∑k
i=1 ~xi))f(~x1)...f(~xk)∑

k

∑
~x1+...+~xk=n~a f(~x1)...f(~xk)

=

∑
k

∑
~x1+...+~xk=n~a IA(γ(~x1, ~x1 + ~x2, ...,

∑k
i=1 ~xi))Qr0(~x1)...Qr0(~xk)∑

k

∑
~x1+...+~xk=n~aQr0(~x1)...Qr0(~xk)

= P [Yn,k ∈ A for the k such that X1+...+Xk = nã | ∃k such that X1+...+Xk = n~a].

Hence, we have proved the following

Corollary. The process corresponding to the last d − 1 coordinates of the scaled

( 1
n
× 1√

n
) interpolation of regeneration points of the self-avoiding path ω (with the

scaled first coordinate denoting the time interval) conditioned on ω : 0−b → nã con-

verges weakly to the Brownian bridge (with variance that depends only on measure

Qr0).

7.5 Shrinking of the Self-Avoiding Walks.

Here we again let ã = [1, 0] ≡ (1, 0, ..., 0) and ~ro = [Z+, 0]
⋂
∂Kβ. In the way of

proving that the scaled walk ω : 0−b → nã shrinks, we shell need to show that the

consequent regeneration points are situated relatively close to each other:

Lemma.

Pp[max
i
|xi − xi−1| > n1/3, xi- reg. points | 0−b → nã] <

1

n

for n large enough.

Proof. Since ~ro = [‖~ro‖, 0] ∈ ∂Kβ and therefore

~ro · [v1, v2] = ~ro · [v1, 0] ≤ τβ([v1, 0]) ≤ τβ([v1, v2])

for all [v1, v2] ∈ Zd,

~ro · [1, 0] = τβ([1, 0]) and ‖~ro‖2 = τβ(~ro).
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Hence, by the pseudo-linearity of τβ(·),

∇τβ(ã) = [τβ(1), 0] = [‖~ro‖, 0] = ~ro.

Now, by the convexity of τβ(·),

τβ(ã)− τβ(ã− ~x
n
)

(‖~x‖
n

)
≤ ~x

‖~x‖
· ∇τβ(ã)

for ~x ∈ Zd (~x 6= 0), and therefore

τβ(nã)− τβ(nã− ~x) = ‖~x‖
τβ(ã)− τβ(ã− ~x

n
)

(‖~x‖
n

)
≤ ~x · ∇τβ(ã) = r̃ · ~x.

Thus, since Qr0(~x) decays exponentially and therefore

f(~x)eτβ(nã)−τβ(nã−~x) ≤ Qr0(~x)

and also decays exponentially. Hence by Ornstein-Zernike result (Theorem 4),

Pp[n
1/3 < |~x|, ~x-first reg. point |0−b → nã] =

∑
n1/3<|~x|

f(~x)
h(nã− ~x)
h(nã)

<
1

n2

for n large enough. So, since the number of the regeneration points is no greater than

n,

Pp[max
i
|xi − xi−1| > n1/3, xi- reg. points | 0−b → nã] <

1

n

for n large enough.

Now, it is really easy to check that there is a constant λf > 0 such that

f(~x) > e−λf‖~x‖
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for all ~x such that f(~x) 6= 0 (here we only need to connect points zero and ~x with an

”S”-shaped irreducible bridge). Hence, due to the exponential decay (4.1) of the two

point function gβ(x, y), for a given ε > 0,

Pp[ the walk {ω(i)}i=0,...,|ω(~x)| 6⊂ [R, Bd−1
ε
√
n
(0)] | 0−ib → ~x] < Cβe

λf‖~x‖−cβε
√
n,

and therefore, summing over the regeneration points, we get

Pp[ the scaled walk {ω(i)}i=0,...,|ω(~x)| 6⊂ ε-neighbd. of [0, 1]×γ( reg. points ) | 0−b → nã]

<
1

n
+ nCβe

λf‖~x‖−cβε
√
n

for n large enough due to the lemma above.

We can now state the main result for ã = [1, 0]:

Main Theorem (SAW). The process corresponding to the last d − 1 coordinates

of the scaled ( 1
n
× 1√

n
) interpolation of regeneration points of the self-avoiding path

ω (with the scaled first coordinate denoting the time interval) conditioned on ω :

0−b → nã converges weakly to the Brownian bridge (with variance that depends only

on measure Qr0).

Also for a given ε > 0

Pp[ the scaled walk {ω(i)}i=0,...,|ω(~x)| 6⊂ ε-neighbd. of [0, 1]×γ( reg. points ) | 0−b → nã]→ 0

as n→∞.

7.6 General Case.

Now, we turn our attention to all ~a ∈ Zd not on the axis. It turned out that the main

theorem of section 7.5 holds for all ~a in Zd. In a more direct approach used in the
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corresponding developments in percolation (see Section 4 of [6]) and finite range Ising

models (see [7]), we can replicate the same recurrence structures, as those in section

7.1, in a given direction (say ~a), yielding the same renewal relations (as in section

7.2). The technique is simpler than that used in percolation and finite range Izing

models. We choose a direction vector ~r ∈ ∂Kβ, we define the corresponding notions

of ”a bridge” in the direction ~r and the ~r-regeneration points:

Definition 8. We call ω an ~r-bridge if

ω(a) ·~r < ω(j) ·~r ≤ ω(b) ·~r

for all a < j ≤ b. If x = ω(a) is the initial point and y = ω(b) is the final point, we

write ω : x−b(~r) → y.

