
P2P Distributed Data Replenishment
Kien Nguyen, Thinh Nguyen, Viet Le
School of EECS, Oregon State University

Email: {nguyenki,thinhq,lev}@eecs.oregonstate.edu)

Yevgeniy Kovchegov
Department of Mathematics, Oregon State University

Email: kovchegy@math.oregonstate.edu

Abstract—We investigate a class of randomized peer-to-peer
(P2P) approach to Internet-wide distributed data storage sys-
tems that promises to reduce the coordination complexity and
increases performance scalability. The core of these randomized
P2P data storage systems is the data replenishment mechanism.
The data replenishment automates the process of maintaining a
sufficient level of data redundancy to ensure the availability of
data in presence of peer departures and failures. The dynamics of
peers entering and leaving the network is modeled as a stochastic
process. A novel analytical time-backward technique is proposed
to bound the expected time for a piece of data to remain in P2P
systems. Both theoretical and simulation results are in agreement,
indicating that a proposed data replenishment via random linear
network coding (RLNC) outperforms other strategies that employ
popular repetition and channel coding techniques. Specifically, we
show that the expected time for a piece of data to remain in a P2P
system, the longer the better, is exponential in the redundancy
amount for the RLNC-based strategy, while they are quadratic
for other strategies.

I. INTRODUCTION

Recent development of Peer-to-Peer (P2P) networks opens
a new possibility for building large scale distributed systems
over the Internet. Typically in such systems, data are replicated
across multiple nodes (peers) at different network locations
such that network failures in some parts of the Internet will
not prevent a user from accessing the data stored in other
parts of the Internet. To that end, many recent research efforts
have been focused on using P2P platforms to build reliable,
large scale distributed systems for Internet services [1], [2].
In this paper, we investigate the theoretical underpinnings and
examine the simulated performance for a class of large scale
distributed systems based on a randomized P2P approach via
coding techniques.

In a nutshell, a distributed system over the Internet is
an overlay network of storage and computing nodes, linked
together in such a way to allow computational, storage, and
bandwidth resources to be shared. Popular P2P network such
as BitTorrent is a distributed systems that enable their users to
share data and bandwidth. Since the overlay nodes are located
geographically apart, each node has a different network access,
and data are replicated across multiple nodes, these systems
are less susceptible to the bottleneck failures. However, if
not properly designed, they will incur substantial communi-
cation/coordination overheads among nodes. For a distributed
storage system, one of the main challenges is to design
efficient coordination mechanisms among nodes in order to
maintain the correct data in the system while minimizing the
communication overheads.

Data replenishment. Distributed storage system research
have been focused on indexing, maintaining, and retrieving
data correctly and efficiently. In this paper, we will not
discuss these aspects as they have been well investigated
in [3], [1]. Rather, we will focus on scalable methods for
maintaining data in a highly volatile environment such as
P2P networks. Specifically, in a P2P network, the data is
stored on a peer’s hard drive. Consequently, when a peer
departs the network, so does the data it carries. Therefore,
it is preferable to employ some form of data replenishment
mechanism which ensures that at any time, the requested data
is available at one or multiple peers collectively. Furthermore,
the data replenishment mechanism should be simple for it to
be effective in highly dynamic and distributed environments.
Data replenishment mechanism is the focus of this paper.

Approach Overview. Traditionally in a distributed storage
system, a file is replicated in its entirety at one or multiple
locations. However, for the same overall storage redundancy,
a more robust approach is to break up a single file into
many pieces, code these pieces properly, then disperse them to
multiple nodes in a network [4], [5], [6], [7]. A user recovers
the file by downloading its many pieces simultaneously from
different locations. In this setup, a file to be stored, is first
broken up into multiple pieces or packets, coded using either
Reed-Solomon, repetition, or random linear network codes
(RLNC), then dispersed to a number of peers in the network.
Now, any peer can depart the network along with its data.
If a new peer joins, it can be recruited to help replenish the
missing data. There are many ways to replenish the missing
data. One way is better than the others. We will show that
the data replenishment via RLNC is much more efficient than
the strategies using repetition and traditional channel code
such as Reed-Solomon code. We note that the concept of data
replenishment is similar to data repair as termed in [7]. On the
other hand, in [6], [7], the authors examined the fundamental
tradeoff between the replenishment bandwidth and storage
capacity in a static setting, while our work considers the
dynamics of data replenishment of different techniques and
their effects on data recoverability over time.

