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A quote.

Aldous (1998): It turns out that there is

a large scientific literature relevant to the

Marcus-Lushnikov process, mostly focusing

on its deterministic approximation. Curiously,

this literature has been largely ignored by

random graph theorists.
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Erdős-Rényi random graph.

Erdős-Rényi random graph on Kn:

• Edge e is an associated a uniform random variable Ue
over [0,1]. The random variables {Ue}e are assumed
to be independent.

• For the “time” parameter p ∈ [0,1], an edge e is
considered “open” if Ue ≤ p. Obtaining the Erdős-
Rényi random graph G(n, p).

Minimal spanning tree in Kn:

• A spanning tree in Kn with minimal
∑
e
Ue is called

the minimal spanning tree. Let Ln =
∑
e
Ue denote

its length.
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The length of the minimal spanning tree in Kn.

A. Frieze (1985) using the results of P. Erdős and
A. Rényi (1960) showed for Erdős-Rényi random
graph on Kn:

The limiting mean length of the minimal spanning
tree in Kn is

lim
n→∞

E[Ln] =
∞∑
k=1

∞∫
0

kk−2tk−1

k!
e−ktdt = ζ(3),

where

ζ(3) =
∞∑
k=1

1

k3
= 1.202 . . .

is the value of the Riemann zeta function at 3.
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The minimal spanning tree in a regular graph.

Frieze and McDiarmid (1989) derive the formula
for the limiting mean length of the minimal span-
ning tree of the Erdős-Rényi random graph process
on regular graphs, as multiples of ζ(3).

In particular, for the Erdős-Rényi random graph pro-
cess on Kn,n,

lim
n→∞

E[Ln] = 2ζ(3)
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Main results

Novel approach to finding minimal spanning tree
asymptotics via the hydrodynamic limits and the
analysis of the corresponding ‘reduced’ Smoluchowski
coagulation equations.

Theorem [YK, Otto, and Yambartsev, 2017].
Let α, β > 0, γ = α/β, and Ln = Ln(α, β) be the
length of a minimal spanning tree on a complete bi-
partite graph Kα[n],β[n] with partitions of size

α[n] = αn+ o(
√
n) and β[n] = βn+ o(

√
n)

and independent uniform edge weights over [0,1].
Then

lim
n→∞

E[Ln] = γ+
1

γ
+

∑
i1≥1; i2≥1

(i1 + i2 − 1)!

i1!i2!

γi1ii2−1
1 ii1−1

2

(i1 + γi2)i1+i2
.
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A formula for E[Ln].

S. Janson (1995) for Kn

Beveridge, Frieze, and McDiarmid (1998) in general:

For all connected graphs with i.i.d. uniform [0,1] edge
lengths,

E[Ln] =

1∫
0

E[κ(G(n, p))]dp− 1,

where κ(G(n, p)) is the number of components in the
Erdős-Rényi random graph G(n, p).
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Coalescent processes.

• The process begins with n singletons (clusters of
mass one).

• The cluster formation is governed by a symmetric
collision rate kernel K(i, j) = K(j, i) > 0.

• A pair of clusters with masses (weights) i and j
coalesces at the rate K(i, j)/n, independently of the
other pairs, to form a new cluster of mass i+ j.

• The process continues until there is a single cluster
of mass n.

Famous kernels: Kingman’s K(i, j) ≡ 1, Additive
K(i, j) = i+ j, and Multiplicative K(i, j) = ij.
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Marcus-Lushnikov processes.

The Marcus-Lushnikov process

MLn(t) =
(
ζ1,n(t), ζ2,n(t), . . . , ζn,n(t),0,0, . . .

)
is an auxiliary process to the corresponding coalescent
process that keeps track of the numbers of clusters
in each weight category.

Here ζk,n(t) denotes the number of clusters of weight
k at time t ≥ 0.

Since the coalescent process begins with n singletons,

MLn(0) = (n,0,0, . . .).
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Marcus-Lushnikov processes.

