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Abstract

We produce the first example of bounding total variation distance to stationarity
and estimating mixing times via orthogonal polynomials diagonalization of discrete
reversible Markov chains, the Karlin-McGregor approach.

1 Introduction

If P is a reversible Markov chain over a sample space Ω, and π is a reversibility function
(not necessarily a probability distribution), then P is a self-adjoint operator in `2(π),
the space generated by the inner product

< f, g >π=
∑
x∈S

f(x)g(x)π(x)

induced by π. If P is tridiagonal operator (i.e. a nearest-neighbor random walk) on Ω =
{0, 1, 2, . . . }, then it must have a simple spectrum, and is diagonalizable via orthogonal
polynomials as it was studied in the 50’s and 60’s by Karlin and McGregor, see [2],
[8]. There the extended eigenfuctions Qj(λ) (Q0 ≡ 1) are orthogonal polynomials with
respect to a probability measure ψ and

pt(i, j) = πj

∫ 1

−1
λtQi(λ)Qj(λ)dψ(λ) ∀i, j ∈ Ω,

where πj (π0 = 1) is the reversibility measure of P .
In this paper we are testing a possibility of calculating mixing rates using Karlin-

McGregor diagonalization with orthogonal polynomials. In order to measure the rate
of convergence to a stationary distribution, the following distance is used.

Definition 1. If µ and ν are two probability distributions over a sample space Ω, then
the total variation distance is

‖ν − µ‖TV =
1
2

∑
x∈Ω

|ν(x)− µ(x)| = sup
A⊂Ω

|ν(A)− µ(A)|

Observe that the total variation distance measures the coincidence between the distri-
butions on a scale from zero to one.
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If ρ =
∑∞

k=0 πk < ∞, then ν = 1
ρπ is the stationary probability distribution. If in

addition, the aperiodic nearest neighbor Markov chain originates at site i, then the
total variation distance between the distribution µt = µ0P

t and ν is given by

‖ν − µt‖TV =
1
2

∑
j

πj

∣∣∣∣∣
∫

(−1,1)
λtQi(λ)Qj(λ)dψ(λ)

∣∣∣∣∣ ,
as measure ψ contains a point mass of weight 1

ρ at 1, see [3].
The rates of convergence are quantified via mixing times. In the case of a Markov

chain over an infinite state space with a unique stationary distribution, the notion of
a mixing time depends on the state of origination of the chain.

Definition 2. Suppose P is a Markov chain with a stationary probability distribution
ν that commences at X0 = i. Given an ε > 0, the mixing time tmix(ε) is defined as

tmix(ε) = min {t : ‖ν − µt‖TV ≤ ε}

In the case of a nearest-neighbor process on Ω = {0, 1, 2, . . . } commencing at i, the
corresponding mixing time has the following simple expression in orthogonal polyno-
mials

tmix(ε) = min

t :
∑
j

πj

∣∣∣∣∣
∫

(−1,1)
λtQi(λ)Qj(λ)dψ(λ)

∣∣∣∣∣ ≤ 2ε


Observe that the above expression is simplified when i = 0. Here we concentrate on
calculating mixing times for simple positive recurrent nearest-neighbor Markov chains
over Ω, originating from i = 0. Our main result concerns the distance to stationarity
for a simple random walk with a drift. In the main theorem and its corollary we will
explore the following Markov chain

P =



0 1 0 0 . . .
q r p 0 . . .

0 q r p
. . .

0 0 q r
. . .

...
...

. . . . . . . . .


q > p, r > 0

Theorem 1. Suppose the above Markov chain begins at the origin, i = 0. Consider
the orthogonal polynomials Qn for the chain. Then the integral

∫
(−1,1) λ

tQn(λ)dψ(λ)
can be expressed as
(1+q−p)(q+r)−q
(1+q−p)(q+r) ·

(
− q
q+r

)t+n
+
(√

q
p

)n (
p
q+r

)
1

2πi

∮
|z|=1

(
√
pq(z+z−1)+r)tzn(z−z−1)“

z−
q

p
q

r+(1+q−p)
2(q+r)

”“
z−

q
p
q

r−(1+q−p)
2(q+r)

”dz
and the total variation distance ‖ν − µt‖TV is bounded above by

A

(
q

q + r

)t
+B(r + 2

√
pq)t,
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where A = (1+q−p)(q+r)−q
(1+q−p)(1−2p) and B =

“
p

q+r

”“
1+ 1√

pq−p

”
“
1−

q
p
q

r+(1+q−p)
2(q+r)

”“
1+

q
p
q

r−(1+q−p)
2(q+r)

” . Therefore, taking

ε ↓ 0, the mixing time

tmix(ε) = O

(
log(ε)

logm(p, q)

)
,

where m(p, q) = max
[
(r + 2

√
pq),

(
q
q+r

)]
.

