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Abstract

We introduce the mathematical theory of the particle systems that interact via
permutations, where transition rates are assigned not to the jumps from a site to a
site, but to the permutations themselves. These permutation processes can be viewed
as the natural generalization of symmetric exclusion processes, where particles interact
via transpositions. We develop a number of innovative coupling techniques for the
permutation processes and establish the needed conditions for them to apply. We
use duality, couplings and other tools to explore the stationary distributions of the
permutation processes with translation invariant rates.

1 Introduction.

We begin by reformulating the general setup of symmetric exclusion processes. Let S be a
general countable set, and p(x, y) be transition probabilities for a Markov chain on S. Let
ηt denote a continuous time Feller process with values in {0, 1}S, where ηt(x) = 1 when the
site x ∈ S is occupied by a particle at time t while ηt(x) = 0 means the site is empty at time
t. Exclusion process is an important example of a Markovian interacting particle system,
with the name justified by the following condition on when a transition can occur

η → ηx,y at rate p(x, y) if η(x) = 1, η(y) = 0,

where for η ∈ {0, 1}S, ηx,y(u) = η(u) when u 6∈ {x, y}, ηx,y(x) = η(y) and ηx,y(y) = η(x).
The condition

sup
y∈S

∑
x

p(x, y) < ∞

is sufficient to guarantee that the exclusion process ηt is indeed a well defined Feller process.
We refer the reader to [5] and [6] for a complete and rigorous treatment of the subject.

An exclusion process is said to be symmetric if p(y, x) = p(x, y) for all x, y ∈ S. In
the symmetric case we can reformulate the process by considering all the transpositions
τx,y. For each transposition τx,y (x, y ∈ S, x 6= y) we will assign the corresponding rate
q(τx,y) = p(y, x) = p(x, y) at which the transposition occurs:

η → τx,y(η) at rate q(τx,y),
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where τx,y(η) := ηx,y. It was suggested to the author by T. Liggett to study the natural
generalization of the symmetric exclusion process that arises with the above reformulation.
Liggett’s idea was to assign the rates not to the particles inhabiting the space S, but to the
various permutations of finitely many points of S. Namely, we can consider other permuta-
tions besides the transpositions. We let Σ be the set of all such permutations with positive
rates. If σ ∈ Σ, we let

Range(σ) = {x ∈ S : σ(x) 6= x}.
For each η ∈ {0, 1}S, let σ(η) be the new configuration of particles after the permutation σ
was applied to η, i.e.

σ(η)(x) = η(σ−1(x)) for all x ∈ S.

Observe that we only permute the particles inside Range(σ).
Now, we want to construct a continuous time Feller process, where rates q(σ) (σ ∈ Σ)

are assigned so that
η → σ(η) at rate q(σ).

Example. Let S = Z, and Σ =
⋃

x∈Z
{
σx := (x, x + 1, x + 2), σ2

x = σ−1
x

}
consists of all the

three-cycles of consecutive integers. As we will see later, the three-cycles are very special for
the theory of “permutation” processes described in this manuscript.

First we would like to mention some of the results from the theory of exclusion processes
that we will extend to the newly introduced permutation processes. For consistency we
will use the notations of [5] and [6]. We let I denote the class of stationary distributions
for the given Feller process. As the set I is convex, we will denote by Ie the set of all
the extreme points of I. The results that we want to generalize are the two theorems
given below. Consider the case of S = Zd with shift-invariant random walk rates (e.g.
p(x, y) = p(0, y − x)). The first theorem was proved by F.Spitzer (see [9]) in the recurrent
case and by T.Liggett in the transient case (see [2]).

Theorem. For the symmetric exclusion process, Ie = {νρ : 0 ≤ ρ ≤ 1}, where νρ is the
homogeneous product measure on {0, 1}S with marginal probability ρ (e.g.
νρ{η : η := 1 on A} = ρ|A| for any A ⊂ S).

Let S denote the class of the shift invariant probability measures on {0, 1}S, and (I ∩S)e

the set of all extreme points of (I ∩ S). Next theorem was proved in [4] by T.Liggett. A
special case of it was proved by R.Holley in [1].

Theorem. For the general exclusion process, (I ∩ S)e = {νρ : 0 ≤ ρ ≤ 1}.
As it was the case with the exclusion processes, coupling method will play the crucial role

in proving the analogues of the above results for the permutation processes. The difficult
part is to construct the right types of couplings for the corresponding proofs to work.
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1.1 Existence of the process. The permutation law.

We need to formalize the construction of the permutation process. For a configuration
η ∈ {0, 1}S and a permutation σ ∈ Σ, σ(η) defined as

σ(η)(x) := η(σ−1(x)) for all x ∈ S

is the resulting configuration after the permutation σ is applied. For any cylinder function
f (i.e. a function f(η) from {0, 1}S to R that depends on finitely many sites in S), let

Ωf(η) :=
∑
σ∈Σ

q(σ)[f(σ(η))− f(η)].

Now, we have to guarantee that the permutation process ηt with generator Ω is a well
defined Feller process. For this, by Theorem 3.9 of Chapter I in [5] (see also the conditions
(3.3) and (3.8) there), it is sufficient to assume that the rates q(σ) are such that for every
x ∈ S,

MPL := sup
x∈S

∑

σ:x∈Range(σ)

q(σ) < ∞. (1)

Then the semigroup Ωt of the permutation process ηt, generated by such Ω, is well defined.
Such process will then be said to obey the permutation law (1).

Throughout the paper we require that the random walk generated by the permutations
{σ ∈ Σ} is irreducible, i.e. for every x and y in S there is a sequence σ1, . . . , σk ∈ Σ such
that σk ◦ ... ◦ σ1(x) = y.

1.2 Duality.

For a nonnegative continuous function H(η, ζ) of two variables, the Markov processes ηt and
ζt are said to be dual with respect to H(·, ·) if

EηH(ηt, ζ) = EζH(η, ζt)

for all η, ζ and all t ≥ 0.
For a configuration η ∈ {0, 1}S and a set A ⊂ S let

H(η,A) =
∏
x∈A

η(x).

Applying the generating operator Ω to H(η,A) as a function of η get

ΩH(·, A)(η) =
∑
σ∈Σ

q(σ)[H(σ(η), A)−H(η,A)]

=
∑
σ∈Σ

q(σ)[H(η, σ−1(A))−H(η, A)]

=
∑
σ∈Σ

q(σ)[H(η, σ(A))−H(η,A)], (2)
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where the last equality holds whenever

q(σ) = q(σ−1) for all σ ∈ Σ. (3)

Then the right hand side of (2) is equal to the generator Ω applied to H(η, A) as a function
of A, i.e.

ΩH(·, A)(η) = ΩH(η, ·)(A),

and permutation processes ηt and At having the same transition rates that satisfy (3) with
initial conditions η0 = η and A0 = A are dual with respect to H(·, ·). So a permutation
process satisfying (3) is self-dual. Therefore

P η[ηt ≡ 1 on A] = PA[η ≡ 1 on At]. (4)

Condition (3) is essential in order to have a useful duality. From now on we will say that
a permutation process is symmetric whenever the above condition (3) is satisfied. Observe
that the self-duality of symmetric permutation processes is analogous to that of symmetric
exclusion processes, where the corresponding self-duality was indispensable and is the reason
why symmetric exclusion was so successfully studied (see Chapter VIII of [5] and Part III of
[6]).

