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Abstract

We consider a multi-particle generalization of linear edge-reinforced random walk
(ERRW). We observe that in absence of exchangeability, new techniques are needed
in order to study the multi-particle model. We describe an unusual coupling construc-
tion associated with the two-point edge-reinforced process on Z and prove a form of
recurrence: the two particles meet infinitely often a.s. 1

1 Introduction

The edge-reinforced random walk was first introduced in [2] and [5]. In this paper we will
study linear multi-particle edge-reinforced processes on Z. In the original edge-reinforced
random walk model, each edge of a locally finite non-directed graph is initially assigned
weight a > 0. With each step, the particle jumps to a nearest-neighbor vertex. The proba-
bility of the jump equals to the fraction of the weight attached to the traversed edge in the
total sum of the weights of the edges coming out of the vertex where the particle is located
prior to the jump. Each time an edge is traversed, its weight is increased by 1. In other
words, the linear edge-reinforced random walk is a random walk on a weighted graph, where
the weight of an edge is increased by one each time it is being traversed.

One of the most important open problems in the theory of reinforced random walks is
that of checking if the linear edge-reinforced random walk is recurrent on Zd for dimensions
d ≥ 2. Linear edge-reinforced random walk is exchangeable making the model an important
example for applying the theorem of de Finetti (see [7]) and its generalizations (see [4], [5]).
The history and some of the most important results in reinforced processes can be found in
[5], [3], [10], [8], [1], [12], [11] and references therein.
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In this paper we will consider a multi-particle modification of the edge-reinforced random
walk model similar to some of the reinforced processes studied in [11]. We let the walker
(or particle) in the edge-reinforced random walk model wait an independent exponential
time with rate one between the jumps. So, the walker jumps from a site to a near by site
with rates equal to the corresponding ratios. Now we are ready to define an n-point process
ηt = {η1(t), . . . , ηn(t)}, where all n particles travel along the edges of a graph G, jumping from
a site to a neighboring site in S, the set of all sites. Now, let Wt(e1), ...,Wt(ek) be the weights
assigned to all k edges e1, ..., ek coming out of a given site v ∈ S at time t. Once again, the
initial weights are all assigned to be equal to a > 0, i.e. W0(e1) = W0(e2) = · · · = W0(ek) = a.
If one of the particles, say ηj, is at site v at t when its exponential clock rings, then the particle

traverses ei (1 ≤ i ≤ k) with the rate = Wt−(ei)
Wt−(e1)+···+Wt−(ek)

. In which case the corresponding

edge weight increases by 1, i.e. Wt(ei) = Wt−(ei) + 1. The recurrence/transience questions
arising in this more general model are as important as the corresponding questions in the
theory of one-article edge-reinforced random walks.

The edge-reinforced process on Z with drift ∆ > 0 can be defined in the following way:
if a particle is at site v ∈ Z at the jump time t, then the probability of the particle jumping
to v + 1 is

Wt−(v, v + 1) + ∆

Wt−(v − 1, v) + Wt−(v, v + 1) + ∆

while the probability of it jumping to v − 1 is

Wt−(v − 1, v)

Wt−(v − 1, v) + Wt−(v, v + 1) + ∆
.

On trees, the edge-reinforced process with a toward-the-root drift ∆ > 0 can be stated
accordingly.

We will concentrate on the most basic case of multi-particle reinforced processes: the
two point reinforced process ηt = {η1(t), η2(t)} on Z with drift ∆ ≥ 0. We will describe an
unusual coupling construction associated with the process and as a consequence prove the
recurrence of (η2(t)− η1(t)) whenever 0 ≤ ∆ < 1. In the case of a two-particle process on
Z, one of the two particles is located to the left of another, except for the times when both
particles are at the same site. We will denote by lt the location of the left particle, and by
rt the location of the right particle at time t. When rt = lt there is no need to distinguish
between the “left” and the “right” particles. The difference becomes apparent only when
one of the particles leaves the site. So, ηt = {lt, rt}, and here is the main result of this paper:

Theorem 1. For all 0 ≤ ∆ < 1 and a > 0, (rt − lt) is recurrent.

Let us begin by reviewing the Polya’s urn model. The urn initially contains R0 marbles
of red color, and B0 marbles of blue color. We fix a positive integer number D. A marble is
randomly and uniformly drawn from the urn, returned, and D marbles of the same color are
added. Let Rn and Bn be respectively the number of red and blue marbles in the urn after n
drawings, and let ρn = Rn

Rn+Bn
be the fraction of the red marbles in the urn after n drawings.

