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Abstract—We introduce an adiabatic framework for studying
adaptive queuing policies. The adiabatic framework provides
analytical tools for stability analysis of slowly changing systems
that can be modeled as time-inhomogeneous reversible Markov
chains. In particular, we consider queuing policies whose service
rate is adaptively changed based on the estimated arrival rates
that tend to vary with time. As a result, the packet distribution in
the queue over time behaves like a time-inhomogeneous reversible
Markov chain. Our results provide an upper bound on the time
for an initial distribution of packets in the queue to converge
to a stationary distribution corresponding to some pre-specified
queueing policy. These results are useful for designing adaptive
queueing policies when arrival rates are unknown, and may
or may not change with time. Furthermore, our analysis is
readily extended for any system that can be modeled as time-
inhomogeneous reversible Markov chain. We provide simulations
that confirms our theoretical results.

I. INTRODUCTION

A Markov chain is a finite or countable state space random
process where the probability of any particular future behavior
of the process, when its present state is known exactly,
is not altered by additional knowledge concerning its past
behavior [1]. The theory of Markov chains is extensively used
in queueing theory [2] and consequently in communication
networks [3], among other fields. It is a well-known result
that an irreducible, aperiodic Markov chain converges to a
unique stationary distribution [4]. The time taken to converge
to this distribution is of interest in applications like Monte
Carlo Markov chain [4]. After a large number of steps the
Markov chain must be “ϵ-close” according to some distance
notion to its stationary distribution. This is the idea of Markov
chain mixing and the time is quantified by mixing time [5]. In
the case of time inhomogeneous Markov chains, the evolution
must be slow enough such that the distribution is “ϵ-close” to
the stationary distribution of the final transition matrix. This
is the so-called adiabatic approach and this time is quantified
by adiabatic time [6].

The adiabatic approach follows along the lines of the
adiabatic evolution in quantum mechanics [7]. The quantum
adiabatic theorem studies the evolution of a system from an
initial Hamiltonian to a final Hamiltonian (operator corre-
sponding to total energy of the system) and says that if the
evolution is slow enough, the system will be “ϵ-close” in ℓ2

norm to the ground state of the final Hamiltonian. We consider
ℓ1 norms in our study of Markov chains.

We study the convergence, in adiabatic sense, of time inho-
mogeneous Markov chains, where the time inhomogeneity can
be due to an underlying nonstationary process or uncertainties
in measurement of an underlying stationary process. In this
paper, we apply the above convergence results to a Markovian
queueing model where the time inhomogeneity arises due to
the latter of the two conditions mentioned above.

A queue is typically defined by the arrival rate, service
or departure rate, number of servers and buffer size. In a
finite buffer size queue, we are often interested in maintaining
a distribution which is more biased towards smaller queue
lengths, since otherwise we will have high blocking probabili-
ties. Such a stable queue is achieved by keeping the departure
rate strictly above the arrival rate. However, it is physically
impossible to have the departure rate arbitrarily higher than
the arrival rate due to physical limitations such as the speed
of the underlying router circuitry or the amount of power
consumption. Furthermore, there might be other constraints
on the departure rate due to considerations of the network
as a whole. For example, it might not be best to always
have a large departure rate that results in traffic bursts, and
potentially causes congestion somewhere else in the network.
Or in the case of using multiple queues of different kinds
of traffic, each of which has to satisfy some pre-specified
quality of service (QoS), sending packets from one queue will
affect the other queues. As a result, controlling the packet
sending rates depending on the types of traffic is desirable to
allow for different flows to meet their QoS’s requirements. In
wireless networks, it is often preferable to maintain a certain
departure rate and nothing more, due to power restrictions.
Last but not least, in a network of multiple wireless nodes,
the number of collisions is an increasing function of the traffic
density. If every node sends its packets as fast as it can, then
collisions will happen all the time. Hence it becomes necessary
to monitor the departure rate and keep it at such a level to
maintain a stable queue, and at the same time achieve the
desired network objectives.

