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Introduction

Max Born and Viladimir Fock in 1928: “a phys-
ical system remains in its instantaneous eigen-
state if a given perturbation is acting on it
slowly enough and if there is a gap between
the eigenvalue and the rest of the Hamil-
tonian’s spectrum” (see Wikipedia page on
adiabatic theorem).



Introduction

A way of expressing Hamiltonians via reversible

Markov chains = Corresponding theorem for
Markov chains.



Quantum adiabatic theorem
Given two Hamiltonians, H;y,tiq @and H final,
acting on a quantum system. Let

H(s) = (1 — s)H;pitial + sH final

System evolves according to H(t/T) on
t : 0 — T (adiabatic evolution).



Quantum adiabatic theorem

H(s) = (1 — s)Hinitial + sH final

System evolves according to H(t/T) on
t : 0 — T (adiabatic evolution).

Adiabatic thm of quantum mechanics: For
T large enough, the final state of the system
will be close to the ground state of H gy,
i.e. € close in [o norm whenever T > Eﬁ%
where (§ is the least spectral gap of H(s)
over all s € [0,1].



Mixing and relaxation times

Definition. If ¢ and v are two probability
distributions over €2, the total variation dis-
tance is

1
lp=vllTy = 5%;2 () —v(z)| = Sup [n(A)—v(A)|

Observe that the total variation distance mea-
sures the coincidence between the distribu-
tions on a scale from zero to one.



Mixing and relaxation times

Definition. Suppose P is an irreducible and
aperiodic Markov chain with stationary dis-
tribution =, i.e. 7P = . Given an € > 0, the

mixing time t,,;,(¢) is defined as

to(€) = inf{t . lwPt = x|y <€, for all u}



Mixing and relaxation times

Suppose P = (p(a:,y)) is reversible:
T,y

m(z)p(z,y) = n(y)p(y,x) =,y € 2

P is reversible = P is self-adjoint w.r.t. =«
= All real eigenvalues.

B =1—|X\p| is the spectral gap of P.

The relaxation time is defined as

1
Trle — E



Mixing and relaxation times
Theorem. If P is a reversible, irreducible
and aperiodic Markov chain. Then

(1,.7,—1)109(2e) ™! <t (€) < Ty, 10g(e min w(z)) 1
rix rix e



Adiabatic time Given P44 and Ppripq1, Where
Pringi 1S irreducible and aperiodic. Let

s = (1 — 8) Pipitial + SPfinal

7y is the stationary distribution for Py,

Definition. Given € > 0, a time T, is called
the adiabatic time if it is the least T such
that

max||[vP1Ps - Pra Py —m¢llry <€
v T T T

where the maximum is taken over all proba-
bility distributions v over 2.



Adiabatic theorem for Markov chains
Theorem A (K.2008) Let t,,;, denote the
mixing time for Pyr;,,. Then the adiabatic

time

tmix(€/2)2>

€

T€:O<



Proof:

T T—N
Y% PR T R N et T
where uy = vP1P>---Py and £ is the rest

T T T
of the terms.

Hence, by triangle inequality,

maxy ||[vP1 Py -« Pr—1 Py — 7|7y
T T T

T
NITT-N

T—N
< max |[vPy o — mpllry - + SN,

1



Proof:
Let T = Kt,,(e/2) and N = (K—1)t,,2(e/2)
T hen

T—N
max|[vPe o — mrllry < €/2

and

Sy logadz+(T-N)logT o 1"
— NITT—-N

simplifies to

(1 4 1 )K—l tmiz(€/2)
K-1 < <
e NI\TT—-N




Proof:
maxy |[vPy P - - Fioaf = ¢y

T T
TN 1!
T!
where 0 < Sy <1 — =7y and
1 K-—1 tmic(€/2)
g o B T 1 (1 + K—l)
N=""NITT-N = e



Proof:
Need the least K such that

(1—|—ﬁ)K_1 tmiz(€/2)

(&

<e€/2

and since log(l 4+ z) = = — ‘”—22 4+ O(z3), the
least such K is approximated as follows
N tmiz(€/2) o tmiz(€/2)
—21log (1 —¢/2) €

_ 2
Thus for T = Ktpg(e/2) n izl

max |[vP1Pa - Pr_1 Py — mgllpy < e
v T T T



Mixing and relaxation times
Theorem. If P is a reversible, irreducible
and aperiodic Markov chain. Then