It is easy to show that ρn is a martingale, and therefore, by martingale convergence theorem,
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converges to a random variable. That random variable ρ∞ is in turn shown to be a beta
random variable with parameters R0

D
and B0

D
, i.e. one with beta density function

1

β(R0

D
, B0

D
)
x

R0
D
−1(1− x)

B0
D
−1, (1)

where β(a, b) = Γ(a+b)
Γ(a)Γ(b)

. One can check that the urn model is exchangeable (see [7]), that is
if one permutes the results of m consecutive drawings, the probability of the outcome does
not change. By de Finetti’s theorem, conditioned on ρ∞, the results of the drawings are
independent Bernoulli trials, where each time a red marble is selected with probability ρ∞
and a blue marble is selected with probability 1− ρ∞.

The model trivially extends to the case when R0, B0 and D are positive real numbers, as
well as when there are more than two different types of marbles. For instance, consider the
case when there are three types of marbles, red, blue and green, in the urn. If we start with
the amounts R0, B0 and G0 of respectively red, blue and green marbles, then the limiting
fractions vector will be a Dirichlet distributed random vector, i.e. the cumulative density
function for the limiting fractions of red and blue marbles will be

f(x, y) =
Γ

(
R0+B0+G0

D

)
Γ

(
R0

D

)
Γ

(
B0

D

)
Γ

(
G0

D

)x
R0
D
−1y

B0
D
−1(1− x− y)

G0
D
−1 if x > 0, y > 0 and x + y < 1,

where the above density is derived by applying (1) twice.
See [7] for basic facts on exchangeability, the Polya’s urn model and a simple version of

de Finetti’s theorem. A simple proof of the convergence to beta distribution can be found
in [15].

Polya’s urns were used to study linear edge-reinforced random walks (see [12]). There, if
the walk lives on an acyclic graph, say Z, we can assign a Polya’s urn for each site. When
the walker is at site v, we do a drawing from the urn associated with v, where the number
of the red (respectively blue) marbles in the urn is equal to the weight attached to the edge
[v − 1, v] (respectively [v, v + 1]) at the time. If a red marble is drawn, the walker jumps
to v − 1 and we add D = 2 red marbles to the urn associated with v. Similarly, if a blue
marble is drawn, the walker jumps to v + 1 and we add D = 2 blue marbles. We do so
because the graph is acyclic: if the particle ever returns to the vertex, it will be from the
same direction it took when it left the vertex. For example, if the red marble is drawn, the
walker will traverse the edge [v−1, v] twice before returning to v, thus increasing the weight
of the edge exactly by D = 2. The initial conditions [R0(v), B0(v)] at an urn associated
with site v should be set equal to the weights attached to the edges [v − 1, v] and [v, v + 1]
respectively at the time of the first arrival to v. As an example, consider the edge-reinforced
random walk on Z that begins at site 0. There the correct initial conditions for a Polya’s
urn assigned to site v ∈ Z should be set equal to

[R0(v), B0(v)] =


[a, a + 1] if v < 0,

[a, a] if v = 0,

[a + 1, a] if v > 0.
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What follows is that one can do an infinite number of drawings independently for each of
the Polya’s urns associated with the vertices of an acyclic graph before the walk begins,
thus completely predetermining the trajectory of the walker. Now, the exchangeability
property of Polya’s urns and de Finetti’s theorem mentioned above allows one to restate the
edge-reinforced random walk as a random walk in random environment (RWRE), where the
environment is distributed as the limiting beta random variables obtained for Polya’s urn
processes associated with each vertex of the acyclic graph. After that, other techniques such
as large deviations are of use in answering the corresponding recurrence/transience questions
for the RWRE model (see [12]).

Does the same approach work for the two point process ηt = {lt, rt} on Z? The answer
is “no”. Consider the case when the drift ∆ = 0. Suppose there is an urn at each vertex
of Z. Suppose a vertex v is visited by the right particle rt, and the drawing was done from
the urn associated with v and a blue marble was selected, so that the right particle rt jumps
to v + 1. We cannot add D = 2 blue marbles into the urn, as it could happen that the
left particle lt arrives to the urn from (−∞, v − 1] before the right particle rt returns to v
from [v + 1,∞). In the latter case, there will be more blue marbles than the weight amount
attached to the edge [v, v + 1] on the right and the rates will not agree. In other words, the
representation with Polya’s urns and similar approaches will not work because the two-point
linear edge-reinforced process is nonexchangeable. The non-exchangeability of the process
was the main obstacle for studying it as well as for proving Theorem 1.