That said, we consider a queue in which packets arrive at a
fixed but unknown rate and we use an estimate of this arrival
rate to decide a queueing policy designed to ensure stable
queues. In particular, we let the departure rate be always higher
than the estimated arrival rate by some fixed multiplicative
constant, anticipating that the estimate will be correct in the
long-run. Since the estimated arrival rate is changed and is



more accurate with time, the departure rate is also changed.
As a result, the packets in the queue evolve according to a
time inhomogeneous Markov chain dictated by this adaptive
departure policy. We study the time required for the queue
to reach this stationary distribution using the above outlined
adiabatic approach, under suitable estimation and departure
policies for the unknown arrival rate.

A. Related Work

The adiabatic theorem in quantum mechanics was first
stated by Born and Fock [8]. A version of the adiabatic
theorem [7] considers two Hamiltonians and the evolution of
the system from the initial to final Hamiltonian. The theorem
states that for sufficiently large time, the final state of the
system and the ground state of the final Hamiltonian will be
ϵ-close in ℓ2 norm. The lower bound on time was found to be
inversely proportional to the cube of the least spectral gap of
the Hamiltonian over all time.

The adiabatic theorem for Markov chains was studied by
Kovchegov [6] where the adiabatic evolution was studied for
discrete time and continuous time Markov chains. The linear
evolution of a time inhomogeneous Markov chain from an
initial to a final probability transition matrix was studied and
the adiabatic time was found to be proportional to the square
of the mixing time or inversely proportional to the square of
the spectral gap of the final transition matrix. This result was
generalized to a more general adiabatic dynamics in [9].

B. Overview

• Adiabatic evolution of continuous time Markov chains
with bounded generators where the changes happen at
fixed time intervals.

• Upper bound on distance between the distribution of
the Markov chain and the stationary distribution at large
enough time.

• Application of the above upper bound to an M/M/1/K
queueing model with unknown but constant arrival rate.

• Estimate of the arrival rate and corresponding dependent
departure policy to ensure an eventually stable queue.

• Evolution of continuous time generator matrices deter-
mined by the changing, random departure rates based on
the estimates of the arrival rate.

• The main result gives the sufficient time needed for the
queue to converge to the eventual stable distribution.

Section II gives some of mathematical preliminaries in-
cluding definitions and general results which we use in the
analysis. In Section III, we look at the evolution of continuous
time Markov chains whose generator matrices change at fixed
time intervals and find an upper bound on the distance to
a stationary distribution. In Section IV, the above result is
applied to a queue and we consider a specific form of birth
and death processes dictated by our estimation of the unknown
arrival rate to the queue. The adiabatic time for this system
is evaluated.We also compare the distance predicted by our
upper bounds to the actual distance via simulations.

II. PRELIMINARIES

Now we look at the main definitions and some results
which will be useful in the rest of the paper. A vector x
is a column vector whose ith entry is denoted by x(i) and
transpose denoted by xT . A matrix P is a square matrix whose
(i, j)th entry is denoted by Pij .

• We use total variation distance to measure the distance
between two probability distributions.
Definition 1 (Total variation distance): For any two
probability distributions ν and π on a finite state space
Ω, we define

∥ν − π∥TV =
1

2

∑
i∈Ω

|ν(i)− π(i)| .

• Definition 2: Let π be a strictly positive probability
distribution on a finite state space Ω and let ℓ2( 1π ) be
the real vector space Rr with the following norm,

∥x∥ 1
π

=

(∑
i∈Ω

x(i)2

π(i)

) 1
2

.

• The following result is proved in Chapter 6, Theorem 3.2
of [4, p. 209].
Proposition 3: For any two probability distributions ν
and π (strictly positive),

∥ν − π∥TV ≤ 1

2
∥ν − π∥ 1

π
.

• The following result is from Chapter 6, Theorem 3.3 of
[4, p. 209].
Proposition 4: Let P be a reversible1irreducible transi-
tion matrix on the finite state space Ω, with the stationary
distribution π and second largest eigenvalue modulus
|λ2(P )|. Then for any probability distribution ν on Ω
and for all n ≥ 1∥∥νTPn − πT

∥∥
1
π

≤ |λ2(P )|n ∥ν − π∥ 1
π
.