2 Symmetric permutation processes.

Throughout the rest of the paper we restrict ourselves to studying irreducible permuta-
tion processes on S = Zd with translation invariant rates. We will also assume that
the rates q(σ), for all σ ∈ Σ, satisfy the following two conditions.
Condition I.

MI := sup
σ∈Σ

∣∣Range(σ)
∣∣ < ∞, (5)

where | · | denotes the cardinality.

The second condition consists of two parts.
Condition II.

1) If σ1 is a finite permutation of elements in S such that Range(σ1) = Range(σ2)
for some σ2 ∈ Σ, then σ1 ∈ Σ.
2)

MII := sup
σ1,σ2∈Σ:Range(σ1)=Range(σ2)

∣∣∣q(σ1)

q(σ2)

∣∣∣ < ∞. (6)

It should be mentioned that the first part of the above second condition is slightly stronger
than it needs to be. We only need Σ to be the class of permutations where for any subset R ⊂
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S with R = Range(σ) for some σ ∈ Σ, any ordering (word) of 1’s and 0’s can be permuted
into any other ordering with the same number of 1’s and 0’s by applying a permutation
from that class. Once again, assume that the permutation process satisfies the symmetry
condition (3) that guarantees its self-duality. We will prove the following result.

Theorem 1. For the symmetric permutation processes, Ie = {νρ : 0 ≤ ρ ≤ 1}, where νρ is
the homogeneous product measure on {0, 1}S with marginal probability ρ (i.e.
νρ{η : η := 1 on A} = ρ|A|).

The notion of a bounded harmonic function for a Markov chain can be adapted to per-
mutation processes. We will say that a bounded function f : S → R is harmonic if for
a permutation process ηt and each t > 0, f(η) =

∑
ζ∈{0,1}S P η[ηt = ζ]f(ζ). We refer the

reader to Chapter I of [5] for more on Markov processes, their semigroups and construction
of interacting particle systems. We will need the following

Theorem 2. If f is a bounded harmonic function for the well defined finite permutation
process At, then f is constant on {A : |A| = n} for each given integer n ≥ 1.

As it was the case for symmetric exclusion, Theorem 1 follows from Theorem 2 and the
duality of the process (see [5], Chapter VIII). The proof of Theorem 1 echos the corresponding
proof in case of the symmetric exclusion processes. However, we will briefly go through it.
Assume that we already have Theorem 2.

Proof of Theorem 1: A probability measure µ on {0, 1}S is called exchangeable if for
any finite A ⊂ S, µ{η : η ≡ 1 on A} is a function of cardinality |A| of A. By de Finetti’s
theorem, if S is infinite, then every exchangeable measure is a mixture of the homogeneous
product measures νρ. Therefore Theorem 1 holds if and only if I agrees with the set of
exchangeable probability measures.

The duality equation (4) implies

µΩt{η : η ≡ 1 on A} =

∫
P η[ηt ≡ 1 on A]dµ

=

∫
PA[η ≡ 1 on At]dµ

=
∑
B

PA[At = B]µ{η : η ≡ 1 on B}.

Thus every exchangeable measure is stationary. Now, if µ ∈ I, then µΩt = µ (for all t), so
by the above equation, f(A) = µ{η : η ≡ 1 on A} is harmonic for At. Hence Theorem 2
implies that µ is exchangeable. ¤

Lets summarize the above construction: we used self-duality of symmetric permutation
processes in order to show that if µ ∈ I, then f(A) = µ{η : η ≡ 1 on A} is harmonic. We
need to prove Theorem 2 in order to show that f(A) is a function of cardinality |A|, i.e. µ
is exchangeable. By de Finetti’s theorem, µ is exchangeable if and only if it is a mixture of
the homogeneous product measures νρ. The proof of Theorem 2 is different for the processes
with recurrent and transient rates. We will do both.
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2.1 Recurrent case.

By recurrence here we mean the recurrence of I1(t)− I2(t), where I1(t) and I2(t) are two
independent one-point processes moving according to the permutation law as described in
the introduction. For the rest of the subsection we will assume that the process is recurrent.

As it was the case with the symmetric exclusion processes, in order to prove Theorem
2 in the recurrent case it is enough to construct a successful coupling of two copies At and
Bt of the permutation process with initial states A0 and B0 of the same cardinality n that
coincide at all but two sites of S (i.e. |A0 ∩B0| = n− 1). By successful coupling we mean

P [At = Bt for all t beyond some time ] = 1.

If f is a bounded harmonic function for the finite permutation process for which we can
construct a successful coupled process (see above), then

|f(A0)− f(B0)| = |Ef(At)− Ef(Bt)| ≤ E|f(At)− f(Bt)|

≤ ‖f‖P [At 6= Bt].

We need to construct a successful coupling of At and Bt in order to have P [At 6= Bt] → 0 as
t →∞. Letting t go to infinity, we get f(A0) = f(B0) thus proving Theorem 2 for the case
when there are only two discrepancies between A0 and B0, i.e. the cardinalities |A0|=|B0|,
and |A0 ∩B0| = |A0| − 1. Then by induction Theorem 2 holds for all A0 and B0 of the same
cardinality.

The points in {(At ∪Bt)\(At ∩Bt)} are called the “discrepancies”. The coupled process(
At

Bt

)
has two discrepancies at time t = 0. Our challenge is to couple the two permutation

processes At and Bt so that the number of discrepancies never increases and in fact decreases

with time (from two to zero). So we can have at most two discrepancies: one

(
1
0

)
discrepancy

(that we denote by d+
t ) and one

(
0
1

)
discrepancy (that we denote by d−t ). Here is an example:

At : . . . 1 0 1 1 0 1 0 0 . . .
Bt : . . . 1 0 0 1 0 1 1 0 . . .

↑ ↑
d+

t d−t

We recall a similar coupling construction by F.Spitzer that was implemented in the recurrent
case for symmetric exclusion processes. There, whenever the two discrepancies happened to
be inside the range of a transposition with positive rate, applying the transposition to either
At or Bt we were canceling the discrepancies (see [9]). In our situation, the tricky component
of such coupling construction is that when the two discrepancies happen to be inside the
range of a permutation in Σ, applying the permutation to either At or Bt, even if canceling
the original two discrepancies, might create new discrepancies. This is the challenge that we
have to overcome in this subsection.
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2.1.1 Coupling of two-point processes.

We postpone constructing a successful coupling of At and Bt up until 2.1.2 and instead
concentrate on creating tools necessary for such a construction. Here we will consider three
two-point processes It, Jt and Et in S with the same initial configuration x = (x1, x2) such
that x1 6= x2. We will construct two couplings, one of It and Jt, and one of Et and Jt. First
we need to define the processes.

We assume that the permutation rates {q(σ)}σ∈Σ are known. We define It = {I1(t), I2(t)}
to be the process that consists of two independent one-point permutation processes I1(t)
and I2(t) on S, that is two independent one-point permutation processes (random walks)
projected on the same space.