2 The Polya’s urn modified

Although the representation with classical Polya’s urns fails for the two-point process ηt =
{lt, rt}, there is a way to modify it. Suppose that at each vertex of Z, the associated urn
contains not only the red and blue marbles, but also a special marble, called magic marble,
such that when the left particle lt arrives to the site, the magic marble becomes red, while
when the right particle rt arrives to the site, the magic marble becomes blue. Each urn will
contain exactly one magic marble in addition to red and blue marbles. When magic marble
is selected, two marbles of the color assumed by the magic marble will be added into the urn.
Once again the particles move according to the colors of marbles selected from the urns. In
other words, if the magic marble is selected when it is red, two more red marbles will be
added to the urn and the particle will jump left. Similarly, if the magic marble is selected
when it is blue, two more blue marbles will be added to the urn and the particle will jump
right.

Let Rt(v) and Bt(v) denote respectively the number of red and the number of blue
marbles inside an urn associated with site v ∈ Z, at time t. The initial number of red
and blue marbles, R0(v) and B0(v), together with the magic marble must represent the
corresponding weights assigned to edges [v−1, v] and [v, v +1] at the time of the first arrival
to v by any of the two particles. The left particle is the first to visit the sites to the left of
l0, i.e. all v < l0, and the right particle is first to visit the sites to the right of r0. Hence, for
all a > 0, the following must be the initial configuration of red and blue marbles assigned to
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the urns associated with sites in Z:

[R0(v), B0(v)] =



[a− 1, 1 + a + ∆] if v < l0,

[a− 1, a + ∆] if v = l0,

[a, a + ∆] if l0 < v < r0,

[a, a− 1 + ∆] if v = r0,

[a + 1, a− 1 + ∆] if r0 < v

(2)

plus a magic marble in every urn. Here we can allow a− 1 < 0 since there is also a magic
marble in the urn, which is red when the left particle is at the site, and blue when the right
particle is at the site.

We now explain the reason why the magic marble was introduced. First we check that
the above urn representation produces correct rates up until the first recurrence time τ1 :=
min{t : lt = rt}. We consider the case when the right particle departs from site v at jump
time t < τ1. Suppose that the next arrival to v happens before τ1, then there are three
possible scenarios.

Case I: the right particle jumps to the left, and returns to v before the left particle arrives.
So rt− = v, rt = v − 1, lt < v, and we need to add two red marbles into the urn, i.e.
Rt(v) = Rt−(v) + 2. The magic marble stays blue, and as it was the case with one particle
ERRW model, the rates agree.

Case II: the right particle jumps to the right, but returns to v before the left particle
arrives. That is rt− = v, rt = v + 1, lt < v and we need to add two blue marbles into the
urn, i.e. Bt(v) = Bt−(v) + 2. The rates agree since the right particle returns to v before the
next visit to v by the left particle. Again, the magic marble stays blue, and as it was the
case with one particle ERRW model, the rates agree.

Case III: the right particle jumps to the right, and the left particle arrives to v before the
right particle returns from [v + 1, +∞). This is the case where the chameleon property of
the magic marble is used. Once again rt− = v, rt = v + 1, lt < v and we need to add two
blue marbles into the urn, i.e. Bt(v) = Bt−(v)+2. Before the departure of the right particle
from site v at time t,

the weight assigned to [v − 1, v] was = Rt−(v)

and
the weight assigned to [v, v + 1] was = Bt−(v) + 1

as the magic marble was blue in the presence of the right particle. When the left particle
jumps to v from v − 1 at time t1 ∈ (t, τ1) before the return of the right particle, the magic
marble re-colors into red, and

the weight assigned to [v − 1, v] = Rt1(v) + 1 = Rt−(v) + 1

and
the weight assigned to [v, v + 1] = Bt1(v) = Bt(v) = Bt−(v) + 2.