• For a continuous time Markov chain {Xt}t≥0 on a
finite state space Ω with a bounded generator matrix
Q = [Qij ]i,j∈Ω, and q = maxi∈Ω

∑
j:j ̸=i Qij , the upper

bound on the departure rates of all states, uniformization
[10] gives transition probabilities to be

P (t) =

∞∑
n=0

e−qt (qt)
n

n!
Pn = eQt, (1)

where the matrix P = I + 1
qQ. The matrix P (t) denotes

the transition probabilities in time t.
• The following result is used to bound the distance of the

continuous chain in terms of a discrete one and is based

1Transition probabilities of a reversible Markov chain satisfy pijπi =
pjiπi



Theorem 1: For the time inhomogeneous Markov chain generated by the matrices {Qi}ni=0 = {qi(Pi − I)}ni=0 from time 0 to
n∆t,

∥νn − πn∥TV ≤ 1

2
∥νn0 − πn0∥ 1

πn0

n−1∏
i=n0

e−qi(1−|λ2(Pi)|)∆t

√
max
k∈Ω

πi(k)

πi+1(k)

+
1

2

n−1∑
i=n0

∥πi − πi+1∥ 1
πi+1

n−1∏
j=i+1

e−qj(1−|λ2(Pj)|)∆t

√
max
k∈Ω

πj(k)

πj+1(k)

 ,

where νn is the distribution at time n∆t, νn0 is the distribution at time n0∆t for n0 < n and {Pi}i are irreducible and
reversible with stationary distribution πi and second largest eigenvalue modulus |λ2(Pi)|.

on [4, p. 364]. The proof follows along similar lines and
can be found in [11].
Proposition 5: For a continuous time Markov chain on a
finite state space Ω with generator matrix Q = q(P − I)
with reversible, irreducible P and stationary distribution
π, for any probability distribution ν on Ω,∥∥νT eQt − πT

∥∥
1
π

≤ ∥ν − π∥ 1
π
e−q(1−|λ2(P )|)t,

where |λ2(P )| is the second largest eigenvalue modulus
of P .

• Mixing time of a Markov chain measures the time needed
for the Markov chain to converge to its stationary distri-
bution.
Definition 6: For a continuous time Markov chain P (t),
with stationary distribution π, given an ϵ > 0, the mixing
time tmix(ϵ) is defined as

tmix(ϵ) = inf
{
t : ∥νTP (t)− πT ∥TV ≤ ϵ, for all

probability distributions ν} .

• To define adiabatic time, consider a linear evolution [6]
of generator matrices described by

Q

(
t

T

)
=

(
1− t

T

)
Qinitial +

t

T
Qfinal,

for T > 0, 0 ≤ t ≤ T and bounded generators Qinitial

and Qfinal. If πf is the unique stationary distribution for
Qfinal, adiabatic time measures the time needed for the
chain to converge to πf .
Definition 7: Given the above transitions generating a
continuous time Markov chain P (0, T ) and ϵ > 0,
adiabatic time is defined as

Tϵ = inf
{
T : ∥νTP (0, T )− πT

f ∥TV ≤ ϵ, for all
probability distributions ν} .

We will look at a different evolution of generator matrices
in the next section.

III. ADIABATIC FRAMEWORK

In this section we define an evolution of continuous time
Markov generator matrices and look at the convergence in
Definition (7) in terms of this new evolution. Consider the

following evolution: time is divided into slots of size ∆t
and the generator matrix changes at these intervals. The
bounded generator matrix Qi determines the transition prob-
abilities in the time interval (i∆t, (i+ 1)∆t]. The method of
uniformization gives the corresponding transition probability
matrix P (i∆t, (i + 1)∆t) as in (1). The upper bound on
departure rates over all states is qi for each Qi. Therefore,

P (i∆t, (i+ 1)∆t) = eQi∆t = eqi(Pi−I)∆t,

where P (t1, t2) denotes the matrix of transition probabilities
from time t1 to t2. Let the matrix Pi be irreducible and
reversible with stationary distribution πi and second largest
eigenvalue modulus |λ2(Pi)|. Note that this evolution can be
the result of any kind of time inhomogeneity in the system
resulting in a changing Qi which is updated at fixed intervals
of time. As noted before, the time inhomogeneity can be due
to the nature of the underlying process or due to uncertainties
in measurements of parameters and Theorem 1 captures either
kind.

Let νn be the distribution of the chain at time n∆t. We
are interested in the distance between νn and the stationary
distribution πn corresponding to matrix Pn at time n∆t.
Theorem 1 gives an upper bound on the distance at time n∆t
in terms of the distance at n0∆t for n0 < n. The proof follows
by starting from the 1

πn
norm and then applying the triangle

inequality repeatedly. Propositions 3and 5 give the required
upper bounds.