II. RELATED WORK

In [8], Dimakis et al. provided a survey on recent network
coding techniques for distributed storage. Majority of the
works in this area have been focused on (1) the fundamen-
tal trade-off between the repair bandwidth and the storage
capacity of nodes and (2) techniques for constructing capacity-

achieving network codes. In a distributed storage system, if a
node fails, a new node is recruited and attempts to reconstruct
the missing data from the failed node by downloading the
data from other nodes. The codes for this type of setting is
called regenerating codes, and the amount of downloaded data
required for reconstructing the missing data is called the repair
bandwidth. It has been shown that the repair bandwidth using
network coding can be substantially smaller than that of using
traditional MDS codes provided that the storage capacities of
nodes in the systems are sufficiently large [7].

Li et al. also considered joint design of regenerating codes
and network topology for efficiently utilizing network links
and reducing repair bandwidth [9]. Their design called RC-
TREE, is able to produce efficient code regeneration, even
in dynamic environments where nodes enter and depart the
network frequently. In [10], Duminuco and Biersack studied
computational, communication, and storage costs of a real
implementation of random linear regenerating codes in peer-
to-peer systems. They concluded that with a small increase in
storage cost and computation, a significant reduction of the
communication cost can be achieved.

III. NETWORK MODEL AND DATA REPLENISHMENT
STRATEGIES

When a peer leaves the network, so does its data. This
effectively reduces the robustness of the system temporarily
or permanently if the peer never rejoins or rejoins without
its data. Theoretically, the collective data in the network will
remain the same if one is to replace the exact missing data due
to a departed peer with a new peer. However, this approach
requires the system to know which peer leaves the network and
which pieces of data that it has. Then, a precise coordination
and communication mechanism is needed to reproduce the
equivalent state of the network. This could potentially create
significant communication and coordination overheads. In this
paper we study a more scalable, randomized approach that
aims to approximately reproduce the state of the network prior
to a peer’s departures, i.e. data replenishment.

We model the network dynamics as follows. For every peer
that leaves the network, the system can find another peer to
take over the responsibility of the departed peer. This model
approximates the dynamics of a network with constant number
of peers since the departures and arrivals are synchronized.
An analysis of a more general model with Poisson arrival and
departures is included in the extended version of this paper
submitted to a journal. We will describe three replenishment
strategies in this paper. Each strategy has to follow the basic
rules which model the limited communication and storage
capacities of the peers. We abstract the replenishment process
as the following game:

The game involves N peers. The objective of the game is
for the N peers to collectively maintain some given data for
as long as possible, subject to the following rules:

1) Each peer is allowed to carry a maximum of T bits.
2) At every time step, a peer is selected uniformly at

random to leave the game. Thus the T bits that it carries

will also be deleted.
3) A new peer is recruited to replace the departed peer. It

is allowed to communicate with a maximum of M peers
in an attempt to replenish the data.

4) Peers can modify the data in any way, as long as they
do not exceed their storage capacity of T bits.

Given these rules, what is the optimal strategy for the system
to maintain a piece of data for as long as possible? We
consider three replenishment strategies below:

Repetition Code Based Strategy. Suppose a file to be
stored is C bits long, and there are N peers, each can store up
to C/2 bits. The repetition strategy divides the peers into two
groups. Peers in one group are assigned to store the first half
of the file, while peers in the other group store the remaining
half. Note that the redundancy ratio is the total storage divided
by the file size. In this particular case, the redundancy is
NC/2

C = N/2. Whenever a peer departs, a new peer joins, and
communicates with M = 2 other peers selected uniformly at
random. Since the new peer’s capacity is only C/2 bits, even it
contacts two peers, it will only copy the data from one of these
peers, or effectively, M = 1. The game is played repeatedly
until all the peers have the same piece of data which is either
the first half or the second half of the file.