Observe that in the above complex integral all three finite poles are located inside
the unit circle. Thus we only need to consider a pole at infinity.

The proof is provided in section 3. The result in Theorem 1 is the first instance the
Karlin-McGregor orthogonal polynomials approach is used to estimate mixing rates. As
it was suggested in [3] we would like the approach to work for a larger class of reversible
Markov chains over an infinite state space with a unique stationary distribution. There
is an immediate corollary (see section 3):

Corollary. If q
q+r > r + 2

√
pq,

‖ν − µt‖TV ≥ A

(
q

q + r

)t
−B(r + 2

√
pq)t

for t large enough, i.e. we have a lower bound of matching order.

Observe that one can easily adjust these results for any origination site X0 = i. In
the next section we will compare the above Karlin-McGregor approach to some of the
classical techniques for estimating the “distance to stationarity” ‖ν − µt‖TV .

2 Comparison to the other techniques

For the case of geometrically ergodic Markov chains, there are several techniques that
produce an upper bound on the distance to stationarity that were developed specifically
for the cases when the sample space is large, but finite. These methods are not directly
applicable to chains on general state spaces. The coupling method stands out as the
most universal. Here we compare the geometric rate in Theorem 1 to the one obtained
via a classical coupling argument. Then we explain why other geometric ergodicity
methods based on renewal theory will not do better than coupling. See [6] and [4] for
detailed overview of geometric convergence and coupling.

2.1 Geometric convergence via coupling

Consider a coupling process (Xt, Yt), where X0 = 0 as in Theorem 1, while Y0 is
distributed according to the stationary distribution ν = 1

ρπ. A classical Markovian
coupling construction allows Xt and Yt evolve independently until the coupling time
τcoupling = min{t : Xt = Yt}. It is natural to compare P (τcoupling > t) to P (τ > t),
where τ = min{t : Yt = 0} is a hitting time, as the chain is positive recurrent.

Now, simple combinatorics implies, for k ≥ n,

P (τ = k | Y0 = n) =
∑

i,j: 2i+j=k−n

k!
i!(i+ n)!j!

piqi+nrj
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Therefore

P (τ > t) ≤ 1
pρ

∑
k: k>t

 ∑
i,j,n: 2i+j=k−n

k!
i!(i+ n)!j!

pi+nqirj

 ,

where ‘≤’ appears because π0 = 1 < 1
p , but it does not change the asymptotic rate

of convergence, i.e. we could write ‘≈’ instead of ‘≤’. The right hand side can be
rewritten as

1
pρ

∑
k: k>t

k∑
j=0

(
k
j

)
rj(p+ q)k−j`(k − j)

for `(m) = P (Y ≥ m/2), where Y is a binomial random variable with parameters(
m, p̃ = p

p+q

)
. Now, by Cramér’s theorem, `(m) ∼ e[log 2+ 1

2
log ep+ 1

2
log(1−ep)]m, and there-

fore
P (τ > t) ∼ 1

pρ

∑
k: k>t

(r + 2
√
pq)k =

r + 2
√
pq

pρ(
√
q −√

p)2
(r + 2

√
pq)t (1)

Recall that in the Corollary, if q is sufficiently larger than r and p, then
(

q
q+r

)t
domi-

nates (r + 2
√
pq)t, and the total variation distance

‖ν − µt‖TV = A

(
q

q + r

)t
±B(r + 2

√
pq)t,

where A and B are given in Theorem 1 of this paper. Thus we need to explain why,
when q is sufficiently large, in the equation (1), we fail to notice the dominating term

of
(

q
q+r

)t
. In order to understand why, observe that the second largest eigenvalue(

− q
q+r

)
originates from the difference between τcoupling and τ . In fact, Yt can reach

state zero without ever sharing a site with Xt (they will cross each other, of course).
Consider the case when p is either zero, or close to zero. There, the problem reduces to
essentially coupling a two state Markov chain with transition probabilities p(0, 1) = 1
and p(1, 0) = q

q+r . Thus the coupling time will be expressed via a geometric random
variable with the failure probability of q

q+r .
Of course, one could make the Markov chain P “lazier” by increasing r at the

expense of p and q, while keeping proportion q
p fixed, i.e. we can consider Pε =

1
1+ε(P + εI). This will minimize the chance of Xt and Yt missing each other, but this
also means increasing (r + 2

√
pq), and slowing down the rate of convergence in (1).

