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Markov chains over discrete state space: mixing
times

S - sample space

P = {p(i,7)}; jes - transition probabilities

X; distributed according to u; = ugP?

7 - stationary distribution

Total variation distance:

1
=2 @) —v(z)| = jlé%W(A) —v(A)]

| — vy 1=
2:1365

Mixing time:

tmiz(€) (= Inf{t  |lue — 7llpy < e, all po}

Note: other norms can be used.



Coupling method.

Construct process < i(/t ) on S x S such that
t

X¢ is a {p(i,j)}-Markov chain
Y: is a {p(4,7)}-Markov chain

Once X;=Y;, let Xt—|—1:Yt—|—1f Xt—|—2:)/t—|—21"'
Coupling time: T,y piing = Min{t 1 Xy = Y}

Successful coupling: Prob(T,,,pjing <o) =1






Coupling method.

O (tmix> <O (Tcoupling)

by the coupling inequality. Thus constructing a cou-
pled process that minimizes E[T,.,yp1ing] 9ives an effec-
tive upper bound on mixing time.



Coupling inequality.

Given Xg =1 and Yg = 3. Then

||PXt — PY}HTV < Pz',j[Tcoupling > t]

If XON,LLO and YONT(‘,

maxi,jES Ez’,j [Tcoupling] <e
. >~

|t =77y = || Px, — Py,llTy <

max; jes E [Tcoupling]
€

O (tmia:) <O (Tcoupling)

whenever t > , and



Example: “lazy” random walk on Z/nZ

p(5,i+1)=1/4, p(j,j —1) =1/4 and p(j,j) = 1/2

A simple coupling produces order O(n?) upper bound
for mixing time, which must be correct due to CLT.



Shuffling by random transpositions.
Pick two cards at random:

1] (2] |3] |4] |B| |6] |7

Transpose them:

11 (2] |3] |4 |7]| |6] |5

Iterate:

. etc.



Shuffling by random transpositions.

Diaconis and Shahshahani (early 80’s): The mix-
ing time for shuffling a deck of n cards by random
transpositions is of order O(nlog(n)) with cut-off asymp-
totics at snlog(n).

A coupling. (in Aldous and Fill) Move card |a| to
location 7 in both processes (decks), X; and Y;.




Shuffling by random transpositions.
In case of two discrepancies (d = 2) at dq and d»:

Xt . ... |4] |6 bl |9 d 8| |7T] |2
Y;: ... |4| |6] |a] |9 |b| 8] |7T| |2
T T
do d1
Label-to-location coupling:
n2
B omaiingll = Y too large.
Case of two discrepancies (d = 2):
Xt - ... |4 16| 13| |9] |B] [8] |7| |2
Y. ... |4] |6] |5] (9] |3] |8] [7] |2
T T

do dq
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5| |8

3 18| |7] |2

9
9

4| |6| |3
4| 16| |5

9| |3] |8] |4] |2

3 19| |5] |8] |4] |2
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6
6

9| 3] |8] |4] |2

3 9] |5] |8] |4] |2

5
1

6

6
1

d1

1o do



X .
Y;: -

Label-to-location coupling: E[T,,upling]l =

—1>n2

Here E[Tcoupling] ~ 2222 Z_Q

7 |3 6] |9 |B| 8| |4] |2
7 13| |5 |9] |6 |8 |4] |2
7 T
do dq
7 |3 16| |9 |B| 8| |4] |2
7 |3 |B] 9| |6]| [8]| |4] |2
7
13
7 13| 6] 9] |[B| |8 |4] |2
7 |3 16| |9 |B| (8| |4] |2
n?

Y
Y

2

T

6

YK and R.Burton '07: O(nlog(n)) coupling.




General state space: mixing rates.

Mixing time for Markov chains over finite state spaces:

tmiz(e) == inT{t : ||pt — 7|7y <e, all po}

The above definition is invalid for Markov chains over
general countably infinite state spaces. There all
depends on ug.

Given po,  tmig(e) = inf{t : uoP’ — 7llry < e}



Toy example.

Consider a positive recurrent nearest neighbor walk

(001 0 0 ...\
q r p O :

P=]10gq r p . q>p, r>0
OO0 q r --.

that begins at the origin: ug = €} .

We want to find the asymptotics of t,,;,(¢) as € | O.



Method of Karlin and McGregor

Consider nearest-neighbor walk in 1D:

(TO po O O
g 1 p1 O
P=1 0 g 12 p2

O O g3 73

ri=1-pj—g

a(\) = (Qo, Q1,Qo,...)" solves right eigenvalue prob-

lem, i.e. Qo =1, \q = Pq

AQ;(N) = q;Qi—1(N) +7,;Q;(N) +pjQj41(N)



Method of Karlin and McGregor

Reversible m: mg = 1, m; = “2Pi-L satisfies

1---95
TjP; = Tj+195+1
If p =727 < oo, then v = %w is the stationary
probability distribution.