Similarly, we define the cylindrical two-point function

h~r(~x) ≡
∑

ω:0−b(~r)→~x

e−β|ω|,

where h~r(~x) = δ0(~x) for all ~x ∈<~r >⊥.

Definition 9. We say that ω(k) ∈ Zd (a < k < b) is an ~r-regeneration point

of ω if there exists N ∈ [a, b] such that ω(j) · ~r ≤ ω(k) · ~r whenever j ≤ N and

ω(j) ·~r > ω(k) ·~r whenever j > N .

Definition 10. An ~r-bridge ω : x−b → y (where, as before, x = ω(a) and y = ω(b))

is called ω(k) ·~r-irreducible if it has no ~r-regeneration points. In that case we write

ω : x−ib(~r) → y.

We again redefine the corresponding irreducible two-point function

f~r(~x) ≡
∑

ω:0−ib(~r)→~x

e−β|ω|,

with f~r(~x) = δ0(~x) for all ~x ∈<~r >⊥.
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The generalized Ornstein-Zernike recurrence equations also hold here: by counting

the ~r-bridges between the origin and a lattice point ~k ∈ <~r >× <~r >⊥, we establish

h~r(~k) =
∑

0<~m·~r≤~k·~r

f~r(~m)h~r(~k − ~m), (7.6)

where, in the sum, all ~m ∈ Zd.

As in [6], we can replicate all the regeneration structures, and in particular show

the existence of a positive λ̄ such that

Q~rr0(~x) ≡ f~r(~x)e
~x·~r0

is a probability measure whenever ~r0 ∈ Bλ̄(~r)
⋂
∂Kβ. Taking an appropriate ~r (say

~r = Oτβ(~a)), we can show, as it was done in [20] for percolation clusters in subcrit-

ical phase, the skeleton convergence and shrinking of the scaled self-avoiding walks,

conditioned on arriving to n~a. Whence the main theorem of section 7.5 would hold if

we scale the walks by 1
n‖~a‖ along < ~a > and by 1√

n
in all orthogonal directions (along

< ~a >⊥).



Chapter 8

Convergence to Brownian Bridge

As it was mentioned before, in chapter 5, this chapter is entirely dedicated to proving

the technical theorem that we have already used in the proof of the main results in

percolation (see chapter 6) and self-avoiding walks (see chapter 7). First, we are going

to mention the “directed” random walk implication of the theorem that was briefly

introduced in chapter 5 followed by an outline of the proof presented in this chapter:

•We notice that the technical theorem establishes a Donsker-type asymptotics. Given

a vector ~a in Zd, we consider a scaled “directed” random walk, conditioned on arriving

to a faraway point n~a. By a directed random walk we mean a random walk in

which the steps {ζi} are i.i.d. (with finite mean and variance) and the probability

P [ζi · ~a > 0] = 1. We scale the interpolation trajectory of the walk 1
n‖~a‖ times along

< ~a > and 1√
n

times in all of the orthogonal directions < ~a >⊥. Changing the

basis so that the scaled interval connecting n~a to the origin becomes a [0, 1]-time

interval, the technical theorem establishes a weak convergence of the remaining d-1

coordinates of the interpolation trajectories to a (d-1)-dimensional Brownian bridge

(up to a constant multiple depending on the variance of ζi).

• In section 8.1, we prove theorem 6, which is just a case of the technical theorem

when the probability P [~a · ζi = cζ ] = 1 for some fixed cζ , and all i. We would like

to point out that the trick used in the proof of the appropriate (Brownian bridge)

covariance for the Lemma 1(b) works in the general settings as well.

• In section 8.2 we use theorem 6 and a “truncation” argument to gradually extend

32
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the result from the case P [~a ·ζi = cζ ] = 1 corresponding to the setting of theorem 6 to

that with E[~a · ζi] = cζ corresponding to the general setting of the technical theorem.

The covariance coefficient for the general case followes from that of the simple case,

established in section 8.1 (see Lemma 1).

8.1 Simple Case

Let Z1, Z2, ... be i.i.d. random variables on Z with the span of the lattice distribution

equal to one (see [10], section 2.5) and mean µ = EZ1 < ∞, σ2 = V ar(Z1) < ∞.

Also let point zero be inside of the closed convex hull of {z : P [Z1 = z] > 0}.

Consider a one dimensional plane and a walk Xj that starts with X0 = 0 and for

a given Xj, the (j+1)-st step to be Xj+1 = Xj + Zj+1. After interpolation we get

X(t) = X[t] + (t− [t])(X[t]+1 −X[t])

for 0 ≤ t <∞.

And define X̄(t) = (t,X(t)) to be a two dimensional walk.

Now, if for a given integer n > 0 we define Xn(t) ≡ X(nt)√
n

for 0 ≤ t ≤ 1, then

Xn(t) would belong to C[0, 1] and Xn(0) = 0.

Theorem 6. Xn(t) conditioned on Xn(1) = 0 converges weakly to the Brownian

bridge.