Reed-Solomon Code Based Strategy. Intuitively, a better
strategy is to employ the standard channel coding techniques
such as the Reed-Solomon code. Using this strategy, a file of
C bits is first divided into three equal parts, which are then
channel coded to produce N codewords of length C/3 bits.
Each peer then keeps a codeword. The redundancy in this
case is N/3. The property of RS(N, 3) code ensures that a
file can be recovered using any of three distinct codewords.
Now, the game is played in exactly the same way as before.
When a peer departs, the new peer joins, and is allowed to
communicate with M = 2 peers in an attempt to replenish the
missing data.

Random Linear Network Code Based Strategy. A yet
intuitively better strategy is to employ Random Linear Net-
work Coding technique [11][12]. Using this strategy, a file of
C bits is first divided into three equal parts. N codewords are
produced, each is a random linear combination of the three
original parts of the file. Each peer then keeps a codeword.
The redundancy is N/3, identical to that of RS code strategy.
Mathematically, an n−bit pattern can be viewed as an element
from a finite field. Thus, a codeword can be viewed as a vector
of elements from a finite field. A codeword A is a random
linear combination of codewords B and C, then

A = c1B + c2C, (1)

where ci’s are elements drawn uniformly at random from a
finite field. Assuming that coefficients ci’s are known, it is
clear that if all peers have at least three independent codewords
(i.e., three linear independent equations), then the file can be
recovered. Now, the game for RLNC is played a bit different
from the previous two. When a peer departs, the new peer
randomly chooses M = 2 peers, then copies their data.
However, since the new peer’s storage capacity is only C/3

bits, it generates and stores only one new codeword as a
random linear combination of the two codewords it just copied.

In all of these strategies, the game ends at the moment when
all the peers collectively cannot recover the original file. We
will show theoretically that the RLNC based strategy is much
better than the others, i.e., it will take longer to play the game.

IV. DISCRETE STOCHASTIC MODEL FOR RANDOM LINEAR
NETWORK CODING BASED REPLENISHMENT STRATEGY

In this section, we describe a discrete stochastic model for
the RLNC based replenishment strategy. To help with the
modeling process, we start with the following claim:

Given N codewords, each is a vector of L elements in a
finite field F. A new codeword of the same length is generated
with the elements drawn uniformly at random from the same
field. The probability that this new codeword is linearly
independent from any combination M codewords from the
given N codewords is almost unity if L and |F| are sufficiently
large.

It is straightforward to show that the lower bound for

this probability is 1 − (N
M)

|F|L−1 . As an example, suppose a
file is broken up into K = 3 parts, then N codewords are
generated by linearly combining these three parts (codewords)
at random. Now, at every time step, a new peer is chosen
uniformly at random to depart. A new peer joins. Two distinct
remaining peers (M = 2) are then uniformly chosen at random
to have their codewords copied to the new peer. The new
peer then generates its new codeword by linearly combining
these two codewords with random coefficients. The file is
no longer recoverable if all the codewords possessed by the
peers collectively come from fewer than K(= 3) independent
codewords.

The diagram in Figure 1 visually depicts how the de-
pendencies among the codewords progress in discrete time
steps. The meanings of the solid and non-solid circles will
become clear shortly when we discuss the time-backward
process. For now, at time step t = 0, there are 7 codewords.
Any of these codewords can be represented as a linearly
combination of any three other codewords due to the initial
mixing. At time step t = 1, the codeword 6 is replaced by
a random linear combination of codewords 5 and 7. At this
stage, the file can be recovered using any triplet of codewords
except (5,6,7) since these three codewords are not linearly
independent. At t = 2, codeword 2 is replaced by a random
linear combination of codewords 1 and 3. As such, one cannot
use triplets (5,6,7) or (1,2,3) to recover the file at this time.
The process repeats, and eventually, all codewords will be
some linear combinations of some two codewords, and the file
will no longer be recoverable. A discrete time Markov chain
representation, specifically a transition probability matrix can
be used describe this replenishment process. However, a direct
application of this method requires an exponentially large
number of states (N) where a state denotes a configuration in
the diagram. For example, at any time step, there are approxi-
mately N×

(
N
2

)
states that the chain can transition to, making

this approach analytically intractable. Our contributions is a

t= 0, n = 4, k = 5

codeword

1 2 3 4 5 6 7

Time

t= 1, n = 3, k = 4

t= 2, n = 2, k = 5

t= 3, n = 1, k = 6

t= 4, n = 0, k = 7

Fig. 1. Progression of codewords over time, N = 7, M = 2.

modeling technique that produces an approximate but closed
form solution for the expected number of time steps to get
from any state to any other, including the state in which the
file is no longer recoverable. Furthermore, we can bound the
error on this approximate time by a factor of 2 via the time-
backward model.