IV. APPLICATION TO QUEUEING MODEL

In this section we apply the above defined adiabatic evolu-
tion model to a queueing process. In particular, we consider
time inhomogeneity due to uncertainty in a parameter. Con-
sider an M/M/1/K queue with unknown packet arrival rate
λ per unit time. We estimate λ at time i∆t denoted by λ̂i

and decide packet departure rate, µi = f(λ̂i) based on this
estimate.

Definition 8: Queueing policy is defined as the sequence
{λ̂i, µi = f(λ̂i)}i≥1 where f : R+ → R+ and µi is applied
for time from (i∆t, (i+ 1)∆t].



Theorem 2 (Main result): Given 0 < ϵ < 1, 0 < γ < 1 and λ, the unknown arrival rate, the queueing policy in Definition (9)
with δ > 0 for an M/M/1/K queue has

Tϵ,γ ≤
2 log 2

γ1

λ(ϵ20 − ϵ30)
+

log
(
2
[
(1 + ϵ0)(1 + δ)

]K
2 +1

)
− log(ϵδ)

1
2∆t log

( [
(1−ϵ0)(1+δ)

]K+1
−1[

(1−ϵ0+ϵ1)(1+δ)
]K+1

−1

)
+ λ(

√
(1 + δ)(1− ϵ0)− 1)2

, (3)

where ϵ0 satisfies

e−λ∆t(
√

(1+δ)(1−ϵ0)−1)2

√√√√[(1− ϵ0 + ϵ1)(1 + δ)
]K+1 − 1[

(1− ϵ0)(1 + δ)
]K+1 − 1

< 1, (4)

√
(1−ϵ0)(1+δ)ϵ1

|(1−ϵ0)2(1+δ)−(1−ϵ0+ϵ1)|

1− e−λ∆t(
√

(1+δ)(1−ϵ0)−1)2

√[
(1−ϵ0+ϵ1)(1+δ)

]K+1
−1[

(1−ϵ0)(1+δ)
]K+1

−1

≤ ϵ

2
, (5)

ϵ0 ≤ δϵ

(1 + δ)(1 + ϵ)
, (6)

and ϵ1 =
λ∆t(ϵ20−ϵ30)

2 log 2
γ1

( 1√
λ∆tγ2

+ ϵ0), 0 < γ1 < γ, γ2 = γ − γ1.

This decides the following generator matrix from (i∆t, (i +
1)∆t]:

Qi =


−λ λ 0 0 . . .
µi −(µi + λ) λ 0 . . .
. . . . . . . . . . . . . . .
. . . 0 µi −(µi + λ) λ
. . . 0 0 µi −µi

 . (2)

The corresponding transition probability matrix
P (i∆t, (i+ 1)∆t) is obtained as in (1). The upper bound on
departure rates over all states is λ+ µi. Therefore,

P (i∆t, (i+ 1)∆t) = eQi∆t = e(λ+µi)(Pi−I)∆t,

where the matrix, Pi is

Pi =


1− βi βi 0 0 . . .
1− βi 0 βi 0 . . .

. . . . . . . . . . . . . . .
. . . 0 1− βi 0 βi

. . . 0 0 1− βi βi

 , (7)

where βi =
λ

µi+λ . The Pi’s are reversible and irreducible with
stationary distribution given by

πi =
1∑K

r=0 ρ
r
i

[
1, ρi, ρ

2
i , . . . , ρ

K−1
i , ρKi

]T
,

where ρi = βi

1−βi
= λ

µi
. The second largest eigenvalue

modulus is given by |λ2(Pi)| = 2
√
ρi

(1+ρi)
cos( π

K+1 ) (proved in
[12]). Also, the matrix Q0 could be decided from a random
departure rate and corresponds to the transition probability
matrix P (0,∆t).

A. Performance of an Adaptive Queueing Policy

Now we look at a specific queueing policy determined by
the time average of number of packets arrived.