One can see that the weights are correct since each edge [v−1, v] and [v, v+1] was traversed
exactly once.
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Figure 1: Above: ∆ = 0, the right particle is at site v, Wt(v−1, v) = 3 and Wt(v, v +1) = 2.
The urn associated with v contains three red, one blue and one magic marble. The magic
marble is temporarily colored in blue as the right particle is present. Below: with probability
2
5
, either blue or magic marble was selected, the right particle jumps to v + 1 and two blue

marbles are added into the urn. The left particle arrives to v from the left while the right
particle is still at v + 1. The weight that corresponds to [v − 1, v] is equal to 4, while the
weight of [v, v + 1] is equal to 3. There are three red, one magic and three blue marbles in
the urn. However, the magic marble is temporarily red as the left particle is present at site
v.
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That explains why adding magic marble works. The case when the left particle is at site
v can be checked by the analogy with the case above. See Figure 1 for a visual example.

Observe that the above coupling of the urn process with ηt works only up until time
τ1 = min{t : lt = rt}, the first time that the particles meet. Now, we need to show that the
particles meet at least once. Therefore before proving Theorem 1, we will need to prove the
following one-time recurrence result:

Theorem 2. For all 0 ≤ ∆ < 1 and all a > 0, τ1 < ∞.

Since the above urn process is coupled with the above described urn process until the
decoupling time τ1, it suffices to prove Theorem 2 for the urn process. Later it will be shown
that the construction will also imply the full recurrence, i.e. Theorem 1.

3 Recurrence via coupling.

The urn construction construction defined in the preceding section determines ηt = (lt, rt)
for 0 ≤ t ≤ τ1. Here we let ql

t(v) and pl
t(v) be respectively the left and the right jump rates

for the left particle at site v. We also denote by qr
t (v) and pr

t (v) respectively the left and the
right jump rates for the right particle at site v. By construction,

ql
t(v) =

Rt(v) + 1

Rt(v) + Bt(v) + 1
and pl

t(v) =
Bt(v)

Rt(v) + Bt(v) + 1
,

and similarly,

qr
t (v) =

Rt(v)

Rt(v) + Bt(v) + 1
and pr

t (v) =
Bt(v) + 1

Rt(v) + Bt(v) + 1
.

We recall that in the case of edge-reinforced random walks on Z, the drawings predeter-
mined the outcome of the whole process. There the results of all drawings from the urns
associated with all the vertices of the graph determined uniquely the trajectory of the walker.
In the one-particle case one determines the limiting fractions of blue marbles for all sites
in the form of respective independent beta random variables. Then one interprets the walk
as a birth and death chain with these rates. We want to implement a similar trick for the
two-point edge-reinforced process. We will embed the urn process defined in the preceding
section into a three-color Polya’s urn process.

3.1 Magic family

For each site v and the urn associated with v, we define the magic family as all the marbles
that were added as the result of selecting the magic marble, plus the magic marble itself.
Here is how the magic family is constructed: at the beginning the magic family consists of
only the magic marble itself. When the magic marble is selected from the urn for the first
time, and two marbles (of one of the two colors) are added to the urn, we include the two
into the magic family. Each time a marble from the magic family is selected and two new
marbles are added, we let the two marbles into the magic family regardless of their color.
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All the red marbles that are not in the magic family will be called pure red, and all the
blue marbles that are not in the magic family will be called pure blue. Observe that for
each site v, the urn associated with v is a Polya’s urn with respect to three types of marbles:
pure red, pure blue and the marbles in the magic family. Each time when a pure red marble
is selected, two more pure red marbles are added to the urn. Same is true for pure blue
marbles. See Figure 2 for a visual example.

Figure 2: Suppose a = 2, ∆ = 0 and v > r0. We begin with three red, one blue and one
magic marble inside the urn associated with site v. The right particle was at v at the time
of the first drawing. After waiting for the jump time with rate one, a pure blue marble is
selected, two more pure blue marbles are added to the urn and the right particle jumps to
v+1. Next, the left particle arrives from v−1, and the magic marble assumes red color. The
magic marble is selected in the second drawing, two magic family red marbles are added to
the urn and the left particle jumps back to v−1. The right particle arrives from the right for
the third drawing, the magic marble is selected with probability 1

9
, in which case two magic

family blue marbles are added and the right particle jumps to site v + 1. The left particle
arrives from v−1, a magic family red marble is selected, two more magic family red marbles
are added, and the left particle jumps back to v − 1.