V. TIME-BACKWARD MODEL

We consider the time-backward process where the time is
indexed as n instead of t as shown in Fig. 1. The solid circles
denotes the parent nodes which are the codewords involving in
the linear combination at different time steps. The non-solid
circle represent codewords that are not parents nodes. Now,
let Xn denote the number of parent nodes at (backward) time
n. For example, in Figure 1, X0 = 7 and X4 = 5. Clearly,
all the codewords at time n = 0 are linearly dependent on
the codewords 1,2,3,4,5,6 at time n = 1. All the codewords
at time n = 1, are linearly dependent on the codewords 1, 2,
3, 4, 6 at time n = 2, and so on. With this setup, one can
view the time-backward process as a one dimensional random
walk Xn on 2, 3, . . . , N . For M = 2, one can write down the
following transition probabilities:

P (Xn+1 = k − 1|Xn = k) =
k

N
(
k − 1

N − 1
)(

k − 2

N − 2
)

P (Xn+1 = k + 1|Xn = k) =
k

N
(
N − k

N − 1
)(
N − 1− k

N − 2
)

P (Xn+1 = k|Xn = k) = 1− k

N
(
k − 1

N − 1
)(

k − 2

N − 2
)

− k

N
(
N − k

N − 1
)(
N − 1− k

N − 2
)

Suppose the number of original information packets is K, then
when Xn = K − 1, we can artificially stop the process. At
this stage, the file is no longer recoverable since the number of
independent codewords is less than the number of information
codewords. With this backward time model, Xn can only
take on values between K − 1 and N , so the size of the
transition matrix is (N −K+1)× (N −K+1), thus is much
more manageable as compared to modeling the time-forward
process. We now show that the expected absorption time of
the time-forward process can be approximated well by that
of the corresponding time-backward walk with the following
Proposition:

Proposition 5.1: Let F and B be the random variables
denoting the absorption times of the time-forward process and
time-backward walk with the parameters K, N , and M = 2,
starting in state N , respectively, then

EB ≤ EF < 2EB (2)

Proof: We first prove the lower bound. Without loss of
generality, we assume K = 3 for the purpose of illustration.
As shown in Fig. 2(a), a sequence of forward walk that results
in all the codewords being the children of only two codewords
must contain a sequence of backward walk that reaches these
two codewords. Thus, EB ≤ EF .

We now prove the upper bound. Suppose we walk backward
from the state X0 = k = N until there are only two parents
nodes at n steps later (Xn = 2). We then reset Xn = N ,
then walk backward one more time as shown in Figure 2(b).
The total expected number of time steps to reach the second
merge, counting from the beginning, is 2EB. Now if the
forward walk starts earlier than 2EB time steps, then it must
have encountered at least two instances where every node is a
descendant of only two parents node. But this contradict the
definition of EFi as the number of time steps for the chain to
reach Xn = 2 for the first time. Thus, EF < 2EB.

codeword

1 2 3 4 5 6 7

Starting

Two parent codewords

All codewords are linearAll codewords are linear

combination of two

parent codewords

(a)

2
T a

b
so
rb

Resett k = 7

(b)

Fig. 2. Illustrating diagrams for proofs of a) lowerbound; (b) upperbound.