First we need to prove the theorem when µ = 0. For this, due to the theorem 9 of

appendix B, we only need to prove the convergence of the finite-dimensional distribu-

tions (Lemma 1) together with the tightness of the family of probability distributions

(lemma 2):

Lemma 1. For A0 ⊆ C[0, 1], let Pn(A0) = P [Xn ∈ A0|Xn(1) = 0] to be the law of

Xn conditioned on Xn(1) = 0. Then
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(a) For µ = 0, the finite-dimensional distributions of Pn converge weakly to a

Gaussian distributions.

(b) There are positive {Cn}n=1,2,... → C (C = σ2 when µ = 0) such that 0 < C <

∞ and

CovPn(Xn(s), Xn(t)) = Cns(1− t) +O(
1

n
)

for all 0 ≤ s ≤ t ≤ 1. More precisely: CovPn(Xn(s), Xn(t)) = Cns(1− t) if [ns] < [nt]

and

CovPn(Xn(s), Xn(t)) = Cns(1−t)−Cn ε1(1−ε2)
n

if [ns] = [nt], where ε1 = ns−[ns]
n
∈ [0, 1)

and ε2 = nt−[nt]
n
∈ [0, 1).

and

Lemma 2. For µ = 0, the probability measures Pn induced on the subspace of Xn(t)

trajectories in C[0, 1] are tight.

Proof of Lemma 1: (a) Though it is not difficult to show that a finite-dimensional

distribution of Pn converges weakly to a Gaussian distribution, here we only show the

convergence for one and two points on the interval (in case of one point t ∈ [0, 1], we

show that the limit variance has to be equal to t(1− t)σ2). Take t ∈ 1
n
Z ∩ (0, 1) and

let α = k√
n
, then by the Local CLT (see appendix A),

P [X(tn) = k] =
1√
n

Φσ
√
t(α) + o(

1√
n

), where Φv(x) ≡
1

v
√

2π
e−

|x|2

2v2 (8.1)

is the normal density function, and the error term is uniformly bounded by a o( 1√
n
)

function independent of k.

Therefore, substituting (8.1),

Pn[Xn(t) = α] =
( 1√

n
Φσ

√
t(α) + o( 1√

n
))( 1√

n
Φσ

√
1−t(α) + o( 1√

n
))

1√
n
Φσ(0) + o( 1√

n
)

=
1√
n

Φ
σ
√
t(1−t)(α)+o(

1√
n

).
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Thus for a set A in R,

Pn[Xn(t) ∈ A] =
∑

k∈
√
nA

[
1√
n

Φ
σ
√
t(1−t)(α) + o(

1√
n

)] = N[0, t(1− t)σ2](A) + o(1)

-here the limit variance is equal to t(1 − t)σ2. Given that the variance σ2 < 0, the

convergence follows.

The same method works for more than one point, here we do it for two: Let

α1 = k1√
n

and α2 = k2√
n
, then as before, for t1 < t2 in 1

n
Z∩(0, 1), writing the conditional

probability as a ratio of two probabilities, and representing the probabilities according

to (8.1), we get

Pn[Xn(s) = α1, Xn(t) = α2] =

√
|A|

2πσ2
exp

{
−(α1, α2)A(α1, α2)

T

2σ2

}
+ o(

1

n
).

where

A =

(
t2

(t2−t1)t1
− 1
t2−t1

− 1
t2−t1

1−t1
(t2−t1)(1−t2)

)
.

Thus for sets A1 and A2 in R,

Pn[Xn(t1) ∈ A1, Xn(t2) ∈ A2] =
∑

k1∈
√
nA1,k2∈

√
nA2

[

√
|A|

2πσ2
exp

{
−(α1, α2)A(α1, α2)

T

2σ2

}
+ o(

1

n
)]

= N[0,A−1](A1 × A2) + o(1)

Observe that (σ2A−1) =

(
t1(1− t1)σ2 t1(1− t2)σ2

t1(1− t2)σ2 t2(1− t2)σ2

)
is the covariance matrix, and

the part (b) of the lemma follows in case µ = 0.
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(b) Though the estimate above produces the needed variance in case when the

mean µ = 0 , in general, we need to apply the following approach: We first consider

the case when s < t and both s, t ∈ 1
n
Z ∩ (0, 1) where

E[Xn(s) | Xn(t) = y] = E[Z1 + ...+ Zsn|Z1 + ...+ Ztn = y] =
s

t
y,

and therefore

CovPn(Xn(s), Xn(t)) =
s

t
E[X2

n(t)|Xn(1) = 0]

as {−Xn(1− t) | Xn(1) = 0} and {Xn(t) | Xn(1) = 0} are identically distributed.

Now, by symmetry (time reversal),

CovPn(Xn(s), Xn(t)) = CovPn(Xn(1− t), Xn(1− s)) =
1− t
1− s

E[X2
n(s)|Xn(1) = 0],

and therefore
E[X2

n(s)|Xn(1) = 0]

E[X2
n(t)|Xn(1) = 0]

=
s(1− s)
t(1− t)

.

Hence, there exists a constant Cn such that for all t ∈ 1
n
Z ∩ (0, 1)

E[X2
n(t)|Xn(1) = 0]

t(1− t)
≡ Cn.

Thus we have shown that for s ≤ t in 1
n
Z ∩ [0, 1],

CovPn(Xn(s), Xn(t)) =
s

t
E[X2

n(t)|Xn(1) = 0] =
s

t
Cnt(1− t) = Cns(1− t).