In order to obtain the correct exponents of convergence, we need to redo the
coupling rules as follows. We now let the movements of Xt and Yt be synchronized
whenever both are not at zero (i.e. {Xt, Yt} ∩ {0} = ∅), while letting Xt and Yt move
independently when one of them is at zero, and the other is not. Then at the hitting
time τ , either Xt = Yt = 0 and the processes are successfully coupled, or Xt = 1
and Yt = 0. In the latter case we are back to the geometric variable with the failure
probability of q

q+r . That is, the only way for Xt and Yt to couple would be if one of
the two is at state 0 and the other is at state 1. Using the set theory notations, if
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{Xt, Yt} = {0, 1}, conditioning on {Xt+1, Yt+1} 6= {1, 2} would give us

{Xt+1, Yt+1} =

{
{1} with probability r

q+r ,

{0, 1} with probability q
q+r ,

When q
q+r > r+2

√
pq, the above modified coupling captures the order

(
q
q+r

)t
. The

coefficient A however is much harder to estimate using the coupling approach, while
it is immediately provided in Theorem 1 and its corollary. Take for example p = 1

11 ,
r = 1

11 and q = 9
11 . There q

q+r > r + 2
√
pq, and according to the Corollary, the lower

bound of A
(

q
q+r

)t
−B(r + 2

√
pq)t and the upper bound of A

(
q
q+r

)t
+B(r + 2

√
pq)t

are of the matching order, and the oreder of convergence is tight

‖ν − µt‖TV =
91
171

(
9
10

)t
± 39

28

(
7
11

)t
2.2 Drift, minorization and geometric ergodicity

The optimal “energy function” V (x) =
(
q
p

)x/2
converts the geometric drift inequality

in Meyn and Tweedie [6] Chapter 15 into equality

E[V (Xt+1) | Xt = x] = (r + 2
√
pq)V (x) +

(√
q

p
− (r + 2

√
pq)
)

11C(x)

thus confirming the geometric convergence rate of (r + 2
√
pq)t for the tail probability

P (τC > t), where C = {0} is the obvious choice for the “small set”, and τC is the
hitting time. Once again all the challenge is at the origin. In fact there is only a trivial
“minorization condition” when C = {0}. The minorization condition reads

p(x,A) ≥ εQ(A) ∀x ∈ C, A ⊂ Ω,

where, if C = {0}, the only choice for the probability measure Q is Q = δ1, and ε = 1.
With ε = 1 the split of the Markov chain is trivial, and as far as the corresponding
coupling goes, the only issue would be (as we mentioned before) to compute the tail of
the hitting time min{t : (Xt, Yt) ∈ C×C} when q is large. If C = {0, 1, . . . , k} for some
k > 0, there is no minorization condition. In the latter case, estimating the hitting
time min{t : (Xt, Yt) ∈ C ×C} is straightforward, but without minorization, this will
not be enough to estimate the tail for the coupling time. The “splitting technique”
will not work, rather a coupling approach of the preceding subsection to be pursued.

The case of recurrent reflecting random walk (the M/M/1 queue) had been con-
sidered as one of the four benchmark examples in the geometric ergodicity theory (see
[1] and references therein). There, in the absence of the second largest eigenvalue of(
− q
q+r

)
, with r = 0, the rate of (2

√
pq)t was proven to be the optimal (see [5]). The

methods in the theory of geometric convergence are in the most part based on the
renewal theory (see [6], [1], [7] and references therein), and concentrate more on the
tail probability for the hitting time τC in the splitting method. As for the Markov
chain P considered in this paper, in the absence of a useful splitting of it, the approach
that works is the coupling. While the coupling provides the right exponents, it does
not necessarily produce the tight coefficients.
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3 The proof of Theorem 1

Proof. Since we require r > 0 for aperiodicity, we will need to obtain the spectral
measure ψ via an argument similar to that of Karlin and McGregor in [2], where
the case of r = 0 was solved. The orthogonal polynomials are obtained via solving
a simple linear recursion: Q0 = 1, Q1 = λ, and Qn(λ) = c1(λ)ρn1 (λ) + c2(λ)ρn2 (λ),

where ρ1(λ) = λ−r+
√

(λ−r)2−4pq

2p and ρ2(λ) = λ−r−
√

(λ−r)2−4pq

2p are the roots of the

characteristic equation for the recursion, and c1 = ρ2−λ
ρ2−ρ1 and c2 = λ−ρ1

ρ2−ρ1 .