VI. EXPONENTIAL RATE FOR DATA REPLENISHMENT VIA
RANDOM LINEAR NETWORK CODING

A. Analysis of Exponential Absorption Time

The time-backward model allows one to compute a closed-
form solution in matrix notations for the expected absorption

time starting from any state using standard matrix techniques.
The matrix notations however often cannot be used to examine
the asymptotic behavior of the absorption time as a function of
N , K, and M . To this end, we present a lower bound on the
absorption time in terms of N , K, and M with the following
proposition:

Proposition 6.1: Given N , K, and M = 2, the mean
absorption time B for the time backward walk, starting in
the state X0 = N and ending in state Xn = K−1, is at least:

B >

(
2N−4
N−2

)
− 1−

∑K−1
i=1

(
N−2

i

)2(
N−2
K−1

)2 +
2N − 3

N − 3
. (3)

For a large N , B is bounded below by a simpler exponential
in N (assuming fixed K)

B >
22N−4 − (K − 1)(N − 2)2(K−1)

(N − 2)2(K−1)
. (4)

For K = 3, even a more simplified lower bound is:

B >
4N

16N4
(5)

Proof: We present a proof based on the classical method
for computing hitting time of a discrete Markov chain. Denote
hk as the mean absorption time starting in the state X0 = k,
for k = K,K+1, . . . , N−2, and ending in state Xn = K−1
for some n. Then, we can write down the following recursion:

hk = 1 + hk−1
k

N

(
k − 1

N − 1

)(
k − 2

N − 2

)
+ hk+1

k

N

(
N − k

N − 1

)(
N − 1− k

N − 2

)
+ hk

[
1− k

N

(
k − 1

N − 1

)(
k − 2

N − 2

)]
− hk

k

N

(
N − k

N − 1

)(
N − 1− k

N − 2

)
Letting yk = hk+1−hk, and after some term re-arrangements,
we have

yk−1 = yk
(N − k)(N − 1− k)

(k − 1)(k − 2)
+

N(N − 1)(N − 2)

k(k − 1)(k − 2)

Now, this is a difference equation with the following initial
conditions:

yN−1 = hN − hN−1 = 1, yN−2 = hN−1 − hN−2 =
N

N − 3
.

The first initial condition is true because the first step always
reduces the number of parents nodes by 1. The second
condition is true because in the special state Xn = N − 1,
the chain can either go to (N − 2) or stay at (N − 1). It will
never go back to N . The probability that the chain will go to
N − 2 given that it is currently in N − 1 is the probability
that all three selected nodes are the parent nodes in the current
time step. This probability is (N−1)(N−2)(N−3)

N(N−1)(N−2) = N−3
N . Thus

the expected number of trials before moving to N−2 is N
N−3 .

The difference equation is of the form:

yk−1 = akyk + bk, (6)

where

ak =
(N − k)(N − 1− k)

(k − 1)(k − 2)
, bk =

N(N − 1)(N − 2)

k(k − 1)(k − 2)
,

for k = K,K + 1, . . . , N − 2.
By performing a few recursions, starting at N −2, we have

yN−2−k = aN−2aN−3 . . . aN−1−kyN−2 (7)
+ aN−3aN−4 . . . aN−1−kbN−2 + . . .

+ aN−1−kbN−k + bN−1−k,

Now, we have
N−3∑

j=K−1

yj = hN−2 − hK−1 = hN−2, (8)

since hK−1 = 0. The expected number of time steps before
the file is no longer recoverable starting from X0 = N is
therefore:

hN = hN−2 + 1 +
N

N − 3
=

N−3∑
j=K−1

yj + 1 +
N

N − 3
(9)

We now consider

zN−2−k = aN−2aN−3 . . . aN−1−k

+ aN−3aN−4 . . . aN−1−k + · · ·+ aN−1−k

for k = K − 1,K,K + 1, . . . , N − 2.
Note that zk is a modified version of yk as defined in

Equation (7). It is easy to see that

yk > zk, (10)

since yN−2 > 1 and bk > 1. By (9) and (10), we have

hN > zK−1, (11)

and we will show that zK−1 has a lower bound shown in
Proposition 6.1.