Now, we let Jt = {J1(t), J2(t)} ⊂ S be the two-point process that depends on It in the
following way. The initial configuration must be the same: (I1(0), I2(0)) = (J1(0), J2(0)) = x.
The above one-point processes I1(t) and I2(t) live separate lives. For each of the two of them,
every σ ∈ Σ is enacted with frequency q(σ). The total frequency will be 2q(σ). However,
the permutations acting on one of the one-point processes will not affect the other. When
constructing Jt, of all the permutations acting on I1(t) and I2(t) separately, we will apply to
Jt only those of them that actually displace one of the two random walkers I1 or I2 . Hence,
at every moment of time, we are waiting for the permutations that contain at least one of
the two points (I1 and I2), assigning the corresponding q-rate to those containing exactly
one of them in the range, and twice the q-rate to those containing both in the range.

Observe, that It and Jt are naturally coupled until the “decoupling” time Tdec when
a permutation containing both J1(Tdec−) and J2(Tdec−) occurs (“t−” signifies time that
precedes t such that no changes occur in [t−, t) time interval). So J1(Tdec) 6= J1(Tdec−) and
J2(Tdec) 6= J2(Tdec−). Such permutation should happen before I1(t) − I2(t) visits zero for
the first time. Thus

P x
{
∃Tdec ∈ (0,∞) s.t. J1(Tdec) 6= J1(Tdec−) and J2(Tdec) 6= J2(Tdec−)

}
(7)

≥ P x
{
∃t ∈ (0,∞) s.t. I1(t) = I2(t)

}
,

where P x denotes the probability measure, given the initial configuration x ∈ S2, for the
corresponding two-point process (It or Jt, and later Et). We recall that I1(t) − I2(t) is
recurrent. Hence the left hand side probability above is equal to one. As it will be seen
soon, this is the primary reason why conditions (5) and (6) are necessary for the coupling
construction in 2.1.2 that follows.

Now, on the time interval from zero until the decoupling time Tdec the process Jt behaves
almost as a two-point permutation process. The only difference being the double rates
applied to the permutations containing together J1 and J2 in the range at the moment.
Thus, we find it natural to couple Jt with a two-point exclusion process Et = {E1(t), E2(t)}
obeying the same fixed q-rates. Lets do that and on the way clarify the whole construction.
Define sets Σ1(t) := {σ ∈ Σ : I1(t) ∈ Range(σ)} and Σ2(t) := {σ ∈ Σ : I2(t) ∈ Range(σ)}.
Each permutation in each of the two sets occurs with the corresponding q-rate, where each
permutation in Σ1(t)

⋂
Σ2(t) is counted twice as if two different permutations. Think of Σ1

and Σ2 as two sets of permutations, of which some are identical, but we do not know it and
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assign separate rates anyways. If the first permutation to occur is from Σ1(t), it will act on I1

but not I2, and if it is from Σ2(t), it will act on I2, but not I1. Regardless as to which of the
two sets it belongs, the same permutation will act on both J1 and J2 even if both are in its
range (in the later case the processes decouple, and Tdec is set to be equal to the action time
of such permutation). The same permutation will act on both E1 and E2 but only if it comes
from Σ1(t) or Σ2(t)\Σ1(t) := {σ ∈ Σ2(t) : I2(t) ∈ Range(σ), I1(t) 6∈ Range(σ)}. Of course,
Σ1 and Σ2 evolve after each transformation of It. After decoupling, the processes It, Jt and
Et evolve independently, where It is the process consisting of two one-point permutation
processes, Et is a two-point permutation process and Jt is a two-point process where the
corresponding q-rates are assigned to all permutations in Σ except for those containing both
points J1 and J2 in the range at the moment, assigning the double rates to them.

For each σ ∈ Σ, the corresponding Poisson process with frequency q(σ) can be embedded
into a Poisson process with twice the frequency (that is 2q(σ)). Let T 1

2
(σ) denote the

set of jump times for the double-frequency Poisson process, then at each point in the set
T 1

2
(σ), the σ permutation is either applied to Et with probability 1

2
, or not applied with

probability 1
2
. When σ ∈ Σ1

⋂
Σ2, that determines whether the permutation comes from

Σ1 or from Σ2. Now, before Et and Jt decouple, if σ ∈ Σ and t ∈ T 1
2
(σ) are such that

E1(t), E2(t) ∈ Range(σ), then J(t) = σ(J(t−)). Thus

P x
{
∃t ∈ (0,∞) s.t. t ∈ T 1

2
(σ) and E1(t), E2(t) ∈ Range(σ) for some σ ∈ Σ

}
(8)

= P x
{
∃t ∈ (0,∞) s.t. J1(t) 6= J1(t−) and J2(t) 6= J2(t−)

}
.

At such t, either E(t) = E(t−) with probability 1
2

or E(t) = σ
(
E(t−)

)
. In the first case the

processes decouple. Since the right hand side of (8) is equal to one in the recurrent case (see
(7)),

P x
{
∃t ∈ (0,∞) s.t. t ∈ T 1

2
(σ) and E1(t), E2(t) ∈ Range(σ) for some σ ∈ Σ

}
= 1

regardless of what the starting point x = (x1, x2) (s.t. x1 6= x2) is. So, such t should arrive
infinitely often. Hence, in the recurrent case,

P x
{
∃t ∈ (0,∞) s.t. E1(t) 6= E1(t−) and E2(t) 6= E2(t−)

}
= 1. (9)

It is natural to compare processes It, Et and Jt since all three of them coincide up until a
certain decoupling time.

2.1.2 The coupling.

Returning to At and Bt, we will now try to reconstruct the Spitzer’s coupling proof (see [9])
in the case when conditions (5) and (6) are satisfied by a symmetric permutation process.
Recall that a permutation consisting of one cycle is itself called a cycle. Lets denote by
Σcyclic the set of all cycles in Σ. We will say that a subset R ⊂ S is a “range set” if there is
a σ ∈ Σ with Range(σ) = R. Consider a range set R. Let

m(R) = min
σ∈Σ:Range(σ)=R

{q(σ)}
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and
Z(R) =

∑

σ∈Σ:Range(σ)=R

q(σ).

First, observe that for all range sets R that contain both discrepancies (d−t and d+
t ) at the

same time, the sum

zd(t) :=
∑

range sets R :
d−t , d+

t ∈ R

Z(R) ≤ MPL.

We let the coupled process

(
At

Bt

)
evolve according to the following transition rates. For each

range set R containing both discrepancies at time t we pick a cycle σR ∈ Σcyclic of range R
such that σR(At) = Bt (there must be at least one such cycle). For each range set we can
order all cycles, and pick the first one that satisfies the description. Then

(
At

Bt

)
transforms into





(
σ2

R(At)

σR(Bt)

)
=

(
σR(Bt)

σR(Bt)

)
with rate m(R),

(
σ3

R(At)

σ2
R(Bt)

)
=

(
σ2

R(Bt)

σ2
R(Bt)

)
with rate m(R),

...(
σ
|R|−1
R (At)

σ
|R|−2
R (Bt)

)
=

(
σ
|R|−2
R (Bt)

σ
|R|−2
R (Bt)

)
with rate m(R),

(
σR(At)

σ
|R|−1
R (Bt)

)
=

(
Bt

At

)
with rate m(R),

(
σR(At)

σR(Bt)

)
with rate q(σR)−m(R),

(
σ2

R(At)

σ2
R(Bt)

)
with rate q(σ2

R)−m(R),

...(
σ
|R|−1
R (At)

σ
|R|−1
R (Bt)

)
with rate q(σ

|R|−1
R )−m(R),

(
σ(At)

σ(Bt)

)
with rate q(σ) if Range(σ) = R and σ 6= σi

R, all i.
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The coupled process

(
At

Bt

)
will transform into

(
σ(At)
σ(Bt)

)
with rate q(σ) if Range(σ) does

not contain both discrepancies. We observe that the rates are well defined. We also observe
that the transformations that we have allowed to have non-zero rates do not increase the
number of discrepancies. Moreover there could be a positive probability of the discrepancies
disappearing, in which case we let At and Bt evolve simultaneously as a single permutation
process. The rates sum up enabling us to conclude that the above process is a well-defined
coupling of processes At and Bt.