Now π0 = 1, πn = pn−1

qn (n ≥ 1) and ρ = q−p+1
q−p . Also, we observe that

|ρ2(λ)| >
√

q
p on [−1, r − 2

√
pq),

|ρ2(λ)| <
√

q
p on (r + 2

√
pq, 1],

|ρ2(λ)| =
√

q
p on [r − 2

√
pq, r + 2

√
pq],

and ρ1ρ2 = q
p .

The above will help us to identify the point mass locations in the measure ψ since
each point mass in ψ occurs when

∑
k πkQ

2
k(λ) < ∞. Thus we need to find all λ ∈

(r+2
√
pq, 1] such that c1(λ) = 0 and all λ ∈ [−1, r−2

√
pq) such that c2(λ) = 0. There

are two roots, λ = 1 and λ = − q
q+r .

We already know everything about the point mass at λ = 1: Qk(1) = 1 for all k ≥ 0,
and ρ =

∑∞
k=0 πkQ

2
k(1) = 1+q−p

q−p is the reciprocal of the point mass at λ = 1.

The only other point mass is at λ = − q
q+r . One can verify that ρ1

(
− q
q+r

)
= − q

q+r

and Qk
(
− q
q+r

)
=
(
− q
q+r

)k
, and therefore

∞∑
k=0

πkQ
2
k

(
− q

q + r

)
= 1 +

q

(q + r)2 − pq
=

(1 + q − p)(q + r)
(1 + q − p)(q + r)− q

is the reciprocal of the point mass at λ = − q
q+r .

It follows that the rest of the mass of ψ (other than the two point masses) is spread
inside [r−2

√
pq, r+2

√
pq]. In order to find the density of ψ inside [r−2

√
pq, r+2

√
pq]

we need to find (e0, (P − sI)−1e0) for Im(s) 6= 0, i.e. the upper left element in the
resolvent of P . Let (a0(s), a1(s), . . . )T = (P − sI)−1e0, then

−sa0 + a1 = 1, and qan−1 + (r − s)an + pan+1 = 0

Thus an(s) = α1ρ1(s)n + α2ρ2(s)n, where α1 = a0(ρ2−s)−1
ρ2(s)−ρ1(s) and α2 = 1−a0(ρ1−s)

ρ2(s)−ρ1(s) .

Since (a0, a1, . . . ) ∈ `2(C, π),

|an|
√
pn

qn
→ 0 as n→ +∞
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Hence when |ρ1(s)| 6= |ρ2(s)|, either α1 = 0 or α2 = 0, and therefore

a0(s) =
χ|ρ1(s)|<

q
q
p

ρ1(s)− s
+
χ|ρ2(s)|<

q
q
p

ρ2(s)− s
(2)

Now, because of the point masses at 1 and − q
q+r , a0(s) =

∫
(−1,1]

dψ(z)
z−s can be expressed

as

a0(s) =
q − p

1 + q − p

(
1

1− s

)
+

(1 + q − p)(q + r)− q

(1 + q − p)(q + r)

(
1

− q
q+r − s

)
+
∫

(−1,1)

ϕ(z)dz
z − s

,

where ϕ(z) is an atom-less function. Next we will use the following basic property of
Cauchy transforms Cf(s) = 1

2πi

∫
R
f(z)dz
z−s that can be derived using the Cauchy integral

formula, or similarly, an approximation to the identity formula 1:

C+ − C− = I (3)

Here C+f(z) = lims→z: Im(s)>0Cf(s) and C−f(z) = lims→z: Im(s)<0Cf(s) for all z ∈
R. The above equation (3) implies

ϕ(x) =
1

2πi

(
lim

s=x+iε : ε→0+
a0(s)− lim

s=x−iε : ε→0+
a0(s)

)
for all x ∈ (−1, 1). Recalling (2), we express ϕ as ϕ(x) = ρ1(x)−ρ2(x)