The operator P is self-adjoint in ¢2(x) given by the
inner product

< 1,9 >5= 3 F(De(Dm ()
J

ro bgp O

_ | bo r1 b1



Method of Karlin and McGregor

Spectrums of P and [P], coincide = eigenvalues are
real.

Also u()\) = (m9Qq, m1Q1,...)L solves the left eigen-
value problem, i.e.

u!'P = AP
as

= Pn-1Tn—-1Qn—1 + rnm™Qn + qn417Tn+1Qn+1



Diagonalization

If Ais an n xn Hermitian matrix with simple real EVs

A,...,A\n , and if uq1,...,up and vq,...,vy are the left
and right eigenvectors. Then
Aoy
Z K R Mol (Vdy(N) |
a(A)

where u()\J) = Uy, ’U()\j) = vy, and

1 n
P(N) = zj: uT(A)UO\)(X\j(}\) = TN o) Ugy(a)(N)



Method of Karlin and McGregor

Pt = [ Xtq(\)u’ (\)dy(A)

t ToRoQo m1QoQ1 ---
= [ 70Q1Q0 mQ1@1 -+ | dv(N)

pein i) =5 [ NQIOIQ(Ndw ()



Applications: mixing rates

pCin i) =75 [ NQNQ ()

Since p = Zzozo T < 00 and v = %w, for an aperiodic

nearest neighbor walk originating at site z

1
lv=nellpy = S35m| [ NI

2 < (—1,1)
as measure ¥ contains a point mass of weight % at
A= 1. Here aperiodic means there is no point mass
at A = —1.



Applications: Mixing Times

Consider our toy example: Markov chain

(001 0 0 ...\
q r p O :

P=]104q r »p q>p, r>0
O 0O g¢q r

originating from < = O.

We need to find the asymptotics for the “time to sta-
tionarity”

1
v~y = S3m () ARV
J Y



Applications: Mixing Times

Consider our toy example: Markov chain

(001 0 0 ...\

r p O :
P=]10q rr p - q>p, 1r>0

O 0O g¢q roooc-.

originating from ¢ = 0. There is a closed form

_ (+ +r b
Je1,1) X @r(N)d(A) = ((1-|q-qu9()q(q+?r)q (_q—?-fr)

-1 ton(,_ ,—1
FO) (@) (Z—ﬁgﬁ%p));(?—vg‘féﬁgsp)) N



Theorem.(YK 2009)

_ (+ +r .
J-1,) X@n(N)dY () = ((1-|q-qp39()q(q+?r)q (_q-(ll—fr)

n 242 D)t (z—2 1
+<\/g) (q-zlj-r) 2m§|2’|— ( E/\ir_-l-i((l;-z-ja)p)))_k() \/(;?“ ééqiglr)p))d

and the total variation distance ||v — ||y is bounded
above by

t
A( ! >+B(r+2¢p—q)t,
g+

T _ (E) )
Whel’e A (1+qq pp)é]l 2p)q and B = (1 \/34_2((1‘1—%;)@)( \_:\/f 2((1::'_[1)17))




Applications: Mixing Times

Corollary. If - >r+2,/pq,

t
v — pellpy > A (L> B + 250
q+r

We can adjust the above results for any origination site
Xog = 1.

_1 _ 1 _ 9
Example _ﬁ, r =17 and ¢ = 7.

There q_|_ r + 2./pq, and

| | 91 (9>ti39(7>t
v — = — | —
Hlrv =771 \10) T 28 \11




Comparison to geometric ergodicity

Coupling approach:

P(r0 > t) ~ ppz;z_“j_;p(r +259)"

where the hitting time g determines the coupling time.

Recall: if (;4.)" > (r +2,/p9)", then

t
_ — a9 t
v — pillpy = A (q n r) + B(r + 2/pq)

{
Where is A (#) in the above coupling?



Comparison to geometric ergodicity
t
. q . .
Where is A <—q_|_7,,) in the above coupling?

Extreme case:. p = 0. If Xy = 0 and Y} 1, the
coupling time is geometric with failure probability of

49
q+r’

Amend coupling rules: let X; and Y; be synchronized
if Xy =2 0 and Y; #+= 0; otherwise, let X; and Y move
independently.



Comparison to geometric ergodicity
t
i _9 i ina?
Where is A (qJﬂ) in the above coupling~
Amend coupling rules: let X; and Y; be synchronized

if Xy 2 0 and Y; #= 0O; otherwise, let X; and Y; move
independently.

Then if {X;,Y;} = {0, 1}, conditioningon {X;11,Y, 41} #
{1,2},

. . .
{1} with probability R

{0,1}  with probability —%-

{(Xi+1, Y41} = {
g+’



Solving toy example

(001 0 0 ...\
q r p O ..