(Trla:_l) |Og(2€)_1 < tmix(e) = Tl |Og(€ Q’éisﬁ(w))_l

Theorem A (K.2008) Let t,,;, denote the
mixing time for Pyr;,,. Then the adiabatic

time

tmix(€/2)2>

€

T€:O<



A Corollary
If Prinai 1S reversible, irreducible and aperi-
odic with its spectral gap 8 > 0, then

2 1
log € + log min,cq m¢(x)

€32

Te = O




Continuous time Markov processes
Suppose @ is a bounded Markov generator
for a continuous time Markov chain P(t), and

A > max ), ]
> may .Z.C](ZJ)
JigFEl

Uniformization:

= ()™ 1
P(t)= ) (n') e‘AtP}’\Z, where Py, = H_XQ

n=0




Mixing times: continuous time
Definition. P(¢) is an irreducible continuous
time Markov chain with stationary distribu-
tion w. Given an ¢ > 0, the mixing time
tmiz(€) is defined as

tmiz(e) =inf{t . |[vP({t) —«|lpy <€, all v}



Continuous time

Suppose Qinitial AN Q finq are bounded Markov
generators, and T IS the only stationary dis-
tribution for Qgipq- Let

Qls] = (1 — 8)Qinitial + Sinnal

be a time non-homogeneous generator.

Given T > 0, let Pp(s,t) (0 < s <t <T)
denote a matrix of transition probabilities of
a Markov process generated by Q [%}



Adiabatic time: continuous time
Definition. Given ¢ > 0, a time T¢ is called
the adiabatic time if it is the least T such
that

max [[vPr(0,T) — m¢llry <€

where the maximum is taken over all proba-
bility distributions v over €.



Adiabatic theorem for Markov processes.
Let

A>max Y Gnitiar(isJ)
1€ .7/ .
JiJFe
and
A 2 max Z q]"inal(iaj)
1€ .7 .
JJ7Ed
Qinitial(iaj) and innal(iaj) are the rates in
Qinitial aNd Q finq respectively.



Adiabatic theorem for Markov processes.

A > max E  Qinitial (3, 7)), A, max E , szna,l(z 7)
1€Q2 .
JiJjFe J 7l

Then

Theorem B.(K. 2008) Let ¢,,;, denote the
mixing time for @ f;,,- Then adiabatic time

Atmix(e/Q)Q

€

Te <




Proof:
A > mMaX;eq > ;=i qt(i,7), where q.(i,5) are
rates in Q [%} (0<t<T).

Let T = Kt,;.(e/2) and N = (K—1)t,,;.(e/2),
SO that

Max ||vPpin (T — N) — mgllry < €/2,
where Prinq(t) = e!Qrinal | transition proba-

bility generated by @ finai-

Let Pop =1+ %Qim}tml and P, =1+ %fomal'



Proof:

i (MT = N)" _\1-N);
=0 n! .

where uy = vPp(0,N) and

VPT(O,T) — uUnN (

In = 725y N)n JIT(L —x1/T)Py + (21/T)P1] ...
N(L—xn/T)Py+(xn/T)Pildxq . . . dzy,

over N <zyp <z < - <axn<T.



Proof: Hence
vPp(0,T)

MNT—=N)" —XM(T—-N)
zuN( oo ( ((T_]%)ngn! p?ff§x1...xndx1...dxn)

+&

— o Mmia(e/2)g ( oo MM tmis(e/2))" P{l>
+&

= e~ Mmic(/2u N Pri o <>\ (1 — %) tmix(€/2)>
+&

where £ is the rest of the terms.



Proof.
VPT(Oa T)
— e_>\tmm(6/2)u]\fpfiw,a,l (A (1 - %) tmix(€/2)>

+&

where £ is the rest of the terms.

Thus, the total variation distance,
max [[vPp(0, T) = mllpy < e~ Mmisl2e/24-5y

whenever A(l—%) > 1, j.e. K > 2(+_1)
easy condition.



Proof:
Here
SN = |€ = 7¢llTy

<1-— e_Atmix(6/2> ioj )\n[(l B QLK)tmw?(e/Q)]n

n=0

n!

Atmifc(E/Q)
=1 —e 2K < ¢€/2

whenever K > Atmme(e/z), and therefore

Atnnx(G/Q)Q

€

Te <