2πi(ρ1(x)−x)(ρ2(x)−x) for
x ∈ (r − 2

√
pq, r + 2

√
pq), which in turn simplifies to

ϕ(x) =


√

(x−r)2−4pq

2πi((r+q)x+q)(1−x) if x ∈ (r − 2
√
pq, r + 2

√
pq),

0 otherwise

Let I = (r−2
√
pq, r+2

√
pq) denote the support interval, and let 11I(x) be its indicator

function. Here ∫ 1

−1
ϕ(x)dx =

p

q + r

and one can check that

ψ(x) =
q − p

1 + q − p
·δ1(x)+

(1 + q − p)(q + r)− q

(1 + q − p)(q + r)
·δ− q

q+r
(x)+

√
4pq − (x− r)2

2π((r + q)x+ q)(1− x)
·11I(x)

integrates to one.

Observe that the residues of g(z) =
√

(z−r)2−4pq

((r+q)z+q)(1−z) are

Res(g(z), 1) =
q − p

1 + q − p
and Res

(
g(z),− q

q + r

)
=

(1 + q − p)(q + r)− q

(1 + q − p)(q + r)

in the principle branch of the log function.

1The curve in the integral does not need to be R for C+ − C− = I to hold.
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Now∫
(−1,1) λ

tQn(λ)dψ(λ) = (1+q−p)(q+r)−q
(1+q−p)(q+r) ·

(
− q
q+r

)t+n
+
∫ r+2

√
pq

r−2
√
pq λ

t(c1ρn1+c2ρn2 ) ρ1−ρ2
2πi(ρ1−λ)(ρ2−λ)dλ

and therefore, since c1 = ρ2−λ
ρ2−ρ1 and c2 = λ−ρ1

ρ2−ρ1 ,

∫
(−1,1) λ

tQn(λ)dψ(λ) = (1+q−p)(q+r)−q
(1+q−p)(q+r) ·

(
− q
q+r

)t+n
+ 1

2πi

∫ r+2
√
pq

r−2
√
pq λ

t
(

ρn
2

ρ2−λ −
ρn
1

ρ1−λ

)
dλ,

where, if we let ρ1 =
√

q
pz for z in the lower semicircle and ρ2 =

√
q
pz for z in the

upper semicircle, then

1
2πi

∫ r+2
√
pq

r−2
√
pq λ

t
(

ρn
2

ρ2−λ −
ρn
1

ρ1−λ

)
dλ =

(√
q
p

)n
1

2πi

∮
|z|=1

(
√
pq(z+z−1)+r)tzn√pq(1−z−2)dzq

q
p
z−(

√
pq(z+z−1)+r)

=
(√

q

p

)n( p

q + r

)
1

2πi

∮
|z|=1

(
√
pq(z + z−1) + r)tzn(z − z−1)(

z −
√

p
q
r+(1+q−p)

2(q+r)

)(
z −

√
p
q
r−(1+q−p)

2(q+r)

)dz
Here the absolute value of the function in the last integral is bounded by M(r+2

√
pq)t

with M = 2“
1−

q
p
q

r+(1+q−p)
2(q+r)

”“
1+

q
p
q

r−(1+q−p)
2(q+r)

” . Therefore, plugging in the values of πn, we

show that the distance to stationarity ‖ν − µt‖TV = 1
2

∑∞
n=0 πn

∣∣∣∫(−1,1) λ
tQn(λ)dψ(λ)

∣∣∣
is bounded above by

A

(
q

q + r

)t
+B(r + 2

√
pq)t

where

A =
(1 + q − p)(q + r)− q

2(1 + q − p)(q + r)

∞∑
n=0

πn

(
q

q + r

)n
=

(1 + q − p)(q + r)− q

(1 + q − p)(1− 2p)

and

B =
M

2

(
p

q + r

)(
1 +

1
√
pq − p

)
=

(
p
q+r

)(
1 + 1√

pq−p

)
(
1−

√
p
q
r+(1+q−p)

2(q+r)

)(
1 +

√
p
q
r−(1+q−p)

2(q+r)

)
The above upper bound can be improved if one obtains a better estimate of the trigono-
metric integrals involved in the sum.

We conclude that tmix(ε) = O
(

log(ε)
logm(p,q)

)
as ε ↓ 0.

Acknowledgment

The author would like to acknowledge useful comments about the idea of using orthog-
onal polynomials for computing mixing times he received from R.Burton, A.Dembo,
P.Diaconis, M.Ossiander, E.Thomann, E.Waymire and J.Zuñiga.
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