Now, consider the general case: s = s0 + ε1
n
≤ t = t0 + ε2

n
, where ns0, nt0 ∈ Z and

ε1, ε2 ∈ [0, 1). Then the covariance
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CovPn(Xn(s), Xn(t)) = (1− ε1)(1− ε2)CovPn(Xn(s0), Xn(t0))

+ (1− ε1)ε2CovPn(Xn(s0), Xn(t0 +
1

n
))

+ ε1(1− ε2)CovPn(Xn(s0 +
1

n
), Xn(t0))

+ ε1ε2CovPn(Xn(s0 +
1

n
), Xn(t0 +

1

n
))

Therefore

CovPn(Xn(s), Xn(t)) = Cns(1− t) when s0 < t0 ([ns] < [nt]),

and

CovPn(Xn(s), Xn(t)) = Cns(1− t)− Cn
ε1(1− ε2)

n
when s0 = t0 ([ns] = [nt]).

Now, plugging in s = t = 1
2

we get

Cn = 4E[X2
n(

1

2
)|Xn(1) = 0] when n is even,

and

Cn = 4E[X2
n(

1

2
)|Xn(1) = 0](

n

n− 1
) when n is odd.

Therefore

Cn = 4E[X2
n(

1

2
)|Xn(1) = 0](1 +O(

1

n
))→ C = σ2

as {Xn(
1
2
), Pn} converges in distribution as n→ +∞.

Proof of Lemma 2: Before we begin the proof of tightness, we notice that the only

real obstacle we face is that the process is conditioned on Xn = 0. The tightness for

the case without the conditioning has been proved years ago as part of the Donsker’s

Theorem (see Chapter 10 in [3]). With the help of the local CLT (see appendix A)

we are essentially removing the difference between the two cases.
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Given a λ > 0 and let m = [nδ] for a given 0 < δ ≤ 1, then for any µ > 0,

Pλ ≡ P [ max
0≤i≤m

Xi ≥ λ
√
n > Xm > −λ

√
n|Xn = 0]

=

[λ
√
n]∑

a=−[λ
√
n]

P [max0≤i≤mXi > [λ
√
n] ; Xm = a ; Xn = 0]

P [Xn = 0]

=

[λ
√
n]∑

a=−[λ
√
n]

P [max0≤i≤mXi > [λ
√
n] ; Xm = a]P [Xn−m = −a]

P [Xn = 0]

≤ max
−[λ

√
n]≤a≤[λ

√
n]
(
P [Xn−m = −a]
P [Xn = 0]

)×
[λ
√
n]∑

a=−[λ
√
n]

P [ max
0≤i≤m

Xi > [λ
√
n] ; Xm = a]

≤ 2P [ max
0≤i≤m

Xi ≥ λ
√
n ≥ Xm ≥ −λ

√
n]

for n large enough, where by the local CLT,

max
−[λ

√
n]≤a≤[λ

√
n]
(
P [Xn−m = −a]
P [Xn = 0]

) ≤ 2

for n large enough as n−m linearly depends on n.

Therefore, the probability

P [ max
0≤i≤m

|Xi| ≥ λ
√
n|Xn = 0] ≤ 2Pλ + P [|Xm| ≥ λ

√
n|Xn = 0],

where

Pλ ≤ 2P [ max
0≤i≤m

Xi ≥ λ
√
n].

Now, due to the point-wise convergence, we can proceed as in Chapter 10 of [3]

by bounding the two remaining probabilities:

P [ max
0≤i≤m

|Xi| ≥ λ
√
n] ≤ 2P [|Xm| ≥

1

2
λ
√
n]→ 2P [|

√
δN | ≥ λ

2σ
] ≤ 16δ3/2σ3

λ3
E[|N |3]
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and similarly

P [|Xm| ≥ λ
√
n|Xn = 0]→ P [|

√
δ(1− δ)N | ≥ λ

σ
] ≤ δ3/2σ3

λ3
E[|N |3].

Thus, for all integer k ∈ [0, n−m],

P [ max
0≤i≤m

|Xk+i−Xk| ≥ λ
√
n|Xn = 0] = P [ max

0≤i≤m
|Xi| ≥ λ

√
n|Xn = 0] ≤ 70

δ3/2σ3

λ3
E[|N |3]

for n large enough, (see Chapter 10 in [3]). Therefore {Pn} are tight (see Theorem

11).

Proof of Theorem 6: The lemmas above imply the convergence when the mean µ = 0.

Now, for µ 6= 0, there exists a ρ ∈ R such that
∑

z∈Z ze
ρzP [Z1 = z] = 0. Then we let

Ẑ1, Ẑ2, ... be i.i.d. random variables with their distribution defined in the following

fashion:

P [Ẑj = z] ≡ eρz

Cρ
P [Zj = z]

for all j and z ∈ R, where Cρ ≡
∑

z∈Z P [Ẑ1 = z] =
∑

z∈Z e
ρzP [Z1 = z]. Then the

law of Z1, ..., Zn conditioned on Z1 + ... + Zn = 0 is the same as that of Ẑ1, ..., Ẑn

conditioned on Ẑ1 + ...+ Ẑn = 0, and the case is reduced to that of µ = 0 as EẐj = 0.