For the multiplicative kernel K(i, j) = ij, the pro-
cess MLn(t) describes cluster size dynamics of the
Erdős-Rényi random graph process G(n, p) on Kn with
p = 1− e−t/n.

lim
n→∞

E[Ln] = lim
n→∞

1∫
0

E[κ(G(n, p))] dp− 1

= lim
n→∞

∞∫
0

1

n
E[κ(G(n,1− e−t/n))]e−t/ndt− 1

= lim
n→∞

∞∫
0

∞∑
k=1

E[ζk,n(t)]

n
e−t/ndt− 1.
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Smoluchowski coagulation equations.

Smoluchowski coagulation equations for the multi-
plicative kernel K(i, j) = ij are

d

dt
ζk = −kζk

∞∑
j=1

jζj+
1

2

k−1∑
j=1

j(k−j)ζjζk−j, ζk(0) = δ1,k.

They are suppose to describe the deterministic dy-
namics of the limiting fractions in the Marcus-Lushnikov
processes,

ζk(t) = lim
n→∞

ζk,n(t)

n
,

BUT...
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Problem with conservation of mass.

McLeod (1962) showed that the Smoluchowski co-
agulation equations

d

dt
ζk = −kζk

∞∑
j=1

jζj+
1

2

k−1∑
j=1

j(k−j)ζjζk−j, ζk(0) = δ1,k

have no solution past Tgel = 1.

Issue: Conservation of mass
∑∞

j=1 jζj(t) = 1.

The problem is solved by introducing the reduced
Smoluchowski system also known as the Flory’s co-
agulation system:

d

dt
ζk = −kζk +

1

2

k−1∑
j=1

j(k − j)ζjζk−j, ζk(0) = δ1,k.
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Flory’s coagulation system.

The solutions of the two systems

d

dt
ζk = −kζk

∞∑
j=1

jζj+
1

2

k−1∑
j=1

j(k−j)ζjζk−j, ζk(0) = δ1,k

and

d

dt
ζk = −kζk +

1

2

k−1∑
j=1

j(k − j)ζjζk−j, ζk(0) = δ1,k

coincide up until the gelation time Tgel = 1.

They are

ζk(t) =
kk−2tk−1

k!
e−kt.



Coalescence and Minimal Spanning Trees 13

Flory’s coagulation system.

The solutions of Flory’s coagulation (reduced Smolu-
chowski) system

ζk(t) =
kk−2tk−1

k!
e−kt

satisfy the conservation of mass up until Tgel = 1:
∞∑
k=1

kζk(t) = 1 if t ≤ Tgel
∞∑
k=1

kζk(t) < 1 if t > Tgel.

This phenomenon is known as gelation. It reflects
the emergence of a unique giant component in the
Erdős-Rényi random graph process.
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The hydrodynamic limit.

We us the weak law of large numbers of T. Kurtz to
show the hydrodynamic limit

lim
n→∞

ζk,n(t)

n
= ζk(t),

where for a fixed time T > 0 and a given integer
K > 0, we have

lim
n→∞

sup
s∈[0,T ]

∣∣∣∣∣
K∑
k=1

n−1ζk,n(s)−
K∑
k=1

ζk(s)

∣∣∣∣∣ = 0 a.s.

using the limit theorems of T. Kurtz for density de-
pendent population processes.
See Kurtz (1981) and Ethier and Kurtz (1986).
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The minimal spanning tree on Kn.

Informally,

lim
n→∞

E[Ln] = lim
n→∞

∞∫
0

∞∑
k=1

E[ζk,n(t)]

n
e−t/ndt− 1

=
∞∑
k=1

∞∫
0

ζk(t)dt+ lim
n→∞

∞∫
Tgel

1

n
e−t/ndt− 1

=
∞∑
k=1

∞∫
0

ζk(t)dt+ lim
n→∞

e−Tgel/n − 1 =
∞∑
k=1

∞∫
0

ζk(t)dt.

Here
∞∫
Tgel

1
n
e−t/ndt represents the emergence of one gi-

ant component at time Tgel = 1.

We formalize the above argument.
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BIG picture.

We prove that

lim
n→∞

E[Ln] =
∞∑
k=1

∞∫
0

ζk(t)dt =
∞∑
k=1

∞∫
0

kk−2tk−1

k!
e−ktdt = ζ(3).