2.1.3 The coupling is successful. Example.

The coupling is successful because, according to (9), if waiting with rate zd(t) for a permu-
tation that contains both discrepancies in its range, though zd(t) changes with time, we are
guaranteed to have a finite holding time. Now, (5) and (6) imply m(R)MIIP(MI) ≥ Z(R),

where P(n) =
∑n

k=0

(
n
k

)
(−1)k(n − k)! < n! denotes the number of permutations of n > 1

distinct elements such that each element is displaced, i.e. element k is not in the k-th position
for all k ∈ {1, 2, . . . , n}. At the holding time, the discrepancies will cancel with probability

≥
∑

range sets R :
d−t , d+

t ∈ R

m(R)

zd(t)
≥

∑

range sets R :
d−t , d+

t ∈ R

Z(R)

P(MI)MIIzd(t)
=

1

P(MI)MII

.

The coupled process will keep arriving to such holding times up until the discrepancies can-
cel. Theorem 2 is proved in the recurrent case.

Remark. A simple but beautiful argument by Euler proves the following identity P(n) =
(n− 1)(P(n− 1) + P(n − 2)) that was used to derive P(n). Notice that P(n) is obviously
increasing with n. Finding the expression for P(n) is a case of a famous problem, known in
the history of mathematics as “problème des rencontres”. The number P(n) is also called
the number of “derangements” of n elements. We refer the reader to Chapters 3 and 8 of [7]
for more on the subject.

Example. The author wishes to thank the referee for suggesting the following simple ex-
ample that illustrates how the above coupling works. Let S = Z,
Σ =

⋃
x∈Z

{
σx := (x, x + 1, x + 2), σ2

x = σ−1
x

}
and q(σx) = q(σ−1

x ) = q for all x ∈ Z, where
q > 0 is fixed. Then one gets MPL = 6q, MI = 3 and MII = 1 (see (5) and (6)). Relevant
range sets are Rx = {x, x + 1, x + 2} for x ∈ Z. There m(Rx) = q and Z(Rx) = 2q since
Rx = Range(σx) = Range(σ−1

x ). Suppose the discrepancies are for instance at y and y + 1,
say d+

t = y and d−t = y +1, and the rest of the points around y are occupied in the following
way:

At : . . . 1 1 1 0 0 1 0 0 . . .
Bt : . . . 1 1 0 1 0 1 0 0 . . .

↑ ↑ ↑
y − 1 y y + 1
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There are exactly two range sets that contain both discrepancies d+
t = y and d−t = y + 1,

those are Ry−1 and Ry. For the range set R = Ry−1 there is a unique choice of σR: σR = σ−1
y−1

is the only cycle in Σ with range R such that σR(At) = Bt. Similarly for R = Ry, the choice
σR = σy for σR is unique. Thus the coupling in 2.1.2 reads

(
At

Bt

)
transforms into





(
σy−1(At)

σ−1
y−1(Bt)

)
=

. . . 0 1 1 0 . . .

. . . 0 1 1 0 . . .

↑ ↑ ↑
y − 1 y y + 1

with rate q,

(
σ−1

y−1(At)

σy−1(Bt)

)
=

. . . 1 0 1 0 . . .

. . . 1 1 0 0 . . .

↑ ↑ ↑
y − 1 y y + 1

with rate q,

(
σ−1

y (At)

σy(Bt)

)
=

. . . 1 0 0 1 . . .

. . . 1 0 0 1 . . .

↑ ↑ ↑
y − 1 y y + 1

with rate q,

(
σy(At)

σ−1
y (Bt)

)
=

. . . 1 0 1 0 . . .

. . . 1 1 0 0 . . .

↑ ↑ ↑
y − 1 y y + 1

with rate q.

The four permutations that contain both d+
t = y and d−t = y + 1 have total rate zd(t) =

Z(Ry) + Z(Ry−1) = 4q. If, after waiting with rate zd(t), the holding time arrives (before
any changes within Ry

⋃
Ry−1 occur), the discrepancies will cancel with probability equal to

2q
zd(t)

= 1
2
. In general, in all such cases when the discrepancies are within distance ≤ 2 from

each other and the holding time for all the permutations containing the two discrepancies
rings, the probability of cancelation of discrepancies should be no less than 1

P(MI)MII
= 1

2
as

P(3) = 2. In this example, it will always be equal to 1
2
.

The case is obviously recurrent as the difference of corresponding one-point processes
I1(t) − I2(t) is a recurrent random walk on Z. One can show (see the argument in 2.1.1)
that for the two-point permutation process Et = {E1(t), E2(t)} with the rates given in the
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beginning of the example, the above recurrence implies that E1(t) will come within distance
≤ 2 of E2(t) infinitely often insuring that the coupling is successful.

2.2 Transient, translation invariant case.

The following functions will denote various probabilities, some of which we already used in
the preceding subsections. We let

ḡ2(x) := P x
{
∃t ∈ (0,∞) s.t. E1(t) 6= E1(t−) and E2(t) 6= E2(t−)

}
,

g2(x) := P x
{
∃t ∈ (0,∞) s.t. I1(t) = I2(t)

}

and
¯̄g2(x) := P x

{
∃t ∈ (0,∞) s.t. J1(t) 6= J1(t−) and J2(t) 6= J2(t−)

}
.

Therefore (7) is equivalent to
¯̄g2(x) ≥ g2(x).

Moreover, by construction, ¯̄g2(x) ≥ ḡ2(x) ≥ g2(x). Conversely, (8) implies ḡ2(x) ≥ 1
2
¯̄g2(x),

and one similarly obtains 1
MIIP(MI)

¯̄g2(x) ≤ g2(x), where as before, P(N) denotes the number
of permutations of N elements such that each element is displaced. Hence, taking all the
above inequalities together, we conclude that

g2(x) ∼ ḡ2(x) ∼ ¯̄g2(x). (10)

Now, let
Tn = {x = (x1, . . . , xn) ∈ Sn : xi 6= xj for all i 6= j},

and let Ωt, Ut and Vt be the semigroups of respectively Et, It and Jt. We can extend Et

to denote an n-point permutation process (when applies) and similarly extend It to be an
n-point process such that each particle moves independently of the others as a one-point
permutation process. Moreover, Ωt and Ut will still denote the corresponding semigroups of
extended Et and It. We can also redefine

ḡn(x) := P x
{
∃t ∈ (0,∞) s.t. Ei(t) 6= Ei(t−) and Ej(t) 6= Ej(t−) for some i 6= j ∈ {1, . . . , n}

}

and
gn(x) := P x

{
∃t ∈ (0,∞) s.t. It = (I1(t), . . . , In(t)) 6∈ Tn

}
,

where Et = (E1(t), . . . , En(t)) is the n-point permutation process and I1(t), . . . , In(t) are
independent random walk processes. The properties of gn were thoroughly studied before
(see for example [5]). In particular, for x = (x1, . . . , xn) ∈ Sn,

gn(x) ≤
∑

1≤i<j≤n

g2(xi, xj) ≤
(

n
2

)
gn(x).