For each site v, we let R̄n(v), B̄n(v) and M̄n(v) denote respectively the number of pure
red marbles, the number of pure blue marbles and the number of marbles in the magic family
inside the urn associated with site v after n drawings. The proportion vector of pure red
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marbles, marbles in the magic family and pure blue marbles[
R̄n(v), M̄n(v), B̄n(v)

]
/(R̄n(v) + M̄n(v) + B̄n(v))

converges to a Dirichlet random vector with parameters R0(v)
2

, 1
2

and B0(v)
2

.
We observe that after n drawings, M̄n(v) − 1 marbles in the magic family are of either

red or blue color. Therefore R̄n(v) ≤ Rn(v) and B̄n(v) ≤ Bn(v). Let B(α, β) denote the
beta distribution with parameters α > 0 and β > 0. If for each v we define pl

Polya(v) as the

limiting fraction of pure blue marbles, then pl
Polya(v) will be a beta random variable with

parameters B0(v)
2

and R0(v)+1
2

. Looking back at (2), one can write down the corresponding

B
(

B0(v)
2

, R0(v)+1
2

)
distribution of pl

Polya(v) for each v ∈ Z. For a ≤ 1−∆,

pl
Polya(v) is


B(a+1+∆

2
, a

2
) if v < l0,

B(a+∆
2

, a
2
) if v = l0,

B(a+∆
2

, a+1
2

) if l0 < v < r0,

0 if r0 ≤ v

and for a > 1−∆,

pl
Polya(v) is



B(a+1+∆
2

, a
2
) if v < l0,

B(a+∆
2

, a
2
) if v = l0,

B(a+∆
2

, a+1
2

) if l0 < v < r0,

B(a−1+∆
2

, a+1
2

) if v = r0,

B(a−1+∆
2

, 1 + a
2
) if r0 < v.

Similarly, qr
Polya(v) defined as the limiting fraction of pure red marbles in the urn will be a

beta random variable with parameters R0(v)
2

and B0(v)+1
2

. So for a ≤ 1,

qr
Polya(v) is


0 if v ≤ l0,

B(a
2
, a+1+∆

2
) if l0 < v < r0,

B(a
2
, a+∆

2
) if v = r0,

B(a+1
2

, a+∆
2

) if r0 < v.

and for a > 1,

qr
Polya(v) is



B(a−1
2

, 1 + a+∆
2

) if v < l0,

B(a−1
2

, a+1+∆
2

) if v = l0,

B(a
2
, a+1+∆

2
) if l0 < v < r0,

B(a
2
, a+∆

2
) if v = r0,

B(a+1
2

, a+∆
2

) if r0 < v.

Let ql
Polya := 1− pl

Polya and pr
Polya := 1− qr

Polya. Then the pairs (ql
Polya(v), pl

Polya(v))v∈Z and
(qr

Polya(v), pr
Polya(v))v∈Z can be viewed as two dependent random environments. We define
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lPolya
t as a random walk in the random environment (ql

Polya(v), pl
Polya(v))v∈Z that starts at

lPolya
0 = l0 and jumps from v to v +1 with rate pl

Polya(v) or to v− 1 with rate ql
Polya(v). Sim-

ilarly, we define rPolya
t as a random walk in the random environment (qr

Polya(v), pr
Polya(v))v∈Z

that starts at rPolya
0 = r0 and jumps from v to v + 1 with rate pr

Polya(v) or to v− 1 with rate
qr
Polya(v).

We observe that conditioned on the two dependent environments, the two random walks,
lPolya
t and rPolya

t , can coexist as two independent birth and death chains. In the next sub-
section we will couple {lPolya

t , rPolya
t } with {lt, rt} so that

lPolya
t ≤ lt ≤ rt ≤ rPolya

t for 0 ≤ t ≤ τ1 .

Then showing the recurrence of (rPolya
t − lPolya

t ) will prove Theorem 2. Here is the heuristic
explanation for the coupling construction to follow. If in the original urn model {lt, rt}, we
substitute the magic marble with a red marble in every urn, then the left particle process lt
will be distributed as the random walk in random environment lPolya

t . If in turn we substitute
the magic marble with a blue marble in every urn, then the right particle process will have
the same distribution as rPolya

t . Observe that this heuristics can be generalized to work in
the case of more than two particles, e.g. three-particle linear edge-reinforced processes on Z.