General graphs: Consider a Marcus-Lushnikov pro-
cesses equivalent to the cluster size dynamics in a
general graph, e.g. Kn, Kn,n, K5n,7n , etc. The so-
lutions ζk(t) for the corresponding reduced Smolu-
chowski coagulation equations are considered with k
in a certain index space. Then,

lim
n→∞

E[Ln] =
∑
k

∞∫
0

ζk(t)d(t).
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Erdős-Rényi process on Kαn,βn.

For α, β > 0, consider two integer valued functions,
α[n] = αn+ o(

√
n) and β[n] = βn+ o(

√
n).

Consider an Erdős-Rényi random graph process on
the bipartite graph Kα[n],β[n].

In the coalescent process corresponding to an Erdős-
Rényi random graph process on Kα[n],β[n], each cluster

is assigned a weight vector i =

[
i1
i2

]
.

The coalescence kernel for any pair of clusters with

weight vectors i =

[
i1
i2

]
and j =

[
j1

j2

]
is

K(i, j) := i1j2 + i2j1.
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Cross-multiplicative coalescent process.

• The process begins with α[n] + β[n] singletons, of

which α[n] of weight

[
1
0

]
and β[n] of weight

[
0
1

]
.

• The cluster formation is governed by kernel

K(i, j) := i1j2 + i2j1.

• A pair of clusters with weight vectors i and j would
coalesce into a cluster of weight i + j with rate K(i, j)/n.

• The process continues until there is a single cluster

of weight

[
α[n]
β[n]

]
.

We will call this a cross-multiplicative coalescent pro-
cess.
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Smoluchowski coagulation equations.

d

dt
ζi1,i2(t) =− ζi1,i2(t)

∑
j1,j2

(i1j2 + i2j1)ζj1,j2(t)

+
1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)ζ`1,`2
(t)ζk1,k2

(t)

with the initial conditions ζ1,0(0) = α and ζ0,1(0) = β.

Gelation: Tgel solves

1− (α ∧ β)t+ ln((α ∨ β)t) = 0.
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Reduced Smoluchowski system.

d

dt
ζi1,i2(t) =− (βi1 + αi2)ζi1,i2(t)

+
1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2 + `2k1)ζ`1,`2
(t)ζk1,k2

(t)

with the initial conditions ζ1,0(0) = α and ζ0,1(0) = β.

Solution:

ζi1,i2(t) =
ii2−1
1 ii1−1

2 αi1βi2

i1!i2!
e−(βi1+αi2)t ti1+i2−1

Used F. Huang and B. Liu (2010) generalization
of Abel’s binomial theorem.
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Theorem [YK, Otto, and Yambartsev, 2017].
Let α, β > 0 and Ln = Ln(α, β) be the length of a
minimal spanning tree on a complete bipartite graph
Kα[n],β[n] with partitions of size

α[n] = αn+ o(
√
n) and β[n] = βn+ o(

√
n)

and independent uniform edge weights over [0,1].
Then

lim
n→∞

E[Ln] =
∞∑
i1,i2

∞∫
0

ζi1,i2(t)d(t),

where ζi1,i2(t) indexed by Z2
+\{(0,0)} is the solution of

d

dt
ζi1,i2(t) = −(βi1+αi2)ζi1,i2(t)+

1

2

∑
`1,k1: `1+k1=i1,
`2,k2: `2+k2=i2

(`1k2+`2k1)ζ`1,`2
(t)ζk1,k2

(t)

with ζi1,i2(0) = αδ1,i1δ0,i2 + βδ0,i1δ1,i2.
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The length of the minimal spanning tree on Kαn,βn.

Theorem [YK, Otto, and Yambartsev, 2017].
Let α, β > 0, γ = α/β, and Ln = Ln(α, β) be the
length of a minimal spanning tree on a complete bi-
partite graph Kα[n],β[n] with partitions of size

α[n] = αn+ o(
√
n) and β[n] = βn+ o(

√
n)

and independent uniform edge weights over [0,1].
Then

lim
n→∞

E[Ln] = γ+
1

γ
+

∑
i1≥1; i2≥1

(i1 + i2 − 1)!

i1!i2!

γi1ii2−1
1 ii1−1

2

(i1 + γi2)i1+i2
.

The above theorem recovers the result of Frieze and
McDiarmid (1989) for Kn,n:

Corollary. If γ = 1, then lim
n→∞

E[Ln] = 2ζ(3).