P=]10gq r D - q>p, r>0
OO0 q r --.

OPs:  Qn(A) = c1(M)pT(A) + c2(M)p5(N),

where p1 2(A\) = A~ Ti\/(gp r)?—4pq

First we find all point masses locations, i.e. points
in[—1,1] satisfying q(\) = (Qo,Q1,Q2,...)" € £2(x)



Solving toy example
First we find all point masses locations, i.e. points
in[—1,1] satisfying q(\) = (Qq,Q1,Q2,...)" € £2(x)

There ||q(>\)||£_21(7r) are point masses.

So,

q—p (1+q-p)lat+r)—q N
N (s [ ERS R i

-+ continous spectrum

TOEE



Solving toy example
For the continuous part , we use (P—sI) " leg € ¢2(C, x)

X X
1@I<y/§ | Tleael<y/

to find (eg, (P — sI) teg) = p1(s)—s p2(s)—s

Next use ¢y — C_ = I property of Cauchy transform
to obtain

_ 9P sy, Qta-p)latr)—q "
w(x)_l-l-q—pél( & (I1+q—p)g+r) R

+ \/4pq — (x — 7“)2 | -
27 ((r + @)z + q)(1 —z) N—2vPer+2yp0)




Reversible Markov chains over general state space

If P is a reversible M.Ch. Then there exists a spectral
prob. meas. dv and Qj(A) - orthogonal polynomials
w.r.t. dy s.t.

Pl=F| [15Qi(s)Q;(s)dy(s) | FT,

| |
where F = Qo(P)eo Ql(P)eo .o« | and F = -1




How it works

e P is reversible: dr s.t.

m()p(i,5) = 7(5)p(, 1)

= P is self-adjoint in ¢2(x)

=

1

IS symmetric.



How it works

e T here is a probability measure diy s.t.

(eo, (P — ZI)_leo) = /dlﬁ(S)) Im(z) >0

S —Z

e Next find a Jacobi operator Pa s. t.

(e, Peo) = [ s"du(s) = (eo, Phieo)

e Q;()\) are orthogonal polynomials w.r.t. di associ-
ated with Pa



Example: Pentadiagonal Chebyshev operator

O O OO
O O HItIN O it -
O ISt O IS -
OIS O I O
=S O O

O SO O O

N ___~

Consider



Pentadiagonal Chebyshev operator

Classical Fourier analysis =

—1 — 1 2« do
<€O’ (P —=2I) 60) 27 Jo %[cos(0)+cos(2«9)]—z

_ [t dy(s)
= [,

S — <

where

di(s) = 1 X[_19_6’1](8) n X[—%,O)(S) o
QW\/@ \/1_(\/@_%)2 \/1_(\/@4‘%)2



Obtaining Jacobi operator

apg bg O
Pa = bo a1 b b; >0

O b1 as

(eo, Peg) = (eg, Paeo) = ag,
(eo, P?ep) = (e, PReg) = a§ + b§
(eg, P3eq) = (eq, PReg) = (a3 + b3)ag + (ag + a1)b3

(eg, P*eg) = (eo, Pleo)

= (a8 + b3)? + (ag + a1)?b3 + b3b3

. obtaining aqg, bg, ai, bq1,...



Pentadiagonal Chebyshev operator

O O OHPrKFAH~O
O O BIEP[ERFEN-
O HIRR R O HHNI-
Bl=pE O PR~ O
AR O DA~ O O
O PO O O

| oe oo con s o oa e

1 3
Peg) =0, (eg, P%ep) = =, (eq, P3eq) = —
(607 60) (60 eO) 4 (60 eO) 32

(eo, P*eg) = &4,



Pentadiagonal Chebyshev operator

Thus
1 3 V11
=0, bg=—, = —, by =—, etc.
agQ 0= 5 ai 3 1 3
and
1
(0 3 o )
1 3 11 .
— | 2 8 8
and Qo(A) =1, Q1(A) = 2,
32>\2 6 4

Q2() = /11 \/—1—1>\ — \/—1—17



Reversible Markov chains over general state space
P'=F ( [1158Qi(5)Q;(s)dw(s) ) Ft,

| |
where FF= | Qo(P)eg Q1(Peg ---
| |

Thus, taken a norm || - ||,

(

tmiz(€)=mMin {ti poF f(1,1)StQj(S)Qk(S)d¢(S))FT <e

\




Reversible Markov chains over general state space

Take an ¢2 norm || - ||o in

tmiz(€)=min{ & |\uoF | f(—1,1) s'Q;(s)Qr(s)dip(s) |[F1|<e

There, for ugp = eg, the distance to stationarity is
2

||/(1,1>St 2. Qr(8)Qr(P)dY(s) eo

k=0

2

2
t
Z [/( o Qk(s)dws)]

2 —
as HQk|‘L2(¢) =1
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