Therefore, redoing the first part of (10) for a general n, get

ḡn(x) ∼ gn(x) ∼
∑

1≤i<j≤n

g2(xi, xj) ∼
∑

1≤i<j≤n

ḡ2(xi, xj) (11)
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2.2.1 Case n = 2.

Here for the case of two particles we need to prove that a bounded harmonic function is
constant. By following Liggett’s proof (see Theorem 1.24 in Chapter VIII of [5], [2] and [3])
of Theorem 1 for transient symmetric exclusion processes, we observe that if f is a function
such that 0 ≤ f ≤ 1, then, by construction,

|Vtf(x)− Utf(x)| ≤ ¯̄g2(x), x ∈ T2.

Processes Jt and It agree until the first time t such that J1(t) 6= J1(t−) and J2(t) 6= J2(t−).
Now, Jt agrees with Et up until at least such t. Thus

|Vtf(x)− Ωtf(x)| ≤ ¯̄g2(x), x ∈ T2.

and, by (10),

|Ωtf(x)− Utf(x)| ≤ 2¯̄g2(x) ≤ 4ḡ2(x), x ∈ T2. (12)

Suppose f is also symmetric on T2, and Ωtf = f for all t ≥ 0, i.e. f is harmonic with
respect to semigroup Ωt. It can be extended to all of S2 by setting f = 0 on T c

2 := S2\T2.
Then, by (12),

|f(x)− Utf(x)| ≤ 4ḡ2(x), x ∈ S2 (13)

as ḡ2 := 1 on T c
2 .

Now, in the transient case, the independently moving particles I1(t), . . . , In(t) tend to scatter
away from each other. This can be expressed with the following limit (see [5])

lim
t→∞

Utgn(x) = 0, x ∈ Sn.

Thus, by (10),

lim
t→∞

Utḡ2(x) = 0, x ∈ S2. (14)

The inequality (13) implies

|Usf(x)− Us+tf(x)| ≤ 4Usḡ2(x), x ∈ S2,

where, by (14), the right hand side goes to zero. So, the limit of Usf exists and is a
harmonic function of a two particle process with semigroup Ut (where each particle moves
independently), whence it is a constant

lim
t→∞

Utf(x) = C, x ∈ S2.

Thus (13) implies

|f(x)− C| ≤ 4ḡ2(x), x ∈ S2.

13



Since we know that Ωtf = f ,

|f(x)− C| = |Ωtf(x)− C| ≤ 4Ωtḡ2(x), x ∈ T2. (15)

We want to use (15) in order to show |f(x)− C| = 0.
Three-cycles. If we only allow transpositions and three-cycles then the situation will be

much simpler. First consider the case when Σ contains only three-cycles. So, we only have to
consider the permutations σz, indexed by z 6= x1 or x2 in S such that σz : z → x1 → x2 → z,
as well as σ−1

z . Let Ω, U and V be the generators of the corresponding semigroups Ωt, Ut

and Vt. By construction for a cylinder function h : S × S → R and x = (x1, x2) ∈ S2,

(U− V)h(x) =
∑

σ:x1,x2∈Range(σ)

q(σ)
[
h(σ(x1), x2) + h(x1, σ(x2))− 2h(σ(x1), σ(x2))

]

and
(V − Ω)h(x) =

∑

σ:x1,x2∈Range(σ)

q(σ)
[
h(σ(x1), σ(x2))− h(x1, x2)

]
.

Thus

(U− Ω)h(x) =
∑

σ:x1,x2∈Range(σ)

q(σ)
[
h(σ(x1), x2) + h(x1, σ(x2))− h(σ(x1), σ(x2))− h(x1, x2)

]
.

Letting Sx1,x2 :=
{

z ∈ S\{x1, x2} : σz ∈ Σ
}

, and summing over all three-cycles σz and

σ−1
z for z ∈ Sx1,x2 we obtain the following equality:

(U− Ω)h(x) =
∑

σ:x1,x2∈Range

q(σ)
[
h(σ(x1), x2) + h(x1, σ(x2))− h(σ(x1), σ(x2))− h(x1, x2)

]

=
∑

z∈Sx1,x2

q(σz)
[
h(x2, x2) + h(x1, z)− h(x2, z)− h(x1, x2)

]

+
∑

z∈Sx1,x2

q(σz)
[
h(z, x2) + h(x1, x1)− h(z, x1)− h(x1, x2)

]

=


 ∑

z∈Sx1,x2

q(σz)




[
h(x1, x1) + h(x2, x2)− 2h(x1, x2)

]
.

A bounded symmetric function F on S2 is said to be positive definite if

∑
u1,u2∈S

F (u1, u2)β(u1)β(u2) ≥ 0 (16)

whenever
∑

u∈S |β(u)| < ∞ and
∑

u∈S β(u) = 0. A bounded symmetric function F on Sn

is said to be positive definite if it is a positive definite function of each pair of its variables.
Now, h(x) = Usg2(x) is positive definite (see the proof of Lemma 1.23 in Chapter VIII of
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[5]). Taking β(u) =





+1 if u = x1

−1 if u = x2

0 otherwise

in (16) we conclude that (U− Ω)Usg2(x) ≥ 0.

Thus

Ωtg2(x) ≤ Utg2(x). (17)

follows from the integration by parts formula for semigroups

Ut − Ωt =

∫ t

0

Ωt−s(U− Ω)Usds.

(17) together with (15) and (10) complete the argument in the case when we only allow
three-cycles. The proof can be easily extended to allow Σ to contain both transpositions
and three-cycles by incorporating the proof of Proposition 1.7 in Chapter VIII of [5].

For the general case the inequalities like (17) are hard to prove. However (17) is
stronger than what we really need.

By transience, limx→∞ g2(0, x) = 0, x ∈ S. Thus the equivalence relation (10) implies
limx→∞ ḡ2(0, x) = 0. So for any ε > 0, ∃Rε > 0 such that ḡ2(0, x) ≤ ε whenever |x| > Rε.
Now , we claim that there exists ∆ < 1 such that ḡ2(x1, x2) = ḡ2(0, x2 − x1) ≤ ∆ for all
x1, x2 ∈ S. To prove this, we fix ε = 1

2
and denote R = R 1

2
. We only need to prove that

ḡ2(0, x) < 1 whenever |x| ≤ R, x ∈ S. Suppose there is a point x inside the ball BR of
radius R around the origin such that ḡ2(0, x) = 1. If there is a permutation σ1 ∈ Σ with
σ1(x) ∈ Bc

R and 0 6∈ Range(σ1), then

1− ḡ2(0, x) ≥ (1− ḡ2(0, σ1(x))tq(σ1)e
−3MPLt > 0

for t small enough, where tq(σ1)e
−3MPLt is a lower bound for the probability of the event

that no permutation containing at least one of the three sites 0, x and σ1(x) in its range is
applied within (0, t) time interval with the exception of σ1 (recall how MPL was defined in
(1) ).

