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Introduction

Max Born and Vladimir Fock in 1928:“a phys-

ical system remains in its instantaneous eigen-

state if a given perturbation is acting on it

slowly enough and if there is a gap between

the eigenvalue and the rest of the Hamil-

tonian’s spectrum” (see Wikipedia page on

adiabatic theorem).



Introduction

A way of expressing Hamiltonians via reversible

Markov chains ⇒ Corresponding theorem for

Markov chains.



Quantum adiabatic theorem

Given two Hamiltonians, Hinitial and Hfinal,

acting on a quantum system. Let

H(s) = (1− s)Hinitial + sHfinal

System evolves according to H(t/T ) on

t : 0 → T (adiabatic evolution).



Quantum adiabatic theorem

H(s) = (1− s)Hinitial + sHfinal

System evolves according to H(t/T ) on

t : 0 → T (adiabatic evolution).

Adiabatic thm of quantum mechanics: For

T large enough, the final state of the system

will be close to the ground state of Hfinal,

i.e. ε close in l2 norm whenever T ≥ C
εβ3,

where β is the least spectral gap of H(s)

over all s ∈ [0,1].



Mixing and relaxation times

Definition. If µ and ν are two probability

distributions over Ω, the total variation dis-

tance is

‖µ−ν‖TV =
1

2

∑
x∈Ω

|µ(x)−ν(x)| = sup
A⊂Ω

|µ(A)−ν(A)|

Observe that the total variation distance mea-

sures the coincidence between the distribu-

tions on a scale from zero to one.



Mixing and relaxation times

Definition. Suppose P is an irreducible and

aperiodic Markov chain with stationary dis-

tribution π, i.e. πP = π. Given an ε > 0, the

mixing time tmix(ε) is defined as

tmix(ε) = inf
{
t : ‖νP t − π‖TV ≤ ε, for all ν

}



Mixing and relaxation times

Suppose P =
(
p(x, y)

)
x,y

is reversible:

π(x)p(x, y) = π(y)p(y, x) x, y ∈ Ω

P is reversible ⇒ P is self-adjoint w.r.t. π

⇒ All real eigenvalues.

β = 1− |λ2| is the spectral gap of P .

The relaxation time is defined as

τrlx =
1

β



Mixing and relaxation times

Theorem. If P is a reversible, irreducible

and aperiodic Markov chain. Then

(τrlx−1) log(2ε)−1 ≤ tmix(ε) ≤ τrlx log(εmin
x∈Ω

π(x))−1



Adiabatic time Given Pinitial and Pfinal, where

Pfinal is irreducible and aperiodic. Let

Ps = (1− s)Pinitial + sPfinal

πf is the stationary distribution for Pfinal.

Definition. Given ε > 0, a time Tε is called

the adiabatic time if it is the least T such

that

max
ν

‖νP1
T
P2

T
· · ·PT−1

T
P1 − πf‖TV ≤ ε,

where the maximum is taken over all proba-

bility distributions ν over Ω.



Adiabatic theorem for Markov chains

Theorem A (K.2008) Let tmix denote the

mixing time for Pfinal. Then the adiabatic

time

Tε = O

(
tmix(ε/2)2

ε

)



Proof:

νP1
T
P2

T
· · ·PT−1

T
P1 =

T !

N !TT−N
uNPT−N

final + E,

where uN = νP1
T
P2

T
· · ·PN

T
and E is the rest

of the terms.

Hence, by triangle inequality,

maxν ‖νP1
T
P2

T
· · ·PT−1

T
P1 − πf‖TV

≤ max
ν

‖νPT−N
final − πf‖TV ·

T !

N !TT−N
+ SN ,

where 0 ≤ SN ≤ 1− T !
N !TT−N .



Proof:

Let T = Ktmix(ε/2) and N = (K−1)tmix(ε/2)

Then

max
ν

‖νPT−N
final − πf‖TV ≤ ε/2

and

e
∫ T
N logxdx+(T−N) logT ≤

T !

N !TT−N

simplifies to
(
1 + 1

K−1

)K−1

e


tmix(ε/2)

≤
T !

N !TT−N
≤ 1



Proof:

maxν ‖νP1
T
P2

T
· · ·PT−1

T
P1 − πf‖TV

≤ max
ν

‖νPT−N
final − πf‖TV ·

T !

N !TT−N
+ SN ,

where 0 ≤ SN ≤ 1− T !
N !TT−N and

0 ≤ SN ≤ 1−
T !