3.2 Coupling with RWRE

We notice that the process {lt, rt} can be predetermined by the results of all drawings from
the Polya’s urns with three types of marbles: pure red, pure blue and magic family. We
can first do the drawings from the urns associated with all the sites in Z, determining
[R̄n(v), M̄n(v), B̄n(v)]n=0,1,2,... for all v and the limiting fractions {qr

Polya(v), pl
Polya(v)}v∈Z of

pure red and pure blue marbles. By de Finetti’s theorem, conditioned on qr
Polya(v), pl

Polya(v),
[R̄n(v), M̄n(v), B̄n(v)]n=0,1,2,... are determined as independent trials with probabilities qr

Polya(v)
and pr

Polya(v) for pure red and pure blue marbles respectively. When one of the two particles
visits site v, the results [R̄n(v), M̄n(v), B̄n(v)] of the n-th drawing (if it is the time of n-th
departure from the site) determine the destination site and the coloring of the marbles in
the magic family.

We recall that in the Polya’s urn model the limiting fraction of marbles of one color is a
particular beta random variable and the density function f{qr

Polya(v),pl
Polya(v)}(x, y) for the pair

of limiting fractions qr
Polya(v) and pl

Polya(v) is Dirichlet

f{qr
Polya(v),pl

Polya(v)}(x, y) =
Γ

(
R0(v)+B0(v)+1

2

)
Γ

(
R0(v)

2

)
Γ

(
B0(v)

2

)
Γ

(
1
2

)x
R0(v)

2
−1y

B0(v)
2

−1(1− x− y)−
1
2

if x > 0, y > 0 and x + y ≤ 1.

Now we construct the coupled process {lPolya
t , lt, rt, r

Polya
t }:

• We condition on the Dirichlet variables {qr
Polya(v), pl

Polya(v)}v∈Z.
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• We begin with lPolya
0 = l0 < r0 = rPolya

0 .

• The trajectories of lt and rt are determined by drawings from the urns.

• lPolya
t and rPolya

t are independent birth and death chains with corresponding probabil-
ities (ql

Polya(v), pl
Polya(v))v∈Z and (qr

Polya(v), pr
Polya(v))v∈Z that move independently of

each other and of lt and rt except for the times when lPolya
t = lt or rPolya

t = rt.

• When the left particles l and lPolya happen to be at the same site v, they wait for
the departure time with rate one. Then the results of the next drawing from the
corresponding urn are studied. If the selected marble is red or magic marble, both
particles jump to v − 1. However, if the selected marble is blue, the left particle l
jumps to v + 1, while lPolya jumps to v + 1 only if the marble is pure blue, and jumps
to v− 1 otherwise. The probability that lPolya jumps to v +1 is equal to pl

Polya(v), and

each such drawing is independent of all the other drawings. lPolya
t will still be a random

walk in random environment (ql
Polya(v), pl

Polya(v))v∈Z, while lPolya
t ≤ lt is preserved.

• Similarly, when the right particles r and rPolya happen to be at the same site v, they
wait for the departure time with rate one. Then the results of the next drawing are
studied. If the selected marble is a blue or a magic marble, both particles jump to v+1.
If the marble is red, the right particle r jumps to v−1, while rPolya jumps to v−1 only
if the marble is pure red, and jumps to v + 1 otherwise. The probability that rPolya

jumps to v − 1 is equal to qr
Polya(v), and each drawing is independent of the others.

rPolya
t will still be a random walk in random environment (qr

Polya(v), pr
Polya(v))v∈Z, while

rt ≤ rPolya
t is preserved.

In the above coupled process, conditioned on the environments, the independence of lPolya
t

and rPolya
t is preserved and

lPolya
t ≤ lt ≤ rt ≤ rPolya

t .

Thus showing the recurrence of (rPolya
t − lPolya

t ) is enough to prove Theorem 2.

Some theory of RWREs: a RWRE on Z with the right jump probability p(v) chosen to be
B(a+1

2
, a+∆

2
) distributed at all sites v is transient to the right whenever 0 ≤ ∆ < 1, explaining

the bound on the drift ∆ in Theorem 1. In general, RWRE on Z is a.s. transient to the right

if and only if E[log
(

p(v)
1−p(v)

)
] > 0 (see [14] for the proof, and [13], [9] and references therein

for more on the subject). Not surprisingly the RWRE with the environment {p(v)}v∈Z
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independently B(α1, α2) distributed with α1 > α2 is a.s. transient to the right:

E[log
( p(v)

1− p(v)

)
] =

1

β(α1, α2)

∫ 1

0

log
( x

1− x

)
xα1−1(1− x)α2−1dx

=
4

β(α1, α2)

∫ ∞

−∞
se2α1s(1 + e2s)−(α1+α2)ds

=
23−α1−α2

β(α1, α2)

∫ ∞

0

s sinh((α1 − α2)s)(cosh s)−(α1+α2)ds

> 0,

where we substitute x
1−x

= e2s. In the above general case, E
[

1−p(v)
p(v)

]
= β(α1−1,α2+1)

β(α1,α2)
= α2

α1−1
if

α1 > 1, and E
[

1−p(v)
p(v)

]
= +∞ if α1 ≤ 1.