We also estimate the covariance equal to Ĉs(1 − t) for all 0 ≤ s ≤ t ≤ 1, where as

before

Ĉ = lim
n→+∞

E[Z2
1 | Z1 + ...+ Zn = 0].

Observe that the result can be modified for X1, X2, ... defined on a multidimen-

sional lattice L ⊂ Rd,d > 1, if we condition on Xn(1) = a(n) = a + o(1) ∈
{z
√
n : z ∈

⊕n
1 L}. We again let point zero be inside the closed convex hull of

{z : P [Z1 = z] > 0}. In this case the process X̃n(t) = Xn(t) + (a− a(n))t converges

to the Brownian bridge B0,a, and convergence is uniform whenever a(n) uniformly

converges to zero thanks to the Local CLT (see appendix A).
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Theorem 7. X̃n(t) conditioned on Xn(1) = a(n) = a + o(1) converges weakly to the

Brownian bridge.

Here, as before, if we take t ∈ 1
n
Z ∩ [0, 1] and let α = k√

n
, then

P [Xn(t) = α | Xn(1) = a(n)] =
( 1√

n
Φσ

√
t(α) + o( 1√

n
))( 1√

n
Φσ

√
1−t(a(n)− α) + o( 1√

n
))

1√
n
Φσ(a(n)) + o( 1√

n
)

=
1√
n

Φ
σ
√
t(1−t)(α− a(n)t) + o(

1√
n

).

8.2 General Case

As before, for a given non-zero vector ã ∈ Zd, we let X1, X2, ... be i.i.d. random

variables on Zd with the span of the lattice distribution equal to one (see [10]) such

that the probability P [ã · X1 > 0] = 1, the mean µ = EX1 < ∞ and there is a

constant λ̄ > 0 such that the moment-generating function

E[eθ·X1 ] <∞

for all θ ∈ Bλ̄. Also we let Pã denote the projection map on < ã > and P⊥
ã denote

the orthogonal projection on < ã >⊥. Now we can decompose the mean µ = µa×µor,
where µa ≡ Pãµ and µor ≡ P⊥

ã µ.

As before we introduce a new basis {~f1, ~f2, ..., ~fd}, where ~f1 = ã
‖ã‖ . We again use

[·, ·]f ∈ R×Rd−1 to denote the coordinates of a vector with respect to the new basis.

We denote Xi = [Ti, Zi]f ∈ Z × Zd−1, where [Ti, 0]f = PãXi and [0, Zi]f = P⊥
ãXi,

and we let X1 + ... + Xi = [ti, Yi]f ∈ Z × Zd−1. Note: Ti and Zi don’t have to be

independent. Interpolating Yi, we get

Y (t) = Y[t] + (t− [t])(Y[t]+1 − Y[t])

for 0 ≤ t ≤ ∞ and if we now define Yn(t) ≡ Y (nt)√
n

for 0 ≤ t ≤ 1, then the following

theorem easily follows from the previous result:
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Corollary. Yn(t) conditioned on Yn(1) = 0 converges weakly to the Brownian bridge.

Since the first coordinate Ti is positive with probability one, the next step will

be to interpolate [ti, Yi]f , and prove that if scaled and conditioned on [tn, Yn]f =

X1 + ...+Xn = [n‖ã‖, 0]f = nã it will converge weakly to the Brownian bridge (with

the first coordinate being the time axis). Now, the last theorem (theorem 7) implies

the result for P [[Ti, 0]f = µa] = 1, we want the same result for ETi = ‖µa‖ with

V arTi <∞.

We first let X̄i ≡ Xi − µa, then EX̄i = µor and V arX̄i <∞. We again interpolate:

X̄(t) = X̄[t] + (t− [t])(X̄[t]+1 − X̄[t])

for 0 ≤ t ≤ ∞, and scale X̄k(t) ≡ X̄(kt)√
k

. Note: the last d − 1 coordinates of X̄k(t)

w.r.t. the new basis are Yk(t) (e.g. P⊥
ã X̄k(t) = [0, Yk(t)]f ).

From here on we denote Sj ≡ [tj, Yj]f = X1+...+Xj and S̄j ≡ X̄1+...+X̄j = Sj−jµa
for any positive integer j. As a first important step, we state another important

Corollary. For k = k(n) = [n‖ã‖‖µa‖ + k0

√
n], {X̄k(t) − (k0

√
‖µa‖
‖ã‖ µa + nã−kµa√

k
)t} con-

ditioned on X̄k(1) = nã − kµa (e.g.[tk, Yk]f = nã) converges weakly to the Brownian

bridge B
0,−k0

q
‖µa‖
‖ã‖ µa.

Observe that nã− kµa = −k0

√
nµa + o(

√
n) and that the convergence is uniform

for all k0 in a compact set . Now, looking only at the last d− 1 coordinates of X̄k(t),

w.r.t. the new basis the last Corollary implies:

Lemma 3. For k = k(n) = [n‖ã‖‖µa‖ + k0

√
n], Yk(t) conditioned on tk = n‖ã‖ and

Yk(1) = 0 converges weakly to the Brownian bridge.

Note that convergence is uniform for k0 in a compact set.