N !TT−N
≤ 1−


(
1 + 1

K−1

)K−1

e


tmix(ε/2)



Proof:
Need the least K such that

1−


(
1 + 1

K−1

)K−1

e


tmix(ε/2)

≤ ε/2

and since log(1 + x) = x − x2

2 + O(x3), the
least such K is approximated as follows

K ≈
tmix(ε/2)

−2 log (1− ε/2)
≈

tmix(ε/2)

ε

Thus for T = Ktmix(ε/2) ≈ tmix(ε/2)2

ε ,

max
ν

‖νP1
T
P2

T
· · ·PT−1

T
P1 − πf‖TV ≤ ε



Mixing and relaxation times

Theorem. If P is a reversible, irreducible

and aperiodic Markov chain. Then

(τrlx−1) log(2ε)−1 ≤ tmix(ε) ≤ τrlx log(εmin
x∈Ω

π(x))−1

Theorem A (K.2008) Let tmix denote the

mixing time for Pfinal. Then the adiabatic

time

Tε = O

(
tmix(ε/2)2

ε

)



A Corollary

If Pfinal is reversible, irreducible and aperi-

odic with its spectral gap β > 0, then

Tε = O

log 2
ε + log 1

minx∈Ω πf(x)

εβ2





Continuous time Markov processes

Suppose Q is a bounded Markov generator

for a continuous time Markov chain P (t), and

λ ≥ max
i∈Ω

∑
j:j 6=i

q(i, j)

Uniformization:

P (t) =
∞∑

n=0

(λt)n

n!
e−λtPn

λ , where Pλ = I+
1

λ
Q



Mixing times: continuous time

Definition. P (t) is an irreducible continuous

time Markov chain with stationary distribu-

tion π. Given an ε > 0, the mixing time

tmix(ε) is defined as

tmix(ε) = inf {t : ‖νP (t)− π‖TV ≤ ε, all ν}



Continuous time

Suppose Qinitial and Qfinal are bounded Markov

generators, and πf is the only stationary dis-

tribution for Qfinal. Let

Q[s] = (1− s)Qinitial + sQfinal

be a time non-homogeneous generator.

Given T > 0, let PT (s, t) (0 ≤ s ≤ t ≤ T )

denote a matrix of transition probabilities of

a Markov process generated by Q
[

t
T

]
.



Adiabatic time: continuous time

Definition. Given ε > 0, a time Tε is called

the adiabatic time if it is the least T such

that

max
ν

‖νPT (0, T )− πf‖TV ≤ ε,

where the maximum is taken over all proba-

bility distributions ν over Ω.



Adiabatic theorem for Markov processes.

Let

λ ≥ max
i∈Ω

∑
j:j 6=i

qinitial(i, j)

and

λ ≥ max
i∈Ω

∑
j:j 6=i

qfinal(i, j)

qinitial(i, j) and qfinal(i, j) are the rates in

Qinitial and Qfinal respectively.



Adiabatic theorem for Markov processes.

λ ≥ max
i∈Ω

∑
j:j 6=i

qinitial(i, j), λ, max
i∈Ω

∑
j:j 6=i

qfinal(i, j)

Then

Theorem B.(K. 2008) Let tmix denote the

mixing time for Qfinal. Then adiabatic time

Tε ≤
λtmix(ε/2)2

ε



Proof:

λ ≥ maxi∈Ω
∑

j:j 6=i qt(i, j), where qt(i, j) are

rates in Q
[

t
T

]
(0 ≤ t ≤ T ).

Let T = Ktmix(ε/2) and N = (K−1)tmix(ε/2),

so that

max
ν

‖νPfinal(T −N)− πf‖TV ≤ ε/2,

where Pfinal(t) = etQfinal, transition proba-

bility generated by Qfinal.

Let P0 = I + 1
λQinitial and P1 = I + 1

λQfinal.



Proof:

νPT (0, T ) = uN

 ∞∑
n=0

(λ(T −N)n

n!
e−λ(T−N)In

 ,

where uN = νPT (0, N) and

In = n!
(T−N)n

∫∫
[(1− x1/T )P0 + (x1/T )P1] . . .

. . . [(1−xn/T )P0+(xn/T )P1]dx1 . . . dxn,

over N < x1 < x2 < · · · < xn < T .



Proof: Hence

νPT (0, T )

= uN

(∑∞
n=0

(λ(T−N)ne−λ(T−N)

(T−N)nTnn! Pn
1
∫∫ T

N x1 . . . xndx1 . . . dxn

)
+E

= e−λtmix(ε/2)uN

(∑∞
n=0

λn[(1− 1
2K)tmix(ε/2)]n

n! Pn
1

)

+E

= e−λtmix(ε/2)uNPfinal

(
λ
(
1− 1

2K

)
tmix(ε/2)

)
+E

where E is the rest of the terms.



Proof:

νPT (0, T )

= e−λtmix(ε/2)uNPfinal

(
λ
(
1− 1

2K

)
tmix(ε/2)

)
+E

where E is the rest of the terms.

Thus, the total variation distance,

max
ν

‖νPT (0, T )−πf‖TV ≤ e−λtmix(ε/2)ε/2+SN

whenever λ
(
1− 1

2K

)
≥ 1, i.e. K ≥ λ

2(λ−1),

easy condition.



Proof:

max
ν

‖νPT (0, T )−πf‖TV ≤ e−λtmix(ε/2)ε/2+SN

Here
SN = ‖E − πf‖TV

≤ 1− e−λtmix(ε/2)
∞∑

n=0

λn[(1− 1
2K)tmix(ε/2)]n

n!

= 1− e−
λtmix(ε/2)

2K ≤ ε/2

whenever K ≥ λtmix(ε/2)
ε , and therefore

Tε ≤
λtmix(ε/2)2

ε