Definition 9:

λ̂i =
1

i∆t

i∑
k=1

Xk,

µi = f(λ̂i) = (1 + δ)λ̂i,

where Xk ∼ Poisson(λ∆t) is the number of packets in the
kth slot of duration ∆t and δ > 0 is a constant.
This particular queueing policy ensures that the departure rate
is always higher than the estimated arrival rate and since
the estimated arrival rate itself must approach the actual one,
should ensure a stable queue.

With this queueing policy, we have the adiabatic evolution
generated by the matrices Qi in (2). The corresponding Pi’s
are given by (7). The ratio ρi = λ

µi
= λ

(1+δ)λ̂i
. With

full knowledge of the arrival rate, the above ratio becomes
ρ = 1

1+δ and let the corresponding matrix P has stationary
distribution π. We redefine adibatic time in this setting to

Definition 10: Given the above transitions generating a
continuous time Markov chain P (0, n∆t), ϵ > 0 and γ < 1,
adiabatic time is defined as

Tϵ,γ = ∆t · inf
{
n : Pr{∥νTP (0, n∆t)− πT ∥TV < ϵ}

> 1− γ , for all probability distributions ν} .

where π is the stationary distribution corresponding to the
queueing policy {λ, (1 + δ)λ}.

Theorem 2 gives a sufficient condition on the time we must
wait before the distribution of the queue length converges to
the desired stationary distribution π. Note that π is decided by
δ and can be designed to give a stable stationary distribution.



Hence, for given small ϵ and γ, the theorem gives the sufficient
amount of time to converge to a stable distribution within
ϵ with high probability of 1 − γ. The choice of ϵ0 to be
the largest which satisfies all three conditions will give the
lowest lower bound in the theorem. At large enough time the
estimated arrival rate must approach the actual arrival rate and
the difference can be bounded by ϵ0 with a high probability.
Furthermore two consecutive estimates, can differ only by a
maximum of ϵ1. The proof sketch of this theorem is in the
appendix.

B. Simulations

Now we look at the distance of the distribution of the queue
from a stable distribution with increasing time. This distance
must be small for large enough time from the discussions
above. Here we look at distance as a function of time for
a single sample path to verify whether the distance at the
adiabatic time predicted is indeed lower than ϵ.

Simulation Setup 1: λ = 10, δ = 0.1,K = 100,∆t =
0.5, ϵ = 0.1, γ = 0.05, γ1 = 0.04.
Theorem 2 predicts n0 = 174391 and n = 175438 for
ϵ0 = 0.003 (the highest which satisfies all the conditions
in Theorem 2) or adiabatic time for ϵ = 0.1, γ = 0.05,
T0.1,0.05 = 87719. Figure 1 shows the results of a simulation
which measures the distance at each time slot vs. the distance
upper bound given by triangle inequality in Theorem 1. The
triangle inequality upper bound very closely follows the actual
distance and both are much smaller than the distance upper
bound predicted by (15) and (17), which is 0.056. Note that
this is only a sample path. This indicates that even though
Theorem 2 gives T0.1,0.05 = 87719 as a sufficient condition,
the distance of ϵ = 0.1 is achieved much before. For example,
Figure 2 shows the simulation results for T = 5000 or
n = 10000. (The upper bound starts from n0 = 500.) This
was also found to be true for all 100 sample paths tested.

Notice the initial increase in the upper bound due to
Theorem 1 in both Figures 1 and 2. This is because of the
second term of the bound which adds terms with time. After
a sufficient number of time slots, however, the decrease in
the first term overshadows the increase in the second and the
overall bound starts coming down.

Now we look at the effects of increasing δ which decides
how fast the departures are compared to the arrivals.

Simulation Setup 2: λ = 10,K = 100,∆t = 0.5, ϵ =
0.1, γ = 0.05, γ1 = 0.04 with different δ = 0.1 : 0.1 : 0.9.
Note that increase in δ corresponds to emptying out the queue
faster or in other words, the stable distribution should be
approached faster. Or, at the same time, the distance decreases
with increasing δ. The distances at T = 2500 averaged over
100 sample paths are shown in Figure 3 which confirms this.

Another parameter of interest is the sampling time ∆t which
decides how frequently the estimates are done.