What the Lemma above says is the following: the interpolation of [ i
k
, 1√

k
Yi]f condi-

tioned on [tk, Yk]f = nã converges to Time×Brownian bridge. Now, define the process

[t, Y ∗
n,k(t)]f to be the interpolation of [ 1

n‖ã‖ti,
1√
n
Yi]

i=0,1,...,k
f , then

Theorem 8. For k = k(n) = [n‖ã‖‖µa‖ + k0

√
n],
√

n
k
Y ∗
n,k(t) conditioned on tk = n‖ã‖

and Yk(1) = 0 converges weakly to the Brownian bridge.
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Proof: Here we observe that the mean E[ ti
n‖ã‖ −

ti−1

n‖ã‖ ] is actually equal to ‖µa‖
n‖ã‖ =

1
k−k0

√
n

+ o( 1
n
), and that for a given ε > 0, the probability of the ‖[ 1

n‖ã‖ti,
1√
n
Yi]f −

[ i
k
, 1√

k
Yi]f‖ = | tj

n‖ã‖ −
j
k
| exceeding ε for some j ≤ k,

P [ max
0≤j≤k

|tj −
n‖ã‖
k

j| ≥ nε | Sn = nã] ≤ P [ max
0≤j≤k

‖Sj −
n‖ã‖j
k

µa‖ ≥ nε | Sk = nã]

≤ P [ max
0≤j≤k

|S̄j| ≥ n
ε

2
| S̄k = [n‖ã‖ − k‖µa‖, 0]f ]

→ 0

as n→ +∞ since n‖ã‖ − k‖µa‖ = −‖µa‖k0

√
n+ o(

√
n).

Now, the next step is to prove that the process

{Y ∗
n,k for some k such that [tk, Yk]f = nã}

conditioned on the existence of such k converges weakly to the Brownian bridge.

First of all the last theorem implies

Lemma 4. For given k = k(n) = [n‖ã‖‖µa‖ + k0

√
n], Y ∗

n,k(t) conditioned on tk = n‖ã‖
and Yk(1) = 0 converges weakly to the Brownian bridge.

For a fixed M > 0, convergence is also uniform on k ∈ [n‖ã‖‖µa‖−M
√
n, n‖ã‖‖µa‖ +M

√
n].

For the future purposes we denote κ ≡ ‖µa‖
‖ã‖ and IM ≡ [n

κ
−M

√
n, n

κ
+M

√
n]
⋂

Z.

Finally, we want to prove the following technical result, in which we use the

uniformity of convergence for all k = k(n) ∈ IM and the truncation techniques to

show the convergence of Y ∗
n,k to the Brownian bridge in case when we condition only

on the existence of such k.

Technical Theorem. The process

{Y ∗
n,k for some k such that [tk, Yk]f = nã}
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conditioned on the existence of such k converges weakly to the Brownian bridge.

Proof: Take M large, notice that for A ⊂ Cd−1[0, 1],

max
k∈IM

|P [Y ∗
k ∈ A | [tk, Yk]f = nã]− P [Bo ∈ A]| = o(1),

where the brownian bridge Bo is scaled up to the same constant for all those k.

Hence,

limn→+∞

∑
k∈IM P [Sk = nã]P [Y ∗

n,k ∈ A|Sk = nã]∑
k∈IM P [Sk = nã]

= P [Bo ∈ A].

Therefore we are only left to prove the truncation argument as M → +∞. Now,

for any ε > 0 there exists M > 0 such that

(1 + ε)
∑
k∈IM

P [Sk = nã] ≤
∑
k

P [Sk = nã] ≤ (1 + 2ε)
∑
k∈IM

P [Sk = nã]

for n large enough, as by the large deviation upper bound, there is a constant C̄LD > 0

such that

P [Sk = nã] ≤ e−C̄LD
(n−kκ)2

k
∧|n−kκ|,

and therefore ∃CLD > 0 such that

∑
|n−kκ|>n2/3

P [Sk = nã] < e−CLDn
1/3

.

Also, by the local CLT (see appendix A),

P [Sk = nã] = P [S̄k = (n− kκ)ã] =
1

kd/2
√
V arX̄1(2π)d

e
− 1

2V arX̄1

(n−kκ)2

k + o(
1

kd/2
)

implying

∑
|n−kκ|≤n2/3

P [Sk = nã] =
1

n
d−1
2

[

∫ +∞

−∞

1√
V arX̄1(2π)d

e
− x2

2V arX̄1 dx+ o(1)]
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where ∑
k∈IM

P [Sk = nã] =
1

n
d−1
2

[

∫ M

−M

1√
V arX̄1(2π)d

e
− x2

2V arX̄1 dx+ o(1)].

Therefore

1

1 + 2ε

∑
k∈IM P [Sk = nã]P [Y ∗

n,k ∈ A|Sk = nã]∑
k∈IM P [Sk = nã]

≤
∑

k P [Sk = nã]P [Y ∗
n,k ∈ A|Sk = nã]∑

k P [Sk = nã]

≤ 1

1 + ε

∑
k∈IM P [Sk = nã]P [Y ∗

n,k ∈ A|Sk = nã]∑
k∈IM P [Sk = nã]

for all A ⊂ Cd−1[0, 1]. Taking the lim inf and lim sup of the fraction in the middle

completes the proof.