Thus ∃∆1 < 1 such that ḡ2(0, x) ≤ ∆1 whenever

x ∈ Bc
R ∪ {x ∈ BR : ∃σ1 ∈ Σ s.t. σ1(0) = 0, σ1(x) ∈ Bc

R}.
We iterate the above argument in order to show that since there are finitely many points

of S inside BR, ∃∆ < 1 such that ḡ2(0, x) ≤ ∆ whenever

x ∈ Bc
R∪{x ∈ BR : ∃k ≥ 1, σ1, ..., σk ∈ Σ s.t. σ1(0) = ... = σk(0) = 0, σk◦σk−1◦...◦σ1(x) ∈ Bc

R}.
By irreducibility assumption, the above set is all of S, proving the claim that ḡ2(x1, x2) ≤
∆ < 1 for all x1, x2 ∈ S. Thus ∀M > 0, P (0,x)[lim inft→∞ |E1(t) − E2(t)| ≤ M ] = 0, i.e.
|E1(t)− E2(t)| → ∞ a.s. as t →∞. Then limx→∞ ḡ2(0, x) = 0 implies

lim
x→∞

Ωtḡ2(0, x) = 0.

Hence, by (15), if f is a bounded symmetric function and Ωtf = f then f(x) is a constant for
all x ∈ T2, i.e. a bounded harmonic function for a transient permutation process is constant
for all sets of cardinality n = 2, proving Theorem 2 in this case.

15



2.2.2 General n.

The proof that if f is a bounded symmetric function on Tn, and if Ωtf = f , then

|f(x)− C| = |Ωtf(x)− C| ≤ cΩtḡn(x), x ∈ Tn (18)

for some constants C and c is the same for n ≥ 2 as for the case when n = 2. However, here
we do not have to redo the rest of the computation again. Since limx→∞ Ωtḡ2(0, x) = 0 for
all x 6= 0 in S, (11) implies that the right side of (18) converges to zero. Thus, for any given
n ≥ 2, a bounded harmonic function for a transient permutation process must be constant
for all sets of cardinality n. Theorem 2 is proved.

3 General case: shift invariant stationary measures.

Once again, we assume that the conditions (5) and (6) are satisfied, though, as it was
mentioned in the previous section, it is possible to obtain some of the same results with
slightly weaker conditions.

Let S again denote the class of the shift invariant probability measures on {0, 1}S. In
this section we will prove the following important result.

Theorem 3. For the general permutation process, (I ∩ S)e = {νρ : 0 ≤ ρ ≤ 1}.

3.1 Modifying the coupling.

First we have to modify the coupling of two permutation processes At and Bt on S, where
we are no longer constrained to only two discrepancies at time t = 0. We should find the
way of coupling the processes so that the number of discrepancies is at least not increasing
with time. We will adapt the following (generally accepted) notation: for two configurations
η and ζ in {0, 1}S, we say that η ≤ ζ if

η(x) ≤ ζ(x) for every x ∈ S.

We will say that η ≤ ζ on a subset Ωsub of S if η(x) ≤ ζ(x) for every x ∈ Ωsub.
At a given time t, for every range set R in S, there must be at least one σR ∈ Σcyclic of

range R (i.e. Range(σR) = R) such that either σR(At) ≥ Bt on R or σR(Bt) ≥ At on R. In
the case when

|{x ∈ R : At(x) = 1}| ≥ |{x ∈ R : Bt(x) = 1}|,

we can only pick σR so that σR(At) ≥ Bt on R. Then we let

(
At

Bt

)
transform into either

(
σR(At)

Bt

)
,

(
σ2

R(At)
σR(Bt)

)
,

(
σ3

R(At)
σ2

R(Bt)

)
, . . . , or

(
σ
|R|
R (At)

σ
|R|−1
R (Bt)

)
=

(
At

σ−1
R (Bt)

)
with rate m(R) each,

where m(R) was defined in 2.1.2. For all permutations σ ∈ Σ of range R, we will apply
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(
σ
σ

)
with the remaining rates:

(
At

Bt

)
transforms into

(
σ(At)
σ(Bt)

)
with rate = q(σ)−m(R) if

σ = σi
R for some i ∈ {1, ..., |R| − 1}, and with rate = q(σ) if otherwise. The case when

|{x ∈ R : At(x) = 1}| ≤ |{x ∈ R : Bt(x) = 1}|
is dealt with symmetrically. The way we select σR among the cycles of range R is by initially
ordering all the cycles of range R in Σcyclic and each time selecting the one of the highest
order such that either σR(At) ≥ Bt or σR(At) ≤ Bt on R. It is important that the ordering
of all the cycles of range R should be done parallel to ordering of all the cycles of range

R + y for each y ∈ S, i.e. σR selected for

(
At(x)
Bt(x)

)
=

(
η(x)
ζ(x)

)
for all x ∈ S should be the

(−y)-shift of σR+y selected for

(
At(x)
Bt(x)

)
=

(
η(x− y)
ζ(x− y)

)
for all x ∈ S. We observe that the

number of discrepancies here can only decrease.
We will denote by I∗ the class of stationary distributions for the coupled process, and

by S∗ we will denote the class of translation invariant distributions for the coupled process.
We will also write I∗e for the set of all the extreme points of I∗, and (I∗ ∩ S∗)e for the set
of all the extreme points of (I∗ ∩ S∗). Let ν∗ be the measure on {0, 1}S × {0, 1}S with the
marginals ν1 and ν2. Our next theorem is a case of Theorem 2.15 in Chapter III of [5].

Theorem 4. (a) If ν∗ is in I∗, then its marginals are in I.
(b) If ν1, ν2 ∈ I, then there is a ν∗ ∈ I∗ with marginals ν1 and ν2.
(c) If ν1, ν2 ∈ Ie, then the ν∗ in part (b) can be taken to be in I∗e .
(d) In parts (b) and (c), if ν1 ≤ ν2, then ν∗ can be taken to concentrate on {η ≤ ζ}.
(e) In the translation invariant case, parts (a)-(d) hold if I and I∗ are replaced by (I ∩ S)
and (I∗ ∩ S∗) respectively.

3.2 Case ν∗ ∈ (I∗ ∩ S∗): the two types of discrepancies do not
coexist.

For permutations σ1, σ2 ∈ S of a given range R, let q∗(σ1, σ2; η(R), ζ(R)) denote the rate

of the newly defined coupled process assigned to

(
σ1

σ2

)
transformation if given the values

(
η(R)
ζ(R)

)
=

{(
η(x)
ζ(x)

)
for all x ∈ R

}
. We also let Ω∗(t) denote the semigroup of the coupled

process. The following definition will be useful as we proceed:

Definition. For σ ∈ Σ and x ∈ Range(σ), the subset

O(σ, x) = {σi(x) : i = 0, 1, . . . }
of Range(σ) is called the orbit of x under σ.