First we note that

ak =
(N − k)(N − 1− k)

(k − 1)(k − 2)
>

(
N − 1− k

k

)2

Now let a′k =
(
N−1−k

k

)2
, we have

zK−1 = aK + aKaK+1 + · · ·+ aKaK+1 . . . aN−2

> a′
K + a′

Ka′
K+1 + · · ·+ a′

Ka′
K+1 . . . a

′
N−2

=

∑N−2
i=1

∏
k = 1ia′

k −
∑K−1

i=1

∏i
k=1 a

′
k∏K−1

k=1 a′
k

=

∑N−2
i=1

∏i
k=1 (

N−1−k
k

)2 −
∑K−1

i=1

∏i
k=1 (

N−1−k
k

)2∏K−1
k=1 (N−1−k

k
)2

=

(
2N−4
N−2

)
− 1−

∑K−1
i=1

(
N−2

i

)2(
N−2
K−1

)2 (12)

Adding additional time steps from X0 = N to Xt = N−2, to
(12), we obtain the absorption time shown in Proposition 6.1.
Subsequent simpler bounds can be obtained using the Stirling’s
formula for large N and noting that (N − 2)(N − 3) . . . (N −
2−K + 1) < (N − 2)K−1.
By Proposition 5.1, the absorption time for the time-forward
model must be as large as the absorption time for the time-
backward walk B. For a fixed K, it is exponential in N .

B. Simulation results for RLNC based data replenishment

In this section, we show the simulation results that demon-
strate the theoretical exponential absorption time using the
RLNC-based data replenishment. Furthermore, our simulation
results show that the absorption time of the time-forward
model is very close to that of time-backward model, i.e. much
smaller closer to the lower bound than the upper bound given
in Proposition 5.1.

First we show that the absorption time is indeed exponential
in N for fixed K and M . Figure 3 shows the log of mean
absorption time as a function of N , the number of nodes
for both the time-forward and time-backward models. Recall
that N is the number of nodes used to store the data. In this
simulation, an arrival node always connects to M = 2 existing
nodes to download and mix their data. Originally, there is a
total of three pieces of independent information (K = 3).

The graphs in Figure 3 shows two relatively straight line
segments. Since the y-axis is in log scale, this indicates
that both the absorption times of the time-forward and time-
backward models are exponential in the number of nodes
used to store the data. Furthermore, both absorption times are
almost identical in the log scale. This closeness also exhibits
in the linear scale graphs (not shown). It is noted that he
absorption time for the time-forward model is always larger
than that of the time-backward model, following the lower
bound in Proposition 5.1. Next, we investigate the absorption

4 5 6 7 8 9
0

2

4

6

8

10

12

14

16

Number of storage nodes

Lo
g(

Ab
so

rp
tio

n
tim

e)

Time−forward
Time−backward

Fig. 3. Log of mean absorption time vs. the number of nodes for N =
4, .., 9;M = 2,K = 3 for the RLNC strategy.

time as a function of redundancy given a constant number of
nodes N = 9. Specifically, if at the start, there are k < N
pieces of independent information, then the absorption time is
the time that the number of parents nodes reduces to k − 1.
Every newly arrival peer still connects to M = 2 peers for data
replenishment. Figure 4 shows log of mean absorption time
versus k, the number of parents nodes. Again, the absorption
time for the time-forward model is higher than that of the time-
backward model as predicted, but they are close to each other.
Finally, we also investigate the performance of the RLNC-
based data replenishment scheme when M ≥ 2 connections
are used. Specifically, a newly arrival peer chooses two, three,
or four peers uniformly at random to download the data
and perform replenishment. Figure 5 shows the log of the
absorption time time-backward vs. k, the number of parents
nodes, for the case of N = 8 nodes. The simulation results
show that for larger values of M , one can expect a longer

2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

Number of parent nodes

Lo
g(

Ab
so

rp
tio

n
tim

e)

Time−forward
Time−backward

Fig. 4. Log of mean absorption time vs. the number of parent nodes for
N = 9;M = 2,K = 3 for the RLNC strategy.

2 3 4 5 6

0

5

10

15

20

25

Number of parent nodes

Lo
g(

Ab
so

rp
tio

n
tim

e)

2 connections
3 connections
4 connections

(a)

2 3 4 5 6

0

5

10

15

20

25

Number of parent nodes

Lo
g(

Ab
so

pt
io

n
tim

e)

2 connections
3 connections
4 connections

(b)

Fig. 5. Log of mean absorption time vs. number of parent nodes for N =
8;M = 2, 3, 4 for the RLNC strategy with (a) Time-forward model and (b)
Time-backward model.

absorption time.