Chapter 9

Conclusions

As for the current develoments in the field, first, we know of an interesting research

done under supervision of D.Ioffe to produce a Brownian bridge asymptotics for some

cases of 2D Ising model in lieu of [7].

In case of the subcritical bond percolation model, a cluster conditioned on connect-

ing three or more faraway points is studied (see [22]), and some precise asymptotes

are produced.

As yet another possible extension of the subject studied in this thesis, we conjec-

ture that the result of chapter 6 holds (up to a scalar multiple) for the subcritical

Fortuin-Kasteleyn (FK) random-cluster models with q ≥ 1. The random-cluster per-

colation models which, as it was shown in [11], are just a recast of the Potts models

can be characterized with the corresponding FK random-cluster measures. That is

for a finite graph G = (V,E), we let ΩE = {0, 1}E be the set of all possible outcomes

of the percolation on the edges of the graph, namely for an ω ∈ ΩE, we let ω(e) = 1

if the edge e is open, and ω(e) = 0 otherwise. Then the random-cluster measure of

an ω ∈ ΩE for percolation probability p and a parameter q > 0 would be

φp,q(ω) =
1

ZG,p,q

{∏
e∈E

pω(e)(1− p)1−ω(e)

}
qk(ω),

where k(ω) is the number of open connected components on the graph and ZG,p,q is a

normalization factor. We notice that on a square lattice, the case of q = 1 corresponds
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to the regular bond percolation. The measure satisfies the FKG inequality if q ≥ 1.

We conjecture that inside a large box with sides of order n, the result of chapter 6

holds in some form for all q ≥ 1.

We would also like to mention an important new direction in the study of rare

events primarily in 3D supercritical percolation replicating some well known results

concerning the interfaces in 3D Ising and Potts models, and various disordered spin

systems. For the edges of the 3-dimensional square lattice, one can define the cor-

responding “dual faces” (or “plaquettes”) as an analogue of the dual edges in two

dimensions. So, in case of the 3D supercritical bond percolation model, the specific

interface consisting of the connected plaquettes corresponding to the closed edges

inside a cube is studied. The edges on the boundary of the cube are subject to the

so called “Dobrushin boundary” conditions opening all the edges on the boundary of

the cube except for a belt of closed edges (connecting points (x1, x2, 0) and (x1, x2, 1)

outside the cube), splitting the surface of the cube in two open ”semi-spheres”. The

interface appears if we condition on the two semi-spheres being disconnected inside

the cube, so that there is a closed dual interface separating them. We want to point

out that the problem of finding a precise assymptotics for the interface is similar to

that studied in chapter 6, though a different approach might be needed.



Appendix A

Local Limit Theorem

In this thesis we use the version of the local CLT borrowed from [10]: Let X1, X2, ... ∈
R be i.i.d. with EXi = 0, EX2

i = σ2 ∈ (0,∞), and having a common lattice

distribution with span h. If Sn = X1 + ... + Xn and P [Xi ∈ b + hZ] = 1 then

P [Sn ∈ nb+ hZ] = 1. We put

pn(x) = P [Sn/
√
n = x] for x ∈ Λn = {(nb+ hz)/

√
n : z ∈ Z}

and

n(x) = (2πσ2)−1/2 exp(−x2/2σ2) for x ∈ (−∞,∞)

Local CLT. Under the above hypotheses, supx∈Λn
|
√
n
h
pn(x)− n(x)| → 0 as n→∞.

47



Appendix B

Weak Convergence

Here we briefly outline the results on weak convergence and tightness in C = C[0, 1]

necessary for the material presented in the thesis. The uniform topology on C is

defined by the distance norm d(x, y) ≡ supt |x(t) − y(t)| for all functions x and y in

C. Please see [3] for a consistent and elaborate presentation of the material of this

chapter. The content of the chapter is in fact based on [3].

We are given probability measures {Pn}n and P on (S,F), where S is a met-

ric space (in our case it is S = C[0, 1]) and F is the corresponding σ-algebra. If∫
S
fdPn →

∫
S
fdP for every bounded, continuous real function f(·) on S, we say

that Pn converges weakly to P and write Pn ⇒ P . We say that a sequence of

random variables {Xn}n converges in distribution to the random variable X if

the corresponding distributions Pn of the {Xn}n converge weakly to the distribution

P of X (e.g. Pn ⇒ P ).

Here is another crucial definition: A probability measure P on (S,F) is tight if

for every ε ∈ [0, 1] there exists a compact set K such that P (K) > 1 − ε. Similarly,

for a family Π of probability measures on (S,F), Π is tight if for every ε ∈ [0, 1]

there exists a compact set K such that P (K) > 1− ε for all P in Π.

Now, we are ready to state the classical results crucial for the weak convergence

argument that we have used here to derive the Brownian Bridge asymptotics (8.2) for

a simple walk with a drift which later led us to proving the main results of convergence

in case of percolation, self-avoiding walks and other models of statistical mechanics.
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We say that a family Π of probability measures on (S,F) is relatively compact if

in every sequence of elements of Π there is a weakly convergent subsequence. The

theorem of Prohorov stated below says that tightness is necessary and sufficient for

relative compactness, and therefore (as it is going to be shown in the theorem to

follow) convergence of finite-dimensional distributions together with tightness are

enough to show the weak convergence of probability measures. Here is the statement

of the theorem:

Prohorov’s Theorem. • If Π is tight, then it is relatively compact.