Theorem 5. If ν∗ ∈ (I∗ ∩ S∗), then

ν∗
{
(η, ζ) : η(u) = ζ(v) = 0, ζ(u) = η(v) = 1

}
= 0

for every x and y in S.
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Proof: Here we reconstruct a clever trick from the theory of exclusion processes. If the
coupled measure ν∗ is in (I∗ ∩ S∗) then

0 =
d

dt
ν∗Ω∗(t){(η, ζ) : η(x) 6= ζ(x)}

∣∣∣
t=0

(19)

=
∑

range sets R :
x ∈ R

∑

σ ∈ Σ :
Range(σ) = R

∑

η̈, ζ̈ ∈ {0, 1}R :
η̈(x) = ζ̈(x),

η̈(σ−1(x)) 6= ζ̈(σ−1(x))

q∗(σ, σ; η̈, ζ̈) · ν∗
{ (

η
ζ

)
:

(
η(R)
ζ(R)

)
=

(
η̈

ζ̈

) }

−
∑

range sets R :
x ∈ R

∑

σ ∈ Σ :
Range(σ) = R

∑

η̈, ζ̈ ∈ {0, 1}R :
η̈(x) 6= ζ̈(x),

η̈(σ−1(x)) = ζ̈(σ−1(x))

q∗(σ, σ; η̈, ζ̈) · ν∗
{ (

η
ζ

)
:

(
η(R)
ζ(R)

)
=

(
η̈

ζ̈

) }

+
∑

range sets R :
x ∈ R

∑

η̈, ζ̈ ∈ {0, 1}R :
|{x ∈ R : η̈(x) = 1}|
≥ |{x ∈ R : ζ̈(x) = 1}|

m(R)
[
D(σR(η̈), ζ̈)−D(η̈, ζ̈)

] · ν∗
{ (

η
ζ

)
:

(
η(R)
ζ(R)

)
=

(
η̈

ζ̈

) }

+
∑

range sets R :
x ∈ R

∑

η̈, ζ̈ ∈ {0, 1}R :
|{x ∈ R : η̈(x) = 1}|
≥ |{x ∈ R : ζ̈(x) = 1}|

m(R)
[
D(η̈, σR(ζ̈))−D(η̈, ζ̈)

] · ν∗
{ (

η
ζ

)
:

(
η(R)
ζ(R)

)
=

(
η̈

ζ̈

) }
,

where for each a range set R and configuration η̈, ζ̈ ∈ {0, 1}R of the coupled process on R,

σR is uniquely defined, i.e. σR = σR[η̈, ζ̈]. Also D+(η̈, ζ̈) is the number of

(
1
0

)
discrepancies

of

(
η̈

ζ̈

)
, D−(η̈, ζ̈) is the number of

(
0
1

)
discrepancies of

(
η̈

ζ̈

)
and

D(η̈, ζ̈) := D+(η̈, ζ̈) + D−(η̈, ζ̈)

is the total number of discrepancies on R; σR(η̈) above denotes the new configuration of
particles on R that we obtain after applying permutation σR to the original η̈, i.e. σR(η̈)(x) :=
η̈(σ−1

R (x)) for all x ∈ R. σR(ζ̈) is defined by analogy.
Now, we need to explain (19). The third sum on the right hand side (RHS) of (19)

represents the contribution to the derivative by all transformations

(
σi

R

σi−1
R

)
whenever

|{x ∈ R : η(x) = 1}| ≥ |{x ∈ R : ζ(x) = 1}|
(equivalently σR(η) ≥ ζ on R). Symmetrically, the fourth sum on the RHS of (19) represents

the contribution to the derivative by all transformations

(
σi−1

R

σi
R

)
whenever

|{x ∈ R : ζ(x) = 1}| ≥ |{x ∈ R : η(x) = 1}|
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(equivalently σR(ζ) ≥ η on R).
Now, lets show that the third sum is correct. We fix a range set R that contains x. Notice

that since σR is a cycle, for each y ∈ R there is a unique corresponding i ∈ {0, 1, ..., |R| − 1}
such that y = σ−i

R (x). So σi+1
R (η̈)(x) = η̈(σ

−(i+1)
R (x)) = η̈(σ−1

R )(y) = σR(η̈)(y) and similarly

σi
R(ζ̈)(x) = ζ̈(y). Then counting all contributions to the derivative in (19) by

(
σi+1

R

σi
R

)
for all

values of i ∈ {0, 1, ..., |R| − 1} given that

(
η(R)
ζ(R)

)
=

(
η̈

ζ̈

)
, one obtains the following product

ν∗
{ (

η
ζ

)
:

(
η(R)
ζ(R)

)
=

(
η̈

ζ̈

) }
·
|R|−1∑
i=0

m(R)
[
1{σi+1

R (η)(x)6=σi
R(ζ)(x)} − 1{η(x)6=ζ(x)}

]

= ν∗
{ (

η
ζ

)
:

(
η(R)
ζ(R)

)
=

(
η̈

ζ̈

) }
·m(R)

∑
y∈R

[
1{σR(η)(y)6=ζ(y)} − 1{η(x)6=ζ(x)}

]

= ν∗
{ (

η
ζ

)
:

(
η(R)
ζ(R)

)
=

(
η̈

ζ̈

) }
·m(R)

[
D(σR(η̈), ζ̈)− |R|1{η(x) 6=ζ(x)}

]
,

where 1{λ 6=µ} :=

{
1 ,

λ 6= µ otherwise.

Next step is to consider all the shifts Rx−z = {R+x−z} of R for all z ∈ R together with

the corresponding shifts

(
η̈x−z

ζ̈x−z

)
of configuration

(
η̈

ζ̈

)
∈ {0, 1}R × {0, 1}R. Since ν∗ is shift

invariant, the contribution to the derivative in (19) coming from all transitions

(
σi+1

Rx−z

σi
Rx−z

)
for

all values of i ∈ {0, 1, ..., |R| − 1} and z ∈ R, given that

(
η(Rx−z)
ζ(Rx−z)

)
=

(
η̈x−z

ζ̈x−z

)
, is equal to

ν∗
{ (

η
ζ

)
:

(
η(R)
ζ(R)

)
=

(
η̈

ζ̈

) }
·m(R)

∑
z∈R

[
D(σR(η̈), ζ̈)− |R|1{η(z)6=ζ(z)}

]

= |R| ·m(R)
[
D(η̈, σR(ζ̈))−D(η̈, ζ̈)

] · ν∗
{ (

η
ζ

)
:

(
η(R)
ζ(R)

)
=

(
η̈

ζ̈

) }
.

Now, the above is the total contribution corresponding to all |R| shifts of R that contain

x and respective shifts of

(
η̈

ζ̈

)
. Hence we can count in 1

|R| -th fraction of the total each

time, thus verifying the correctness of the third sum on the RHS of (19). The fourth sum is
obtained by symmetry.

Naturally, the first and the second sums on the RHS of (19) represent the contributions

made to the derivative by all

(
σ
σ

)
transformations. We claim that because ν∗ ∈ S∗, the first

and the second sums on the RHS of (19) must cancel each other. We repeat the same trick:
for a range set R containing x and η̈, ζ̈ ∈ {0, 1}R we consider all shifts Rx−σi(x) := R+x−σi(x)
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of R together with the respective shifts

(
η̈x−σi(x)

ζ̈x−σi(x)

)
of

(
η̈

ζ̈

)
, for all i ∈ {1, 2, . . . , |O(σ, x)|}.

For a permutation σ ∈ Σ of range R, let σi denote the corresponding (x− σi(x))-shift of σ.
Then Range(σi) = Rx−σi(x). Now, due to the shift-invariant way in which the coupling was
constructed,

q∗(σi, σi; η̈
x−σi(x), ζ̈x−σi(x)) = q∗(σ, σ; η̈, ζ̈)

for each i ∈ {1, 2, . . . , |O(σ, x)|}. The following are trivial identities. For all i ∈ {1, 2, . . . , |O(σ, x)|},
η̈x−σi(x)(x) = η̈(σi(x)), ζ̈x−σi(x)(x) = ζ̈(σi(x)),

σi(η̈)x−σi(x)(x) = σ(η̈)(σi(x)) = η̈(σi−1(x))

and σi(ζ̈)x−σi(x)(x) = σ(ζ̈)(σi(x)) = ζ̈(σi−1(x)).