VII. QUADRATIC RATE FOR DATA REPLENISHMENT VIA
RS AND REPETITION CODES

We show that using replenishment based on the RS and
repetition codes, the number of time steps before a file is no
longer recoverable is of O(N2), and thus is less effective than
that of the RLNC based strategy.

Absorption Time for RS-based Strategy. A file is divided
into three parts, coded using RS(N, 3). Each peer keeps a
codeword, resulting in a redundancy level of N/3. A new peer
is allowed to contact with M = 2 peers. Since with M = 2,
the new peer cannot recover the file, thus it will randomly
copy the codeword from one of the two peers. Using the time-
backward model, it is straightforward to obtain the following
Proposition:

Proposition 7.1: The expected absorption time using RS
code with M = 2,K = 3 is approximately (N−1)(N−2)

2 , and
thus is quadratic in N .

Proof: We omitted the proof due to lack of space, but
simply note that we applied the same method used in the

RLNC case for this proof.
Absorption Time for Repetition Code Strategy. Suppose
a file is split into two parts and there are N peers, each
containing either parts of the file. For this strategy, whenever a
peer leaves and a new peer enters, a peer is picked uniformly
at random out of N − 1 existing peers, and its data is copied
to the new peer.

Proposition 7.2: The expected absorption time using repe-
tition code is approximately ln 2 ·N2.

Proof: We omit the proof due to lack of space, but
merely mention that our proof uses the birth-and-death process
{0, 1, . . . , N} with two absorbing states, 0 and N .

VIII. CONCLUDING REMARKS

In conclusion, we suggest that, to maintain data for as
long as possible in a distributed setting with limited peer
communication and storage, it is better to mix the data as
proposed in the RLNC strategy. We show that the average
number of replenishments before a file is no longer recoverable
is exponential in the number of peers used store the data
distributedly for RLNC-based strategy and quadratic for other
traditional strategies. We also propose a novel time-backward
technique to approximate the mean absorption time.

REFERENCES

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content addressable network,” in Proceedings of ACM
SIGCOMM, August 2001.

[2] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz,
“Tapestry: A resilient global-scale overlay for service deployment,”
IIEEE Journal on Selected Areas in Communications, January 2004.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems,” in IFIP/ACM
International Conference on Distributed Systems Platforms, November
2001.

[4] Kien Nguyen, Thinh Nguyen, and Sen-Ching Cheung, “Video streaming
with network coding,” Journal of Signal Processing Systems, vol. 59,
pp. 319–333, 2010, 10.1007/s11265-009-0342-7.

[5] Kien Nguyen, Thinh Nguyen, and Y. Kovchegov, “A p2p video delivery
network (p2p-vdn),” in Computer Communications and Networks, 2009.
ICCCN 2009. Proceedings of 18th Internatonal Conference on, 2009,
pp. 1 –7.

[6] s. Acendanski, S. Deb, M. Medard, and R. Koetter, “How good is
random linear coding based distributed networked storage?,” in NetCod,
2005.

[7] A.G. Dimakis, P.B. Godfrey, Yunnan Wu, M.J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” Information
Theory, IEEE Transactions on, vol. 56, no. 9, pp. 4539 –4551, Sept 2010.

[8] Alexandros G. Dimakis, Kannan Ramchandran, Yunnan Wu, and
Changho Suh, “A survey on network codes for distributed storage,”
Proceedings of the IEEE, vol. 99, no. 3, March 2011.

[9] Jun Li, Shuang Yang, Xin Wang, and Baochun Li, “Tree-structured data
regeneration in distributed storage systems with regenerating codes,”
in Proceedings of the 29th conference on Information communications,
Piscataway, NJ, USA, 2010, INFOCOM’10, pp. 2892–2900, IEEE Press.

[10] A. Duminuco and E. Biersack, “A practical study of regenerating codes
for peer-to-peer backup systems,” in Distributed Computing Systems,
2009. ICDCS ’09. 29th IEEE International Conference on, 2009, pp.
376 –384.

[11] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, October 2006.

[12] R. Ahlswede, N. Cai, R. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inform. Theory, vol. 46, pp. 1204–1216, July 2000.