• Suppose S is separable and complete. If Π is relatively compact, then it is tight.

The statement of the next theorem concerns the case of S = C ≡ C[0, 1] and

F = C.

Theorem 9. Let Pn,P be probability measures on (C, C). If the finite-dimensional

distributions of Pn converge weakly to those of P , and if {Pn}n is tight, then Pn ⇒ P .

As it was mentioned before, the theorem follows directly from Prohorov’s theorem.

It is worth noticing that Arzelà-Ascoli theorem plays a fundamental role in proving

the tightness argument of the theorem below.

Theorem 10. The sequence {Pn}n of probability measures on (C, C) is tight if and

only if the following two conditions hold: (a) For each positive η, there exists an a

such that

Pn[x : |x(0)| > a] ≤ η, for all n ≥ 1.

(b) For each positive ε and η, there exist a δ ∈ (0, 1), and an integer N such that

Pn[x : sup
|s−t|<δ

|x(s)− x(t)| ≥ ε] ≤ η, for all n ≥ N.

Here is another tightness result which follows directly from the previous theorem.

The setting is similar to that of the Donsker’s theorem, theorem 6 of this thesis

and the technical theorem proved in section 8.2. We define {Xn(t, ω)}n in (C, C)
in the following way: we let ξ1, ξ2, ... to be a sequence of random variables on some
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probability space (Ω,B, P ) with finite variance σ2 > 0 (ξ1, ξ2, ... need not be stationary

or independent). We also define S0 ≡ 0 and Sn ≡ ξ1 + ...+ ξn. For points i
n
∈ [0, 1],

we set Xn(
i
n
, ω) = 1

σ
√
n
Si(ω), and for the rest of the points

Xn(t, ω) =
1

σ
√
n
S[nt](ω) + (nt− [nt])

1

σ
√
n
ξ[nt]+1(ω).

Theorem 11. The sequence {Xn}n is tight if for each positive ε there exist a λ > 1

and an integer N such that, if n ≥ N , then

P [max
i≤n
|Sk+i − Sk| ≥ λσ

√
n] ≤ ε

λ2

holds for all k.

The above theorems were significant for proving various modifications of Donsker’s

Theorem, and as it was mentioned before, for proving similar theorems: Theorem 6

and Technical Theorem of section 8.2, which together constituted one of the major

instruments for the research work described in this thesis.



Bibliography

[1] M.Aizenman and D.J.Barsky, Sharpness of phase transition in percolation mod-

els. Commun. Math. Phys. 108 (1987), 489-526.

[2] K.S.Alexander, J.T.Chayes and L.Chayes, The Wulff Construction and Asymp-

totics of The Finite Cluster in Two-Dimensional Percolation. Commun. Math.

Phys. 131 (1990), 1-50.

[3] P.Billingsley, Convergence of Probability Measures. John Wiley & Sons (1968).

[4] M.Campanino, J.T.Chayes and L.Chayes, Gaussian Fluctuations in the Subcrit-

ical Regime of Percolation. Prob. Th. Rel. Fields 88 (1991), 269-341.

[5] J.T.Chayes, L.Chayes and R.H.Schonmann, Exponential decay of connectivities

in the two-dimensional Ising model. J. Statist. Phys. 49 (1987), 433-445.

[6] M.Campanino and D.Ioffe, Ornstein-Zernike Theory For The Bernoulli Bond

Percolation On Zd. (1999) to appear Ann.Prob.

[7] M.Campanino, D.Ioffe and Y.Valenik, Ornstein-Zernike Theory For The Finite

Range Ising Model above Tc. preprint (2001).

[8] J.T.Chayes and L.Chayes, Ornstein-Zernike Behavior for Self-Avoiding Walks

at All Noncritical Temperatures. Commun. Math. Phys. 105 (1986), 221-238.

[9] R.M.Dudley, Real Analysis and Probability. Chapman & Hall (1989).

[10] R.Durrett, Probability: Theory and Examples (second edition) Duxbury Press

(1995).

51



52 BIBLIOGRAPHY

[11] R.G.Edwards and A.D.Sokal, Generalization of the Fortuin-Kesteleyn-Swendsen-

Wang representation and Monte Carlo algorithm. The Physical Review D 38

(1988), 2009-2012.

[12] G.R.Grimmett, Percolation (second edition) Springer, New York (1999).

[13] T.Hara and G.Slade, Mean-field crucial behaviour for percolation in high dimen-

sions. Commun. Math. Phys. 128 (1990), 333-391.

[14] T.Hara and G.Slade, Self-avoiding walk in five or more dimensions I. The critical

behaviour. Commun. Math. Phys. 147 (1992), 101-136.

[15] O.Hryniv, On local behaviour of the phase separation line in the 2D Ising model.

Probab. Th. Rel. Fields 110 (1998), 91-107.

[16] D.Ioffe, Ornstein-Zernike Behaviour and Analyticity of Shapes for Self-Avoiding

Walks On Zd. Markov Processes and Related Fields 4 (1998), 324-350.

[17] H.Kesten, The probability of large finite cluster in supercritical Bernoulli perco-

lation. Commun. Math. Phys. 74 (1980), 41-59.

[18] H.Kesten, Percolation Theory For Mathematicians. Birkhäuser, Boston (1982).
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