The total contribution to both first and the second sums on the RHS of (19) made by the

transformations

(
σi

σi

)
for all values of i ∈ {1, 2, . . . , |O(σ, x)|} is equal to

|O(σ,x)|∑
i=1

q∗(σi, σi; η̈
x−σi(x), ζ̈x−σi(x))

[
1{σi(η̈)x−σi(x)(x)6=σi(ζ̈)x−σi(x)(x)} − 1{η̈x−σi(x)(x) 6=ζ̈x−σi(x)(x)}

]

×ν∗
{(

η
ζ

)
:

(
η(Rx−σi(x))
ζ(Rx−σi(x))

)
=

(
η̈x−σi(x)

ζ̈x−σi(x)

)}

= q∗(σ, σ; η̈, ζ̈) · ν∗
{(

η
ζ

)
:

(
η(R)
ζ(R)

)
=

(
η̈

ζ̈

)}

×
|O(σ,x)|∑

i=1

[
1{η̈(σi−1(x)) 6=ζ̈(σi−1(x))} − 1{η̈(σi(x)) 6=ζ̈(σi(x))}

]
= 0.

Thus the difference of the first two sums on the RHS of (19) should add up to zero.
Returning to the third and fourth sums on the RHS of (19), since the second sum cancels

the first, and since the LHS there is = 0, the third and the fourth sums should also add up to
zero. We notice that since inside the third sum σR(η̈) ≥ ζ̈, implying D(σR(η̈), ζ̈) ≤ D(η̈, ζ̈),
where the equality holds only when D−(η̈, ζ̈) = 0. Similarly D(η̈, σR(ζ̈)) ≤ D(η̈, ζ̈) inside
the fourth sum, where the equality holds only when D+(η̈, ζ̈) = 0. That is the number of
discrepancies inside R does not change if initially all the discrepancies are of the same type,
and decreases otherwise. So,

D(σR(η̈), ζ̈) < D(η̈, ζ̈) in the third sum, and D(η̈, σR(ζ̈)) < D(η̈, ζ̈)

in the fourth sum whenever both types of discrepancies are present inside R, that is D+(η̈, ζ̈) 6=
0 and D−(η̈, ζ̈) 6= 0. Hence for any range set R, and any configuration (η̈, ζ̈) ∈ {0, 1}R ×
{0, 1}R of the coupled process on R such that D+(η̈, ζ̈) 6= 0 and D−(η̈, ζ̈) 6= 0,

ν∗
{ (

η
ζ

)
:

(
η(R)
ζ(R)

)
=

(
η̈

ζ̈

) }
= 0.
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Therefore, for all range sets R,

ν∗
{ (

η
ζ

)
: D+(η(R), ζ(R)) 6= 0, D−(η(R), ζ(R)) 6= 0

}
= 0

implying
ν∗

{
(η, ζ) : η(x) = ζ(y) 6= ζ(x) = η(y)

}
= 0.

for every x and y in S that both belong to the same range set, i.e. ∃σ ∈ Σ such that
x, y ∈ Range(σ).

The above identity is the first step of induction. For two points x and y in S, we let
n(x, y) be the least integer n such that there is a sequence

x = x0, x1, ..., xn = y

of points in S such that {σ ∈ Σ : xi−1, xi ∈ Range(σ)} 6= ∅ for all i = 1, . . . , n. Observe
that {σ ∈ Σ : xi, xj ∈ Range(σ)} = ∅ for all 0 ≤ i, j ≤ n with |i − j| 6= 1. We have just
proved the basis step n(x, y) = 1. For the general step we assume that Theorem 5 is true
for n(x, y) = 1, 2, . . . , n − 1. We need to prove Theorem 5 for n(x, y) = n. We will adapt
the notation that was used in many papers on interacting particle systems:

ν∗





1 0
0 1
u v



 = ν∗

{
(η, ζ) : η(u) = ζ(v) = 0, ζ(u) = η(v) = 1

}
,

for example. Now, for x and y in S with n(x, y) = n, we can expand

ν∗





1 0
0 1
x y



 = ν∗





1 1 0
0 1 1
x x1 y



 + ν∗





1 0 0
0 0 1
x x1 y





+ ν∗





1 1 0
0 0 1
x x1 y



 + ν∗





1 0 0
0 1 1
x x1 y



 ,

where the last two terms on the right are equal to zero by the induction hypothesis. Here
n(x, x1) = 1 and n(x1, y) = n− 1. Thus, we can show that the first two terms on the RHS
are also equal to zero since, by the preceding induction step,

0 = ν∗





a1 1 0
a2 0 1
x x1 y



 = ν∗Ω∗(t)





a1 1 0
a2 0 1
x x1 y



 .

Now due to conditions (5) and (6) there is a σ ∈ Σ with x = x0, x1 ∈ Range(σ) and
x2, . . . , xn = y 6∈ Range(σ) such that σ(x0) = x1 and σ(x1) = x0 among other things. So,

ν∗Ω∗(t)





a1 1 0
a2 0 1
x x1 y



 ≥ ν∗





1 a1 0
0 a2 1
x x1 y



 te−ctq(σ),
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where the constant c is greater than the sum of the rates of all other permutations in Σ
containing any of the xi’s in their ranges.

Observe that one does not really need σ(x1) = x0 when doing this proof with weaker
conditions than (5) and (6) that were mentioned in 2.1.1.

So

ν∗





1 0
0 1
x y



 = 0

for all x and y in S with all values of n(x, y), and Theorem 5 is proved. ¤

3.3 Proof of Theorem 3.

Since Theorem 4 and Theorem 5 are now proved, the proof of Theorem 3 is word to word
identical to the analogous case in the theory of exclusion processes and is a part of the system
of results developed by T.Liggett for the exclusion processes that we are trying to redo for
the permutation processes. However the proof is short and we need to inform the reader of
why Theorem 4 and Theorem 5 are important parts of the proof of Theorem 3.

Proof of Theorem 3: Since
∫

Ωfdνρ = 0 , νρ ∈ I and obviously νρ ∈ S for all 0 ≤ ρ ≤ 1.
Furthermore, νρ ∈ Se, since it is spatially ergodic. Therefore, νρ ∈ (I ∩ S)e.

For the converse, take ν ∈ (I ∩ S)e. By Theorem 4(e), for any 0 ≤ ρ ≤ 1, there is a
ν∗ ∈ (I∗ ∩ S∗)e with marginals νρ and ν. By Theorem 5,

ν∗
{
(η, ζ) : η ≤ ζ η 6= ζ

}
+ ν∗

{
(η, ζ) : ζ ≤ η η 6= ζ

}
+ ν∗

{
(η, ζ) : η = ζ

}
= 1.

Since the three sets above are closed for the evolution and translation invariant, and since
ν∗ is extremal, it follows that one of the three sets has full measure. Therefore, for every
0 ≤ ρ ≤ 1, either ν ≤ νρ or νρ ≤ ν. It follows that ν = νρ0 where ρ0 is determined by

ν ≤ νρ for ρ > ρ0,

ν ≥ νρ for ρ < ρ0.
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