The expected time of return is a.s. finite only when E
[

1−p(v)
p(v)

]
< 1 (see [14]). That is

only when α1 > 1 + α2. Now, if one considers a RWRE on Z with independent right jump
probabilities {p(v)}v∈Z, each B(a+1

2
, a+∆

2
) distributed, the recurrence time is infinite since

a+1
2

< 1 + a+∆
2

for ∆ > 0.
The above implies that the expected time of return to site v for rPolya is infinite if

v < rPolya
t and is finite if rPolya

t < v. Similarly, the expected time of return to site v for lPolya

is infinite if lPolya
t < v and is finite if v < lPolya

t .

3.3 Proof of Theorem 2.

In this subsection we will prove Theorem 2.

Proof of Theorem 2: Recall that the environments {(pl
Polya(v), ql

Polya(v)}v∈Z and

{(pr
Polya(v), qr

Polya(v)}v∈Z of lPolya
t and rPolya

t are dependent, but conditioned on the envi-

ronments, the walks lPolya
t and rPolya

t are independently. We claim that, even though the
expected time of return of (rPolya

t − lPolya
t ) to zero is infinite, (rPolya

t − lPolya
t ) is recurrent.

The problem can be summarized by the following more general lemma.

Lemma 1. Let p1(1), p1(2), ... be i.i.d. random variables defined on (0, 1) with

µ1 = E

[
log

(
1− p1(i)

p1(i)

)]
> 0,

e.g. p1(i) ∼ B(a1, b1) for 0 < a1 < b1, and let p2(1), p2(2), ... be i.i.d. random variables
defined on (0, 1) with

µ2 = E

[
log

(
1− p2(i)

p2(i)

)]
> 0,

e.g. p2(i) ∼ B(a2, b2) for 0 < a2 < b2. Also let p1(0) = p2(0) = 1.
If p1(0), p1(1), p1(2), ... are the forward rates for the birth-and-death chain Zr

t , and
p2(0), p2(1), p2(2), ... are the forward rates for the birth-and-death chain Zr

t , then the two
dimensional RWRE Xt = (Z l

t, Z
r
t ) returns to zero infinitely often.
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The following is equivalent statement that we can apply in our case: Suppose Zr
t is a

RWRE on Z+ such that for any i ≥ 0, Zr
t jumps from site i to i + 1 with rate p1(i) and to

i−1 with rate 1−p1(i), and suppose Z l
t is a RWRE on Z− such that for any i ≥ 0, Z l

t jumps
from site −i to −(i+1) with rate p2(i) and to −(i−1) with rate 1−p2(i). If conditioned on
the environments {p1(i)}i and {p2(j)}j, Zr

t and Z l
t are independent birth and death chains,

then Zr
t − Z l

t is recurrent.
The proof of the above lemma can be thought of as an exercise on use of harmonic

functions in stochastic processes. It can be done with Lyapunov functions (see [6]), or
alternatively with conductivities. �

3.4 Proof of Theorem 1

It was essential for proving Theorem 2 that ηt = (lt, rt) was defined via urns and magic
marbles for t ≤ τ1. There are many ways to complete the proof of Theorem 1, one is
to notice that when the particles separate after the first meeting time τ1, we can do the
whole coupling construction (that lead us to the proof of Theorem 2) anew, starting from
scratch. The only thing different will be the initial marble configuration for ηt = (lt, rt), and
the environments of lPolya

t and rPolya
t , but only at finitely many sites, thus establishing the

finiteness of the second meeting time τ2. The finiteness of τ3, τ4, . . . follows by induction.
�

This proof followed from the unusual coupling construction with the magic marbles and
the domination by two RWREs, one on the right and one on the left. As we already men-
tioned, the above domination can be constructed without using the magic marble approach,
and generalized to work for more particles than two. However the approach taken in this pa-
per allows us better understand the dynamics behind the two-point processes, and is valuable
as an innovative coupling technique.
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