Simulation Setup 3: λ = 10,K = 100, δ = 0.1, ϵ =
0.1, γ = 0.05, γ1 = 0.04 with different ∆t =
1, 5, 10, 20, 25, 50.
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Figure 1. Comparison of distance upper bound in Theorem 1 with actual
distance
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Figure 2. Comparison of distance upper bound with actual distance at lesser
time than predicted by Theorem 2
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Figure 3. Comparison of distance for different δ

The increase in ∆t corresponds to applying the information
gained from estimates less frequently and must result in an
increased distance at the same time. The distances at time
T = 100 averaged over 100 sample paths are shown in
Figure 4 which shows that this is true. This shows the benefits
of updates which are more frequent and hence the system
following a smoother path towards the stable distribution
rather than attempting to reach there at one go.
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Figure 4. Comparison of distance for different ∆t.

V. CONCLUSION

We considered a time inhomogeneous Markov chain with
its evolution governed by generator matrices which change
at fixed time intervals. We followed the adiabatic approach
to study this chain and bounded the distance to a stationary
distribution. This is a general theorem which is applicable to
evolutions of the above kind.

We used this model of time inhomogeneous Markov chains
to characterize a birth-death chain in which the time inhomo-
geneity is due to uncertainty in parameters. We considered
a Markovian queue with an adaptive queueing policy and
derived sufficient conditions on time after which the distri-
bution of the queue can be considered to be stable with high
probability.

APPENDIX A
PROOF SKETCH OF THEOREM 2

To prove Theorem 2, we bound the terms in Theorem 1 as
in the following lemma.

Lemma 3: For 0 < ϵ0 < 1 and 0 < γ1 < 1, there exists
n0 =

2 log 2
γ1

λ∆t(ϵ20−ϵ30)
such that

• ∀i ≥ n0, with probability at least 1− γ1

|λ̂i − λ| ≤ λϵ0, (8)
e−(λ+µi)(1−|λ2(Pi)|)∆t < A, (9)

∥πi − π∥TV <
1

2

ϵ0(1 + δ)

δ − ϵ0(1 + δ)
, (10)

where A = e−λ∆t(
√

(1+δ)(1−ϵ0)−1)2 .
• For ϵ1 = 1

n0
( 1√

λ∆tγ2
+ ϵ0) and 0 < γ2 < 1 and ∀i ≥ n0,

with probability at least 1− γ = 1− γ1 − γ2

|λ̂i+1 − λ̂i| < λϵ1, (11)√
max

k∈{0,1,...,K}

πi(k)

πi+1(k)
< B, (12)

∥πi − πi+1∥ 1
πi+1

< C, (13)

where B =

√[
(1−ϵ0+ϵ1)(1+δ)

]K+1
−1[

(1−ϵ0)(1+δ)
]K+1

−1
and C =

√
(1−ϵ0)(1+δ)ϵ1

|(1−ϵ0)2(1+δ)−(1−ϵ0+ϵ1)| .

• With probability at least 1− γ1,

∥νn0 − πn0∥ 1
πn0

<

[
(1 + ϵ0)(1 + δ)

]K
2 +1

δ
. (14)

The proof is omitted for brevity and can be found in [11].
Rewriting Theorem 1 for the queueing model we have

described and applying Lemma 3, with probability at least
1− γ1 − γ2 = 1− γ,

∥νn − πn∥TV <
1

2

[
(1 + ϵ0)(1 + δ)

]K
2 +1

δ
[C.D]

n−n0

+
1

2

C

1−A.B
≤ ϵ

2
, (15)

where (15) holds if ϵ0 is chosen to satisfy (4).
Now the distance between νn and π which is the stationary

distribution corresponding to the matrix P with full knowledge
of λ is given by

∥νn − π∥TV ≤ ∥νn − πn∥TV + ∥πn − π∥TV , (16)

using triangle inequality. Our aim is to find the n such that
∥νn − π∥TV < ϵ. (15) holds if both terms are ≤ ϵ

4 . For the
first term we get,

n− n0 ≥
log
(

2
[
(1+ϵ0)(1+δ)

]K
2

+1

ϵδ

)
log( 1

AB )
,

which gives a condition on n. Adding with n0 and multiplying
by ∆t gives the adiabatic time as defined in Definition (10).
The second term of (15) ≤ ϵ

4 gives (5).
From (16) and (10),

∥πn − π∥TV <
1

2

ϵ0(1 + δ)

δ − ϵ0(1 + δ)
≤ ϵ

2
, (17)

which gives (6). This completes the proof of Theorem 2.
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